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Two-dimensional
digital signal processing




Digital images as matrices

Images are stored as two-dimensional arrays (i.e., matrices), in which each element of

the matrix corresponds to a single pixe/ in the displayed image.

Pixel is derived from picture element and usually denotes a single dot on a computer
display. For example, an image composed of 200 rows and 300 columns of different

colored dots would be stored as a 200-by-300 matrix.

This convention makes working with images similar to working with any other type
of matrix data, and makes the full power of matrix manipulation software available
for image processing applications. For example, you can select a single pixel from an
image matrix using normal matrix subscripting like A(2,15). This command returns

the value of the pixel at row 2, column 15 of the image M.
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Representing images as matrices: binary images

In a binary image, each pixel assumes one of only two discrete values. Essentially,
these two values correspond to on and off. A binary image is stored as a logical array

of 0's (off pixels) and 1's (on pixels). The figure below depicts a binary image.
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Intensity images

An intensity image is a data matrix, M, whose values represent intensities within some
range, with each element of the matrix corresponding to one image pixel. The matrix
can be of class double, uint8, or uintl6.

The elements in the intensity matrix represent various intensities, or gray levels, where
the intensity 0 usually represents black and the intensity 1, 255, or 65535 usually
represents full intensity, or white. The figure below depicts an intensity image of class

double. -4 0.2563 0.2826 0.2825 U4
75342 0.2051 0.2157 0.2826 0.3822 0.4391 0,439
0.5342 0.1789 0.1307 0.1789 0.2051 0.3256 0.2483
0.4308 0.2483 0.2624 0.3344 0.3344 0.2624 0,2543
0.2624 0.3344 0.3344 (.33 .
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Sliding neighborhood operations

A sliding neighborhood operation is an

operation that is performed a pixel at a .
time, with the value of any given pixel in
the output image being determined by .
applying some algorithm to the values of
the corresponding input pixel's
neighborhood. A pixel's neighborhood is .
some set of pixels, defined by their
locations relative to that pixel, which is
called the center pixel. The neighborhood
is a rectangular block, and a? you ,move blocks for some of the elements in a 6-
from one element to the next in an image by-5 matrix with 2-by-3 sliding blocks.

matrix, the neighborhood block s/ides in The center pixel for each

The figure shows the neighborhood

The center pixel is the actual pixel in the input image being processed by the
operation. If the neighborhood has an odd number of rows and columns, the center
pixel is actually in the center of the neighborhood. If one of the dimensions has even
length, the center pixel is just to the left of center or just above center. For example,
in a 2-by-2 neighborhood, the center pixel is the upper left.
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Notice that, in the previous figure, the upper left and bottom right neighborhoods
include "pixels" that are not part of the image. To process these neighborhoods,
sliding neighborhood operations pad the borders of the image, usually with 0's.

In other words, these functions process the border pixels by assuming that the image
is surrounded by additional rows and columns of 0's. These rows and columns do not
become part of the output image and are used only as parts of the neighborhoods of
the actual pixels in the image.

To perform a sliding neighborhood operation:

1. Select a single pixel.
2. Determine the pixel's neighborhood.

3. Apply a function to the values of the pixels in the neighborhood. This function
must return a scalar.

4. Find the pixel in the output image whose position corresponds to that of the
center pixel in the input image.

Set this output pixel to the value returned by the function.

6. Repeat steps 1 through 4 for each pixel in the input image.
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Averaging filter

For example, consider an averaging operation. The function
might sum the values of the N neighborhood pixels and then
divide by N. The result is the value of the output pixel.

Source image Filtered image

This example filters an image with a 5-by-S pixel neighborhood
containing equal weights. Such a filter is often called an
averaging filter.
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Median filter

Median filtering (MF) is similar to using an averaging filter, but
with MF the value of an output pixel is determined by the
median of the neighborhood pixels, rather than the mean.

'S'o.urce imagé - Filtered image

The median is much less sensitive than the mean to extreme
values (called outliers). MF is therefore better able to remove
these outliers without reducing the sharpness of the image. MF is
an example of non-linear filtering applied through a sliding
neighborhood operation.
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Convolution in two dimensions

2D linear filtering is applied to digital images through a sliding neighborhood

operations of two dimensional convolution.

The value of an output pixel is computed as a weighted sum of neighboring pixels.
The matrix of weights is called the convolution kernel, also known as the filter or point

spread function. g=f®h

il
g(x3)=2 /U kh(x = j,y=k)

Notice that the filter kernel can itself be considered as an image, even if its actual
meaning is more a collection of topologically ordered coefficients (i.e. they are not
intensity values, but rather the coefficients that linearly combine image intensity
values).

Linear filtering essentially involves only products and sums, and is therefore easily
and efficiently implemented digitally. Notice, though, that unlike point
transformations that could be performed “on place” using the same image both for
the original and the results, image filtering needs two separate locations for original

image and resulting image.
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Faor example, suppose the image is

A= T17 =24 1 g 15
& S 714 16
4 & 13 20 ZZ
10 12 18 =21 3
11 13 E£5 & 9]

and the cormvolution kernel |5

h=1[8 1 &
3
o 2]

To compute the (72,7) output pixel we need to:

Rotate the convolution kernel 180 degrees about its center element.

Slide the center element of the convolution kernel so that it lies on top of
the (m,n) element of A.

Multiply each weight in the rotated convolution kernel by the pixel of A
underneath and sum up the individual products.
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Volues of rototed convolution kernel

vy

——— Center of kernel

—a-| 1] 2
Imuge pixel volues |}—mm-| 73 5 I? 11.‘.H
.-_
b ] B
- 4 b 131 20| 272
10 12 12| 7 3
1T 18 75 7 9

For example, the output pixel (2, 4) is:

1-24+8.-9+15-4+7-7T+14-5+16-3+13-6+20-1+22.8 =375
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Gaussian kernel

Source image

Filtered images

Photographer picture convolved with kernels having o = (from left to right) 3, 11, 20.
Lecture 2 12



In theory, the Gaussian distribution is non-zero everywhere,
which would require an infinitely large convolution kernel, but
in practice it is effectively zero more than about three standard
deviations from the mean, and so we can truncate the kernel at
this point.

— | 7| 26| 41| 26| 7

Shown is a suitable integer-valued convolution kernel that
approximates a Gaussian with ac of 1.0.
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Image gradient
v =[5
ox’ Oy
The gradient points in the direction of most rapid change in image intensity

vi=[4L 0] % vi=[a 3
! ] 5

6 =tan—1 <8f/ )

Possible discrete approximations are provided by finite differences such as

of (x.5) =~ f(x+Ly)-f(x,p)
Oox

D) iy fn)
Oy

The corresponding 2x2 convolution kernels are known as the Roberts operators

1 O 0 1
h = L h =
b el
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Edge detection: Effect of noise

e Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Solution: smooth first

~
Signal

Ny
Kernel

S
g=f®h §
S

ax %}U‘_ """" i I I I I I I [ ]
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The Sobel operator

If we define A as the source image, and G, and G, are two images which at each point
contain the horizontal and vertical derivative approximations, the computations are

as follow: 41 0 -1 41 42 +1
G,=|+2 0 -2|{® A and G,=|0 0 0 |®A

+1 0 -1 -1 -2 -1

Convolution with the 3x3 kernels above are slower to compute than with the smaller
Roberts operators, but the larger size smooths the image to a greater extent, making
it less sensitive to noise. At each point in the image, the resulting gradient
approximations can be combined to give the gradient magnitude, or edge strength,

using:
g G- EGEZ_I_GFZ

The result of the Sobel operator G is a 2—dimensional map of the gradient at each
point that can be processed and viewed as though it is itself an image, with the areas
of high gradient (the likely edges) visible as white lines.
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Filtering in the frequency domain

An alternative to spatial domain filtering is to implement the filter in the frequency
domain. Recall that, if

c(x,y)=g(x,y)®h(x,y)
after Fourier transformation (F) the convolution relationships takes the form

C(fX’fY) — G(fXafY)H(fxafY)

where

C(fXafY):F{C(xay)}a G(fXafY):F{g(XJ’)}

Thus, it is multiplication by the Fourier transform of the kernel function
H(fX’fY) = F{h(x,y)}

that produces the alteration in the frequency spectrum of the input converting it into
that of the output spectrum (filtering).

Lecture 2 18



Filtered

image
P

[}

8% The slide in (a) is damaged
¥ by horizontal scratches
(maybe you were a careless
user).

1 The amplitude of the two
dimensional Fourier
{ transform is shown in (¢).

1 The grating-like horizontal
line pattern generate the
broad-bandwidth, vertical-
frequency distribution
evident in (¢).

These frequency components can be selectively
deleted (d); the resulting image is shown in (b).

This process of altering the freqency spectrum of
the image is known as spatial filtering.
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Low pass and high pass filter transfer functions

An ideal low pass filter is designed by assigning a (radial frequency) cutoff value w,

such that
2_|_ 2
Ho(fof,)=eyl| M2t

We

However, this causes ringing artifacts in the spatial domain, therefore filters with
smoother roll off are used instead, for example the Butterworth low pass filter of order
n, defined by

1 .
1 —n=1
_ n=2
Hyp (W) = o 08 NN =3
1+[W/WC] 3 T
T
Rl O I 5 e e e R o Bt e S S
()
©
o
1 07 R A\ S A S A
3
where o T
gt AN
2 > o R
W =4/ + IR S~ T
fX fY 81 1.0 10.

Relative radial frequency (w/w,)
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Source image Filtered image

The object consists of only black and When the high frequencies are filtered
white regions on a halftone. out, shades of grey appear and the
sharp boundaries vanish.
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Note that Hpp (W)=1-Hp,, (w)

thus one can always make a high pass filter by subtracting a blur (low pass filter).

Source image Blur (5x5 gaussian) Source — Blur = High pass

Finally, both type of filters can be applied through convolution

Examples of discrete kernel masks for spatial filtering

Low-Pass Filter High-Pass Filter

1 I 1 1 -1 -1 -1
Wg’j:‘—‘—l 2 1 Wi, i = —1 9 -1
011 11 -1 -1 -1
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