
2065-33

Advanced Training Course on FPGA Design and VHDL for Hardware
Simulation and Synthesis

Fabio Mammano 

26 October - 20 November, 2009

             University of Padua
   Faculty of Medicine and Surgery
            Department of Physics
                   via Marzolo 8
                   35131 Padova
                          Italy

Introduction to two-dimensional digital signal processing



Introduction to twoIntroduction to two--dimensional dimensional 
digital signal processingdigital signal processing



Lecture 1 2

Fourier transform definitionFourier transform definition

� �� � � �, ( , ) exp 2 ( )X YF g x y g x y j f x f y dxdy�
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� � 	
 


The The Fourier transformFourier transform of a of a complexcomplex��valuedvalued function function gg((x,yx,y)) of two independent real of two independent real 
variables variables x x and and yy is defined byis defined by

The transform so defined is itself a The transform so defined is itself a complexcomplex��valuedvalued function of two independent real function of two independent real 
variables variables ffXX and and ffYY , generally referred to as , generally referred to as spatialspatial frequenciesfrequencies. For the above integral . For the above integral 
to exist, function to exist, function gg::

Similarly, the Similarly, the inverseinverse Fourier transformFourier transform of a of a complexcomplex��valuedvalued function function GG((ffXX,,f,,fYY)) of two of two 
independent real variables independent real variables ffXX and and ffYY is defined asis defined as

� �� � � � � �1 , , exp 2 ( )X Y X Y X Y X YF G f f G f f j f x f y df df�
	
 	


�

�
 �


� 	
 


1.1. must be absolutely must be absolutely integrableintegrable over the infinite (over the infinite (xx, , yy) plane) plane
2.2. must have only a finite number of discontinuities and a finite must have only a finite number of discontinuities and a finite 

number of maxima and minima in any finite rectanglenumber of maxima and minima in any finite rectangle
3.3. must have no infinite discontinuities.must have no infinite discontinuities.

Fourier integral theorem.Fourier integral theorem. At each point of continuity of At each point of continuity of gg, , 

� �1 ( , ) ( , )F F g x y g x y� �
(at each point of discontinuity of (at each point of discontinuity of gg, the result is the angular average of the value of , the result is the angular average of the value of gg, in a small neighborhood , in a small neighborhood 
of that point).of that point).
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TheThe Dirac delta functionDirac delta function

( ', ') ( ', ') ' ' ( , )g x y x x y y dx dy g x y�
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The defining characteristic of the delta function is its so callThe defining characteristic of the delta function is its so called ed 
siftingsifting property:property:

It is common to represent an It is common to represent an idealized point source of lightidealized point source of light as a as a 
twotwo��dimensionaldimensional Dirac Delta function. Dirac Delta function. This is a quantity This is a quantity 
(actually, a (actually, a distributiondistribution) that is zero everywhere except at the ) that is zero everywhere except at the 
origin, where it goes to infinity in a manner so as to encompassorigin, where it goes to infinity in a manner so as to encompass a a 
unit volume, that isunit volume, that is

0
( , )

0 otherwise

( , )  1

x y
x y

x y dxdy
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The height of the arrow The height of the arrow 
representing the delta representing the delta 
function corresponds to function corresponds to 
the volume under the the volume under the 
function.function.

at any point at any point ((xx, , yy)) of continuity of of continuity of gg..
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� �2 2 2
2( , ) lim N x y

N
x y N e �

�
� 	

�

�

Having an infinite discontinuity, the delta function fails to saHaving an infinite discontinuity, the delta function fails to satisfy condition 3 above for tisfy condition 3 above for 
the existence of the Fourier transform. However, it is possible the existence of the Fourier transform. However, it is possible to envisage the delta to envisage the delta 
functionfunction as the convergence limit of a sequence of Gaussian pulses such as the convergence limit of a sequence of Gaussian pulses such asas

Each member function of this defining sequence does satisfy the Each member function of this defining sequence does satisfy the existence existence 
requirements, and each has Fourier transform given by requirements, and each has Fourier transform given by 

Accordingly, the Accordingly, the generalizedgeneralized transformtransform of of �� is found to beis found to be

� �
2 2

2 2 2 2
( )

2 ( )
X Yf f

N x y NF N e e
�
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2
( )

( , ) lim 1
X Yf f
N

N
F x y e

�
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�
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� �� �� �� �
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As the Gaussian pulses become narrower and taller, their transfoAs the Gaussian pulses become narrower and taller, their transforms grow broader rms grow broader 
until the pulse is infinitesimal in width, and its transform is until the pulse is infinitesimal in width, and its transform is infinite in extent, i.e. a infinite in extent, i.e. a 
constant.constant.
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Let’s write explicitly the Fourier integral theorem             Let’s write explicitly the Fourier integral theorem             asas� �1( , ) ( , )g x y F F g x y��

� � � �

� � � �� �

( , ) exp 2 ' ' ( ', ')exp 2 ' '

                              ' ' ( ', ') exp 2 ' '

X Y X Y X Y

X Y X Y

g x y df df j f x f y dx dy g x y j f x f y

dx dy g x y df df j f x x f y y

� �

�

	
 	
 	
 	


�
 �
 �
 �


	
 	
 	
 	


�
 �
 �
 �


� 	 � 	� � � �� � � �

� � 	 �� �� �


 
 
 



 
 
 

But we also haveBut we also have

( , ) ' ' ( ', ') ( ', ')g x y dx dy g x y x x y y�
	
 	


�
 �


� � �
 

thereforetherefore

which is known the which is known the integral representation of the delta functionintegral representation of the delta function. . 

� � � �� �( ', ') exp 2 ' 'X Y X Yx x y y j f x x f y y df df� �
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Hence, we can also writeHence, we can also write

� � � �1( , ) exp 2 ( )  1X Y X Yx y j f x f y df df F� �
	
 	


�

�
 �


� 	 �
 




Lecture 1 6

Similarly, starting fromSimilarly, starting from
� �1( , ) ( , )X Y X YG f f FF G f f��

we conclude thatwe conclude that

and therefore thatand therefore that

� � � �� �' ' ' '( , ) exp 2X X Y Y X X Y Yf f f f j x f f y f f dxdy� �
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Hence, we can also writeHence, we can also write

� � � �� �' ' ' ' ' '( , ) ( , ) exp 2X Y X Y X Y X X Y YG f f df df G f f dxdy j x f f y f f�
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� � � �( , ) exp 2 1X Y X Yf f j f x f y dxdy F� �
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Finally, we may use the sifting property to evaluateFinally, we may use the sifting property to evaluate

� � � � � �( , ) exp 2 ( ) ( , ) exp 2 ( )X Y X YF x a y b j f x f y x a y b dxdy j f a f b� � � �
	
	


�
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� � � � 	 � � � � 	
 

Therefore, if the delta spike is shifted off the origin, its traTherefore, if the delta spike is shifted off the origin, its transform will change phase nsform will change phase 
but not amplitude, which remains equal to one.but not amplitude, which remains equal to one.
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( ,0)g x

x
ox�

Spatial frequenciesSpatial frequencies

For a transparency resembling a sine target with spatial period For a transparency resembling a sine target with spatial period ��xxoo, there , there 
would ideally be only three spots (delta functions) on the transwould ideally be only three spots (delta functions) on the transform plane, form plane, 
these being the zerothese being the zero--frequency central peak and the first order or frequency central peak and the first order or 
fundamental fundamental ff11 = = �� 11 on either side of the center.on either side of the center.

The zeroThe zero--frequency component with arises because a photographic slide at frequency component with arises because a photographic slide at 
points of ideal opacity may produce points of ideal opacity may produce g g = 0= 0, but cannot provide negative , but cannot provide negative 
values. Thus the mean value (DCvalues. Thus the mean value (DC--term) is positive. term) is positive. 

1
1

o

f
x

�
�

1f	

1f�

F

(Fourier transform)

� �( ,0)F g x
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In general, we may regard the twoIn general, we may regard the two--
dimensional Fourier transform as a dimensional Fourier transform as a 
decomposition of a function decomposition of a function gg((x,yx,y)) into a into a 
linear combination, with coefficients,      linear combination, with coefficients,      
GG((ffXX, , ffYY)), of complex exponential functions , of complex exponential functions 
of the formof the form

For any particular pair of spatial For any particular pair of spatial 
frequencies, the phase of the exponential frequencies, the phase of the exponential 
is is zerozero or an integer multiple of or an integer multiple of 22�� radians radians 
provide thatprovide that

,     0, 1, 2, 3,X Yf x f y n n	 � � � � � �

� �exp 2 ( )X Yj f x f y� 	

i.e., for any integer i.e., for any integer nn, the phase is , the phase is zerozero or or 
an integer multiple of an integer multiple of 22�� along the along the 
straight lines in the straight lines in the xx--yy plane given byplane given by::

X

Y Y

f ny x
f f

� � 	

These lines are separated by a distance These lines are separated by a distance LL
(spatial period) given by(spatial period) given by

2 2

1

X Y

L
f f

�
	

Lines of zero phase for the functionLines of zero phase for the function
2 ( ).X Yj f x f ye � 	

� �tan Y

X

f
f

� �

and the and the normalsnormals to these lines form an to these lines form an 
angleangle���� with the with the xx axis such thataxis such that

The corresponding (radial)The corresponding (radial) spatial spatial 
frequencyfrequency isis

1 2 2
X Yw L f f�� � 	
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ExamplesExamples

The function The function 

gg((x,yx,y) = cos[2) = cos[2�� (2(2xx+3+3yy)])]

on top, presents with on top, presents with ffXX = 2 cycles per unit distance in = 2 cycles per unit distance in xx and and ffYY = = 3 cycles per unit 3 cycles per unit 
distance in distance in yy. By contrast, . By contrast, 

gg((x,yx,y) = cos[2) = cos[2�� (3(3xx+2+2yy)])]

(not shown) has 3 cycles per unit distance in (not shown) has 3 cycles per unit distance in xx and 2 cycles per unit distance in and 2 cycles per unit distance in yy.      .      
But along their individual directions, But along their individual directions, 

their (radial) spatial frequencies are the same their (radial) spatial frequencies are the same 

� �atan Y Xf f� �
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x

yThe aperture (pupil) function The aperture (pupil) function gg((x,yx,y)) is defined as:is defined as:

1
( , )

0
g x y �

� �
�

at points in the domain at points in the domain DD

otherwiseotherwise

� �

� �

� �

( , ) ( , )

( , ) exp 2 ( )

exp 2 ( )  

X Y

X Y

X Y X Y
D

G f f F g x y

g x y j f x f y dxdy

j f x f y df df
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Thus we may writeThus we may write

For a For a rectangular aperturerectangular aperture, we have, we have

� � � �
/ 2 / 2

/ 2 / 2

( , ) exp 2 exp 2
b a

X Y Y X
b a

G f f j f y dy j f x dx� �
� �

� � �
 


D

where where aa and and bb are positive constants.are positive constants.

x

y

b

a
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wherewhere

� � � �
/ 2

/ 2

1exp 2  exp  
2

a

a

a

X
Xa

j f x dx j d
f
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�

� � �
�� �

� � �
 


2 2a X Xf a f a� � �� �
thusthus

� � � �/2

/2

sin1 2exp 2    
2 2 2

a a
a a

a j j
Xj j

X
X X Xa

f ae ej f x dx e e a
j f f j f a

� �
� �

�
�

� � �

�
�
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� ��� �� � � � ��  � �� � �



� �sin
sinc( )   

x
x

x
�

�
�

1
21

 
0 otherwise

x� !�
�
��

DefiningDefining rect( )x �

The integral in The integral in xx isis



Lecture 1 12

we may rewrite the previous result aswe may rewrite the previous result as

� � � � � � � �
/ 2

/ 2

exp 2  rect exp 2   sinc
a

X X X
a

j f x dx x a j f x dx a f a� �
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ConsequentlyConsequently

� � � � � � � �
/ 2

/ 2

exp 2  rect exp 2   sinc
b

Y Y Y
b

j f y dy y b j f y dy b f b� �



� �
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so that, finallyso that, finally

� � � � � �rect( )rect( )  sinc sincX YF x a y b ab f a f b�

x

y

b

a

� �( , )F g x y

Xf

Yf
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To represent the pupil function for a To represent the pupil function for a circular aperturecircular aperture we can exploit the radially we can exploit the radially 
symmetrical symmetrical cylindercylinder (or (or circlecircle) function, which is defined as) function, which is defined as

� �
1 1

cyl
0 otherwise

r
r

!�
� �

�

� �
2 2

, cyl
x y

g x y
a

" #	
$ %�
$ %
& '

Hence, for a circular pupil with radius Hence, for a circular pupil with radius aa, we write, we write

� �2 2cyl x y a	

and its Fourier transform is the radially symmetric functionand its Fourier transform is the radially symmetric function

� � 2 12 ( )J awG w a
aw

� � �� �  � �

� �G w

where the radial frequency where the radial frequency ww is given byis given by
2 2

X Yw f f� 	

and and JJ11 is the is the Bessel functionBessel function of order 1 (of the first kind).of order 1 (of the first kind).
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x

0 ( )J x

1( )J x
2 ( )J x

Bessel functionsBessel functions
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““Apertures” (left) and corresponding twoApertures” (left) and corresponding two--dimensional Fourier transforms amplitudes, color coded dimensional Fourier transforms amplitudes, color coded 
according to the color scale bars.according to the color scale bars.

x

y

x

y

� �( , )F g x y
1   if ( , ) belongs to 

( , )
0  otherwise

x y D
g x y �

� �
�

D

D
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( , )g x y

Left: a famous picture. Right: corresponding twoLeft: a famous picture. Right: corresponding two--dimensional Fourier transform. The bright narrow central dimensional Fourier transform. The bright narrow central 
cross arises from the sharp boundary edges of the picture.cross arises from the sharp boundary edges of the picture.

� �( , )F g x y
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Images (top) and corresponding twoImages (top) and corresponding two--dimensional Fourier transforms (bottom).dimensional Fourier transforms (bottom).
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Fourier transform theoremsFourier transform theorems
Linearity theorem. Linearity theorem. The transform of a weighted sum of two (or more) functions The transform of a weighted sum of two (or more) functions gg and and 
hh is the identically weighted sum of their individual transform, is the identically weighted sum of their individual transform, that is that is 

� � � � � �F g h F g F h( ) ( )	 � 	

Proof. This theorem follows directly from the linearity of the iProof. This theorem follows directly from the linearity of the integrals that define the ntegrals that define the 
Fourier transform.Fourier transform.

Shift theorem. Shift theorem. Translation in the space domain introduces a linear phase shift Translation in the space domain introduces a linear phase shift in the in the 
frequency domain, that is frequency domain, that is 

� � � � � �( , ) ( , ) exp 2 ( )X YF g x a y b F g x y j f a f b�� � � � 	
Proof:Proof:

� �

� �� �

� � � �

( , ) exp 2 ( )

  ( ', ') exp 2 ( ' ) ( ' ) ' '

  ( , ) exp 2 ( )

X Y

X Y

X Y

g x a y b j f x f y dxdy

g x y j f x a f y b dx dy

F g x y j f a f b

�

�

�
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 �
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 �
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� � 	 	 	

� � 	
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The Parseval theorem. The Parseval theorem. 

� � 2 2( , ) ( , )   ( , ) ( , )X Y X Y X YG f f F g x y g x y dxdy G f f df df
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Proof:Proof:

� �

� �

2( , ) ( , ) *( , ) 

  ( , ) exp 2 ( )

           *( , ) exp 2 ( )

  ( , )  *( , )

g x y dxdy g x y g x y dxdy

dxdy d d G j x y dxdy

d d G j x y dxdy

d d G d d G

+ , + , � + ,

( ) ( ) � ( )

+ , + , ( ) ( )
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           exp 2 ( ) ( )

  ( , )  *( , ) ( , ) ( , )

j x y dxdy

d d G d d G d d G

� + ( , )
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Convolution theorem.Convolution theorem. The Fourier transform of the convolution is the product of the The Fourier transform of the convolution is the product of the 
individual Fourier transforms, that isindividual Fourier transforms, that is

( , ) ( ', ') ( ', ') ' 'c x y g x y h x x y y dx dy
	
 	


�
 �


� � �
 


Proof:Proof:

The The convolutionconvolution cc of two functions, of two functions, gg and and hh, is the result of a commutative operation, , is the result of a commutative operation, 
denoted by the symboldenoted by the symbol�.�., such that, such that

� � � � � �F g h F g F h. �

� �

� � � �

� � � �

( ', ') ( ', ') ' '

   ( ', ') ( ', ') ' '

   ( ', ') exp 2 ( ' ') ' ' ( , )

   

X Y

F g x y h x x y y dx dy

g x y F h x x y y dx dy

g x y j f x f y dx dy F h x y

F g F h
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Graphical representation of the 2D convolution processGraphical representation of the 2D convolution process

( , )g x y ( , )h x y

( , )h x y

( , )h X x Y y� �

( , )g x y ( , )h x y� �

y

x

x

yx

y

x

y

x

y

X

Y
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Table 1Table 1
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Table 2Table 2
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Proof of the Fourier integral theoremProof of the Fourier integral theorem

� � � �( , ) ( , ) ( ', ') exp 2 ( ' ') ' 'X Y X YF g x y G f f g x y j f x f y dx dy�
	
 	


�
 �


� � � 	
 

Let Let 

� �( , ) ( , ) exp 2 ( )
R

R X Y X Y X Y
A

g x y G f f j f x f y df df�� 	


and defineand define

where where AARR is a circle of radius is a circle of radius RR, centered at the origin of the frequency plane. Then, centered at the origin of the frequency plane. Then

� �

� �

( , ) exp 2 ( )

                         ' ' ( ', ') exp 2 ( ' ')

R

R X Y X Y
A

X Y

g x y df df j f x f y

dx dy g x y j f x f y

�

�
	
 	


�
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� 	

- � 	






 

Exchanging the order of integration, we may writeExchanging the order of integration, we may write

� � � �� �( , ) ' ' ( ', ') exp 2 ' '
R

R X Y X Y
A

g x y dx dy g x y df df j f x x f y y�
	
 	


�
 �


� � 	 �� �� �
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2 2,     j
X Ywe w f f/� � 	w

the integral over the spatial frequencies becomesthe integral over the spatial frequencies becomes

� � � �2 2,      ' 'jre r x x y y�� � � 	 �r
Then, definingThen, defining

� � � �� � � �

� � � �

2

0 0

2
1

0 0

exp 2 ' ' exp

2
                                      exp cos

R

R

X Y X Y
A

R

df df j f x x f y y d dw w j

J rR
dw w d j rw R

r

�

�

� /

�
/ / �

� 	 � � 0� �� �

� �
� �� � � �  � �

� �



 
 



 


r w

Assume that Assume that ((x,yx,y)) is a point of continuity of is a point of continuity of gg. Then . Then 

� �1 2
 ( , ) ' ' ( ', ')  lim limR

R R

J rR
g x y dx dy g x y R

r
�	
 	


�
 �

�
 �


� �
� �  

� �
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� �1 2
( )

J rR
h r

r
�� �

� �  
� �

Note that for sufficiently large Note that for sufficiently large RR, the circularly symmetric function , the circularly symmetric function 

vanishes practically everywhere, except in the proximity of vanishes practically everywhere, except in the proximity of r r = 0= 0. Therefore it is . Therefore it is 
possible to envisage the possible to envisage the deltadelta functionfunction also as the convergence limit of the sequencealso as the convergence limit of the sequence

� � � �1 2
', '  lim

R

J rR
x x y y R

r
�

�
�


� �
� � � �  

� �
hencehence

� � ( , ) ' ' ( ', ') ', ' ( , )lim R
R

g x y dx dy g x y x x y y g x y�
	
 	


�

�
 �


� � � �
 

But, from the definition of But, from the definition of ggRR, we also have, we also have

� � � �1 ( , ) ( , ) exp 2 ( ) ( , )lim R X Y X Y X Y X Y
R

g x y G f f j f x f y df df F G f f�
	
 	


�

�

�
 �


� 	 �
 


� �1 ( , ) ( , )F F g x y g x y� �
thereforetherefore
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Assume now a point of discontinuity of Assume now a point of discontinuity of gg. This point can be located anywhere, for . This point can be located anywhere, for 
instance at the origin, so thatinstance at the origin, so that

� �1 2
(0,0) ( , )R

J rR
g dxdy g x y R

r
�	
 	


�
 �


� �
� �  

� �

 


2 2r x y� 	wherewhere

Again, for sufficiently large Again, for sufficiently large RR, the quantity in square brackets is significantly , the quantity in square brackets is significantly 
different from zero only in a small area around the origin. In tdifferent from zero only in a small area around the origin. In this small region, his small region, g g 
depends approximately on the angledepends approximately on the angle���� alone, thusalone, thus

� � � �2
1

0 0

2
(0,0)  R o

J rR
g g d R rdr

r

� �
� �


 � �
1 �  

� �

 


Where Where ggoo represents the dependence of represents the dependence of gg fromfrom���� near the origin. Sincenear the origin. Since

� � � �1 1
0 0

1 12
2 2

J rR Rdr J d� ( (
� �


 


� �
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� �
2

0

1(0,0)lim 2R o
R

g g d
�

� �
��


� 

we have shown thatwe have shown that

i.e. that at each point of discontinuity of g, the two successivi.e. that at each point of discontinuity of g, the two successive transformationse transformations

� �1 ( , )F F g x y�

produce, as a results, the angular average of produce, as a results, the angular average of gg in a small neighborhood of that point.in a small neighborhood of that point.


