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The extreme and unusual 
tribological properties of carbon 
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The Nanoprobe Network: http://nanoprobenetwork.org  

A free resource for scanning probe microscopists 

-�Forums for asking and answering SPM questions, 

including live chats with experts once a month 

-�Probe-pedia: The user-generated encyclopedia of 

SPM 

-�Blogs by scientists in academia and industry 

-�Shared software, images, video files 

-�Coming soon: Job listings 
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Macroscale friction and wear of 

ultrananocrystalline diamond 

(UNCD) 

Collaboration with A. Sumant, J. Carlisle, W.G. Sawyer 



3�

© 2009 R.W. Carpick 

Coatings for 

mechanical seals 

Ultrahigh performance atomic force 

microscopy (AFM) probes 

Micro-electro-mechanical systems 

(MEMS) 

Tools: macro to micro 
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TEM image of UNCD 

nanograins 

Source: Argonne 

National Labs sp2 sp3 
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•� Contact stresses cause bonds to 
break, leaving dangling bonds 

•� Dangling bonds can re-bond 
across the interface, increasing 
friction and wear 

•� H-termination and sp3 bonding 
diamond lower adhesion, friction, 
and wear 

G.T. Gao, P.T. Mikulski, and J. A. Harrison,  J. Am. Chem. Soc., Vol. 124, No.24 (2002)  

Importance of surface chemistry and bonding at the 
tribological interface 

green: H 

red: initially sp-bonded C 
yellow: initially sp2-bonded C 

blue & gray: diamond 

Classical MD Simulations from J. 
Harrison, U.S. Naval Academy 
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AFM studies of friction and 

adhesion for UNCD 
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•� H-plasma treatment reduces adhesion and friction 

•� values are consistent with van der Waals interactions 

•� values consistent with (i.e., slightly larger than) recent DFT calculation by Y. 

Qi et al. (Surf. Sci. 2006) and by Zilibotti, Righi, and Ferrario (PRB 2009) 

TEM images of UNCD AFM tip 
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• H-termination reduces friction and adhesion appreciably 

Friction measurements were performed with a 
UNCD AFM tip on UNCD underside surfaces 

TEM images of AFM tip 
(UNCD) 

Before 

After 
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Macro-scale friction and wear of 

UNCD self-mated interfaces 
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RH=0.690±0.004% (time the wear track is exposed to atmosphere between each pass of the sphere) 

��Lowest RH where low 
friction & wear have 
been observed for a 
diamond film 

��Lowest � ever recorded 
for diamond under any 
conditions 
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Advanced Light Source 

Sample 

(-20 kV) 

Monochromator 

h� 

CCD 

e- optics 
e- image 

MCP PS 

e- 

•� Spatially sensitive spectroscopic information (down to <50 nm) 

•� Ideal for ex situ wear studies to compare worn and unworn areas 

PEEM schematic: 
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Unworn area 
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Konicek, 
Grierson, 

Gilbert, Sawyer, 
Sumant, 
Carpick,  

Phys. Rev. Lett. 
100 (2008) 
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Diamond 

Shock wave 

synthesis 
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Eactivation = ~1 eV 

 Hybridization state matters for 

tribological performance 

G.T. Gao et. al. 

J. Phys. Chem. B, 107 (2003) 11082-90 

= 
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Heavily worn UNCD 

Spectrum comparison: The worn regions of 

UNCD do not look like crystalline graphite 

Calculation 

Experiment 
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Reference 

Worn 

area 
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Water Hydrogen 

Warning: Artist’s license in effect 

H2: 4.66 eV dissociative  
adsorption energy 

H2O: 1.80 eV dissociative 
adsorption energy 

Passivation of dangling carbon bonds 

Proposed by: M. Gardos and S. Gabelich, Tribol. Lett. 6 (1999) 
Modeled by: Y. Qi et. al., Surf. Sci. 600 (2006) 

and Zilibotti, Righi, and Ferrario, PRB 79 (2009) 

From Y. Qi: 
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•� Self-mated UNCD interfaces under rather dry conditions 

have impressively good performance 

•� extremely low friction (down to 0.005 at <1% RH) 

•� The formation of a crystalline graphite layer is NOT the 

mechanism of low friction under any conditions tested 

•� Some amorphous carbon is found 

•� Oxidation occurs, particularly under more severe conditions; 

chemical passivation (by -H, or -OH) is the key 

•� there is a dynamic competition between bond breaking 

(leading to bonding across the interface and wear) and 

bond passivation by dissociative adsorption (which is 

clearly feasible from energetics) 

•� Leads to rapid switching between low & high friction with 

a small change in humidity: runaway behavior 

Summary of UNCD tribology 


