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Introduction to two-dimensional
digital signal processing




Fourier transform definition

The Fourier transform of a complex—valued function g(x,y) of two independent real
variables x and y is defined by

+00 +00

F{g(xp)}= [ [e(x.y) exp[-j2a(fix+ f,y)]dxdy

The transform so defined is itself a complex—valued function of two independent real
variables /, and f, , generally referred to as spatial frequencies. For the above integral

to exist, function g:
1. must be absolutely integrable over the infinite (x, y) plane

2. must have only a finite number of discontinuities and a finite
number of maxima and minima in any finite rectangle
3. must have no infinite discontinuities.

Similarly, the inverse Fourier transform of a complex—valued function G(f,.f,) of two

independent real variables /, and /, is defined as
+00 +00

FUG(foo o) = [ [G(festy)expli2n(fex+ fi3)]df v,

Fourier integral theorem. At each point of continuity of g,

F'F{g(xpy)}=g(xy)

(at each point of discontinuity of g, the result is the angular average of the value of g, in a small neighborhood
of that point).
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The Dirac delta function

It is common to represent an idealized point source of light as a
two—dimensional Dirac Delta function. This is a quantity
(actually, a distribution) that is zero everywhere except at the
origin, where it goes to infinity in a manner so as to encompass a
unit volume, that is

Sy =]~ V0
X, V)= .
4 0 otherwise
jj5(x,y)dxdy= 1

The defining characteristic of the delta function is its so called
sifting property:

+00 +00

[ [eGety)o(x—x"y—y") dr'dy' = g(x, )

—00 —00

at any point (x, y) of continuity of g.
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Having an infinite discontinuity, the delta function fails to satisfy condition 3 above for
the existence of the Fourier transform. However, it is possible to envisage the delta
function as the convergence limit of a sequence of Gaussian pulses such as

—N27z(x2 +y2)

S(x,y) =lim N’e
N—>x
Each member function of this defining sequence does satisfy the existence

requirements, and each has Fourier transform given by

z(f2+/7)

F{N e_Nz”(x2+y2)} =e ¥

Accordingly, the generalized transform of o'is found to be

7(fe+/7)

F{5(x,y)}=]1vi£1o e =1

As the Gaussian pulses become narrower and taller, their transforms grow broader
until the pulse is infinitesimal in width, and its transform is infinite in extent, i.e. a
constant.
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Let’s write explicitly the Fourier integral theorem o(x,y)=F F { a(x, y)} as

g, = | [dfcdfyexplj2n(fex+ fry)] | [de'dy' g, y)exp[ =27 ( fox'+ f13")]

= [ [dedygCey) [ [dbdy expl j2a] £y (v—x)+ £, (-]}

But we also have .
g(x,y)= | [d'dy'g(x',y)ox—x'y—y)

therefore

+00 +00

S(x—x\y=y)= | [exp{j2z[ fy (x=x")+ £, (y=") ]} dfdf;

—00 —00

Hence, we can also write

400 +00

5(e,y)= | [expli2z(fyx+ fom)]dfydfy = F' {1}

—00 —00

which is known the integral representation of the delta function.
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Similarly, starting from
G(fXafY) :FF_I {G(fXafY)}

we conclude that

+00 400 400 400

G(fef)= [ [, G 1) | [axdvexpl=j2z] (1 - 1)+ (1 - 17) ]

—00 —00 —00 —00

and therefore that

400 +00

S(fy = firty = 1) = [ [exol=j2z[x(fc = £2)+ ¥ (1 = 1;)]} ey

—00 —00

Hence, we can also write

400 400

5(f )= | [exp|—j2z(fox+ £ y) | dedy=F {1}

—00 —00

Finally, we may use the sifting property to evaluate

F{o(—a,y-b)| = [ [exp|=2nfyx+£,)| 0(x—a, y—b)dsdy=exp[—j2n( fya+ £;b)]

Therefore, if the delta spike is shifted off the origin, its transform will change phase
but not amplitude, which remains equal to one.
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Spatial frequencies

F
1
800 II‘ fi=

(Fourier transform)

1

o,

For a transparency resembling a sine target with spatial period Ax,, there
would ideally be only three spots (delta functions) on the transform plane,
these being the zero-frequency central peak and the first order or
fundamental /, = = 1 on either side of the center.

The zero-frequency component with arises because a photographic slide at
points of ideal opacity may produce g = 0, but cannot provide negative
values. Thus the mean value (DC-term) is positive.
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In general, we may regard the two-
dimensional Fourier transform as a
decomposition of a function g(x,y) into a
linear combination, with coefficients,
G(/«. fv), of complex exponential functions
of the form

exp| /27(fyx+ £, 7)]

For pair of spatial
frequencies, the phase of the exponential

any particular

is zero or an integer multiple of 27 radians
provide that

fXx + fYy =n, n=0,%x1,+2, 43, ...

i.e., for any integer r, the phase is zero or
an integer multiple of 27 along the
straight lines in the x-y plane given by:

fx n

y=—""-X+—

Ly

T

=1

L L

0
o
dilng X

J2r(fxx+fyy)

Lines of zero phase for the function €

and the normals to these lines form an
angle ¢ with the x axis such that

tan(é?) 2&

X

These lines are separated by a distance L
(spatial period) given by

1
L - 2 2
Iy Iy
The corresponding (radial) spatial

frequency is
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Examples

coz(h, 2O% (2t 3yl ) ——
0nn —

The function

2(x,y) = cos[27z (2x+3y)]

on top, presents with /,= 2 cycles per unit distance in x and f, = 3 cycles per unit
distance in y. By contrast,

2(x,y) = cos[2 (3x+2y)]

(not shown) has 3 cycles per unit distance in x and 2 cycles per unit distance in y.
But along their individual directions,

ezatan(fy/f)()

their (radial) spatial frequencies are the same
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The aperture (pupil) function g(x,y) is defined as:

1 at points in the domain D

0 otherwise

g(x,y)= {

Thus we may write

G(fX’fY) :F{g(xay)}

= [ [g(xey) exp[-j2m(fyx+ f,)]dvdy

—00 —00

= [[exp[=j27(fyx+ fo2)] df v,

For a rectangular aperture, we have

b/2 al2

G(fx,fy)= jexp(—j27rfyy)dy Jexp(—j27zfXx)dx

-b/2 —al2

where ¢ and b are positive constants.
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The integral in x is

where

thus

al?2

—al?2

Defining

al?2

j exp(—jZﬂfXx) dx =

—-al?2

0,.=2xnf,al2=nf,a

1

J exp(—j27zfXx) dx = ey [e‘je" —89“]
rect(x) = {1 <
‘ 0 otherwise
05
X 05 0 05 XT
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we may rewrite the previous result as

a]? exp(—jZﬂfXx) dx = o]rect(x/a)exp(—janXx) dx=a sinc(fXa)
—al2 —00
Consequently
b/2 0
j exp(—jZﬂfYy) dy = jrect(y/b)exp(—j%zfyy) dy=>b sinc(fo)
-b/2 —00

so that, finally
F {rect(x/a)rect(y/b)} = ab sinc( f,a)sinc( f,b)
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To represent the pupil function for a circular aperture we can exploit the radially

symmetrical cylinder (or circle) function, which is defined as

Cﬂ00={1 r<l1

0 otherwise

Hence, for a circular pupil with radius a, we write

a

g(x,y)=cyl

and its Fourier transform is the radially symmetric function

G(w)=7a’ [M}

aw
where the radial frequency w is given by

w=qfr+fy

and J, is the Bessel function of order 1 (of the first kind).
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Bessel functions
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1 if (x,y) belongs to D

0 otherwise

y

glx,y)= {

D

“Apertures” (left) and corresponding two-dimensional Fourier transforms amplitudes, color coded
according to the color scale bars.
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Left: a famous picture. Right: corresponding two-dimensional Fourier transform. The bright narrow central
cross arises from the sharp boundary edges of the picture.
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Images (top) and corresponding two-dimensional Fourier transforms (bottom).
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Fourier transform theorems

Linearity theorem. The transform of a weighted sum of two (or more) functions g and
h is the identically weighted sum of their individual transform, that is

Flag+ Bhl =aF{g}+ BF{h}

Proof. This theorem follows directly from the linearity of the integrals that define the
Fourier transform.

Shift theorem. Translation in the space domain introduces a linear phase shift in the
frequency domain, that is

Flg(x—a,y—b)}=F{g(x,y)}exp|—j27z(fra+ f;b)]

| [e(x—a.y=b) exp[-j2z(fyx+ f,3)] dxdy

—00 —00

Proof:

+00 +00

= [ Jetriy) exp{=j27[ £ (x+ )+ £, )]} 'y

—00 —00

= F{g(x,y)}exp|—j27z(fya+ f,b)]
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The Parseval theorem.

+00 400 +00 400

G(fe /) =F{g.n} = [ [lgCey)axdy= [ [|G(fe. ) dfvdy

—00 —00 —00 —00

Proof:

T +]o|g(x’ y)|2dxdy = T T g(x,y)g*(x,y) dxdy

dfdnG(é mexp|j2z(xé+ yn)] dxdy}

[

8 ey 8
8 oy 8
3
<

|
8'—;8
8'—»8

+
8

dad fG*(a, B)exp [—j27z(xa + y,B)] dxdy}

|
] e

Of TdédnG(f n)j j dadp G*(a, B) S(E—a,n-p)= j j dédn|G(E,n)|
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The convolution ¢ of two functions, g and /4, is the result of a commutative operation,
denoted by the symbol ®, such that

400 +00

ctey)= [ [gxy) h(x=x'y=y") dx'dy’

—00 —00

Convolution theorem. The Fourier transform of the convolution is the product of the
individual Fourier transforms, that is

Flg®h}=F{g}F{h

Proof:

F{ f jg(x'aY') h(x—x',y—y") dx'dy}
= | [ty F{hx—x\y-y)} dx'dy
= [ [gCry) exp[—j2a(fex'+ frp)]ds'dv' F {h(x, )}
:F{g}F{h}
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Graphical representation of the 2D convolution process

g(x,y)

Lecture 1
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Table 1

Properties of the Fourier transform (a, b, fio and f, are real nonzero
constants; k and [ are nonnegative integers).

Property g(x,y) G(fu.fy)

Linearity auy (x,y) + buz(x,y) alU,(fx, fy) + bUL(fx. fy)

Convolution up(x,y) * ua(x,y) Ur(fo fy)Ua(fer fy)

Correlation uy(x,y) o up(x,y) Ur(fo. fr) U3 (fx, f5)

Modulation uy (x,y)ua(x,y) Ur(fx.fy) * U2 (S f3)

Separable function uy (x)ua(y) Ui(fx)U2(f5)

Space shift u(x — x0,y — ¥o) e 2t thn) . U(f,, f,)

Frequency shift glx,y) = el2rlfoxthor) . y(x, y) G(fufy) = U(fx — frosfo — fio)
g o

Differentiation in
space domain

Differentiation in
frequency domain

Laplacian in the space
domain

Laplacian in
the frequency domain

Square of signal
Square of spectrum

Rotation of axes

Parseval’s theorem

Real u(x,y)
Real and even u(x, y)

Real and odd u(x,y)

éﬁa_yg“(xa y)
(-—_j21rx)k(—j2ny)£u(x,y)
9* N 82) (5.3)
(@ 5‘)}"5‘ u x,y
—4n* (x* + y*)u(x,y)

lu(x,y)|*
u(x,y) * u*(x,y)
u(tx,ty)

o0

(2mif)* (2mf,) U (S )
ke
a% oft

—4m2(f2 + fU(foo )

(5)? b 5‘7) Ulfofy)
U(fouhy) * U* (funfy)

U(fe)P
U(fo 1)

T Ju(x,y)g*(x,y)dxdyz J JU(ﬂ=ﬁ)G¥(ﬂ,ﬁ)dfxdﬁ.

Co—oe

U(fnf;') = U*(_fn _fy)
U(f..fy)is real and even

U(fs,fy)is imaginary and odd
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Table 2

Transform pairs for some functions separable in
rectangular coordinates

Function Transform
= 2,2 242 _1_ — f_}% f_jg)]

exp[—m(a“x* + b°y*)] D] exp[ /4 (a2 -+ 2

rect(ax) rect(by) m—le sinc( fx /a) sinc( fy /b)

A(ax) A(by) I_c:b_l sinc?( fx /a) sinc*(fy /b)
1

3((1)‘:, by) w

expljm(ax + by)] 8(fx —a/2, fr —b/2)

sgn(ax) sgn(by) T

i jabl jnfx jnfy

comb(ax) comb(by) ﬁcomb( fx/a) comb(fy/b)
. 2 2

expljm(a®x* + b*y?)] |;J1;| exp [—jn (—j:—); + {—g)]
1 2 2

Sapi=alisou) jabl 1+ Q@ fx/ay? 1+ nfy/b)
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Proof of the Fourier integral theorem

Let 400 400
F{gn}=G(f. )= | [g(x'y) exp[=j2a(fyx'+ fyy)]dx'dy’
and define

g:(x, ) = [[G(fy. ) exp[ 22 (fx+ fyp)]df v,
Ag
where 4, is a circle of radius R, centered at the origin of the frequency plane. Then

gx(x,0) = |[dfdfy exp[ 27 (frx+ f,7)]

+00 +00

x [ [dv'dy' g(x',y") exp[—j2z(fyx'+ £,3)]

—00 —00

Exchanging the order of integration, we may write

400 +00

ge(xy)= | [av'dy' g(x\y) [[dfedfy exp{i2z] £ (x=x")+ £, (v=2") ]}

—00 —00
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Then, defining ol . \/(x—x')2 N (y —y')2

w=we”, w=.fr+f;

the integral over the spatial frequencies becomes

R2rx

jjdedeexp{jzz[fX(x—x')+fY(y—y')]}= ”d¢dww exp (jr-w)

— ]]dw wzjzd¢exp [j rwcos(¢—6’)] = R{]l (27WR)}

r

Assume that (x,y) is a point of continuity of g. Then

e J,(27rR
lim g,(x,»)= [ [dx'dy' g(x',») lim R{ 1 :W )}

R—0 S R—wx
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Note that for sufficiently large R, the circularly symmetric function

) = {Jl (27er)}

r

vanishes practically everywhere, except in the proximity of » = (0. Therefore it is
possible to envisage the delta function also as the convergence limit of the sequence

R{Jl(ber)}

S(x—x.y—y")=1lim

R—0 2
hence o o
lim g,(x.0) = | [dd'dy’ g(x'y) 8(x-x"y-y)=g(x.y)

But, from the definition of g,, we also have

lim g,(x.0) = | [G(fy. fr)explj2n(fex+ fop)]dfydfy = F ' {G(fe. 1)
therefore

F'F{g(xpy)}=g(xy)
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Assume now a point of discontinuity of g. This point can be located anywhere, for
instance at the origin, so that

gz(0,0) = ]O T dxdy g(x,y) R{Jl (2WR)}

r

—00 —00

where
r = \/x2 + y2

Again, for sufficiently large R, the quantity in square brackets is significantly
different from zero only in a small area around the origin. In this small region, g
depends approximately on the angle ¢ alone, thus

gx(0,0) 2]Zgo (ﬁ)deo]R{Jl (ZWR)}dr

r

Where g, represents the dependence of ¢ from ¢ near the origin. Since

[, (27rR)Rdlr = 1 [ (a) da = 1

0
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we have shown that 1 2%
limg,(0,0) = — jgo (0)de
R—o 27[ 0
i.e. that at each point of discontinuity of g, the two successive transformations

F'F{g(x,y)}

produce, as a results, the angular average of g in a small neighborhood of that point.
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