
2065-20

Advanced Training Course on FPGA Design and VHDL for Hardware
Simulation and Synthesis

Nizar Abdallah

26 October - 20 November, 2009

ACTEL Corp. 2061 Stierlin Court Mountain View
CA 94043-4655

U.S.A.

Introduction to SoC Design

Actel Corporation © 2009

Introduction to SoC Design

Actel Corporation © 2009 2Introduction to Cortex-M1 v1.8

Agenda

Overview
ARM Cortex-M1 Architecture
Cortex-M1 Instruction Set
Actel’s Cortex-M1
System-on-Chip and SmartDesign
Testing
Cortex-M1 Development Tools
Reference

Actel Corporation © 2009

Overview

Actel Corporation © 2009 4Introduction to Cortex-M1 v1.8

SoC Definition

What exactly is SoC?
Entire system built on a single piece of silicon
Includes a processor, memory, DSP Cores, IO devices, interfaces to
external circuitry, and custom IPs as Verilog or VHDL modules
SoC designs primarily used in embedded applications

SoC design brings a new level of complexity to IC design
Cost to develop is very high
Large and complex IP from many diverse sources
“Black box” view of IP (cannot change or “see” details)
Lack of existing interface standards
Fairly complex SW running on an on-chip CPU
Integration, performance, and power are crucial
Mixed signal (analog & digital) circuitry

Actel Corporation © 2009 5Introduction to Cortex-M1 v1.8

Embedded System Definition

A dedicated computer hardware with software designed to
solve a specific problem
Uses “hidden” microprocessors from 8bit MC to 64-bit MP
Some RAM or ROM is required; Flash commonly used
…and a mix of Timers, Interrupt controller, UARTs, GPIO,
DMA controllers, Real time clock, LCD controller…
Embedded system software divided into operating software
and application software

Actel Corporation © 2009 6Introduction to Cortex-M1 v1.8

Embedded System Diagram

CPUCPU

ROM
(software)

ROM
(software) RAMRAM

PeripheralsPeripherals
I/O

Devic
es

I/O
Devic

es

Custom
Hardware
Custom

Hardware

KeypadKeypadLCDLCD

Actel Corporation © 2009 7Introduction to Cortex-M1 v1.8

Embedded System Design Constraints

Cost
Memory
Power
Real-time Response
Performance
System Size
Reliability
Time-to-Market

Actel Corporation © 2009 8Introduction to Cortex-M1 v1.8

Embedded System Classification

Little or no custom hardware design
Time-to-market requirement
Use high integration microprocessor or off the shelf boards

A lot of custom hardware – SoB design
High performance requirements
High performance microprocessor (PowerPC, MIPS chips)
Large custom logic on boards (FPGA, ASIC)
Even maybe multiple boards…

A lot of custom hardware – SoB design
Small size and low-power requirements
One or more microprocessors on a chip
IPs such as ARM or MIPS
Cost to develop is very high
Consumer electronics: MP3, digital cameras…

Actel Corporation © 2009 9Introduction to Cortex-M1 v1.8

Embedded System Design Process

Product RequirementsProduct Requirements

System ArchitectureSystem Architecture

Microprocessor SelectionMicroprocessor Selection

Hardware DesignHardware DesignSoftware DesignSoftware Design

Hardware and Software
Integration

Hardware and Software
Integration

Verification & ValidationVerification & Validation

Actel Corporation © 2009 10Introduction to Cortex-M1 v1.8

Embedded System Design Process

Requirements
Product specifications
Required features and functionalities

System Architecture
Defines major blocs and functions
Interfaces, bus structure, HW & SW functionalities
Simulation, SW, and Spreadsheet to define best architecture
How many packet/sec can this router handle?

Microprocessor selection
One of the most difficult tasks
Perf, cost, power, SW dev. Tools, legacy SW, RTOS, Sim models…

Actel Corporation © 2009 11Introduction to Cortex-M1 v1.8

Embedded System Design Process

Hardware Design
Important data to the SW team
CPU address map, Register definition for all SW programmable
registers

Software Design
Boot code
Hardware diagnostics, device drivers, Application software
RTOS

Hardware & Software integration
Verification and Validation

Actel Corporation © 2009 12Introduction to Cortex-M1 v1.8

Example1: Embedded System

In order to test the hardware, a Cordic algorithm is to be
implemented. This algorithm calculates the sine and cosine
functions of a given number. Such a number is to be
entered over the UART interface through a Hyper-Terminal
or some similar program on a PC.
The first action of the main program will initialize the UART.
Then some text is to be output over the UART, following
which the program would wait for input from the user. Such
input would first be checked for any errors, before being
formatted as a fixed point number, with 8 bits before and 24
bits after the decimal point, and passed on to the function
that implemented the Cordic algorithm.
The result of the calculation are to be transformed back into
strings and output over the UART.

Actel Corporation © 2009

Introduction to Cortex-M1

Actel Corporation © 2009 14Introduction to Cortex-M1 v1.8

Agenda

Overview
ARM Cortex-M1 Architecture
Cortex-M1 Instruction Set
Actel’s Cortex-M1
System-on-Chip and SmartDesign
Testing
Cortex-M1 Development Tools
Reference

Actel Corporation © 2009

Overview

Actel Corporation © 2009 16Introduction to Cortex-M1 v1.8

ARM History

First ARM Processor Developed in Mid-eighties
Acorn Computers, Limited in Cambridge, England
Originally, ARM Stood for Acorn RISC Machine
Later Changed to Advanced RISC Machine

All Major Chip Manufacturers Have Licenses to One or More
ARM Cores, more than 100…

Analog Devices, Atmel, Cirrus, Fujitsu, IBM, Infineon, Intel,
Mitsubishi, Motorola, National Semiconductor, NEC, Philips, Sharp,
ST Microelectronics, Texas Instruments, Toshiba …

ARM7TDMI Most Popular ARM Core in Embedded Systems
Business Model

License fees for microprocessors and other IP blocks
Per-chip royalties on shipments of chips using ARM IP
Tools & boards to support development and debugging

Actel Corporation © 2009 17Introduction to Cortex-M1 v1.8

ARM Processors

Established Processors
ARM7 (e.g., Actel’s CoreMP7), ARM9, ARM11, and Others

RISC principles: Simplicity and High Instruction Throughput
New Cortex Processors from ARM

Range of Processors which Target Different Markets/Applications
Three Cortex Variants:

Series Market Segment Instruction Sets
Supported

A Applications – Complex Operating Systems
and User Applications

ARM, Thumb and
Thumb-2

R Real-time Systems ARM, Thumb and
Thumb-2

M Microcontroller – Deeply-embedded
Processors for Cost/Power-sensitive
Applications

Thumb-2 Only

Actel Corporation © 2009 18Introduction to Cortex-M1 v1.8

RISC Processors

World Domination

Actel Corporation © 2009 19Introduction to Cortex-M1 v1.8

ARM’s New Processor Family

Cortex
Common Architecture across All Cores
Thumb®-2 Blended 16/32-bit ISA
Three ARM Cortex Series

Applications (A Series)
Real-time (R Series)
Microcontroller (M Series)

Cortex-M1 Processor
Designed for FPGA Implementation
Upward-compatible with Cortex Range
Easy Path to ASIC

ARM7

ARM9

ARM10

ARM11

ARM Cortex

Cortex-M3

Cortex-R4

Cortex™-A8

Cortex-R4F

Cortex-M1

ARM7TDMI (CoreMP7)

Actel Corporation © 2009 20Introduction to Cortex-M1 v1.8

ARM Cores

Hard Macro form
Provided as a layout object
High performance and small die area
Limited portability between different silicon processes

Soft Macro form
Verilog RTL format
More flexibility
Less performance
Most common form today!

Actel Corporation © 2009 21Introduction to Cortex-M1 v1.8

Cortex-M1
Next Member of the M Series

Intended for FPGA Implementation
Soft Processor (Implemented in FPGA Fabric)

Small, Powerful, Highly-optimized, and Configurable

ARMv6-M Architecture
Subset of Thumb-2: All 16-bit Thumb Instructions and Some 32-bit
Thumb-2 Instructions

Delivered as Black Box via SmartDesign

Actel Corporation © 2009 22Introduction to Cortex-M1 v1.8

Actel Processor Offerings

CoreABC
Actel

32-bit Offerings8-bit Offerings

Pe
rf

or
m

an
ce

 (D
M

IP
S)

Core8051s
Actel

Core8051
Actel

CoreMP7
Actel/ARM

Cortex-M1
Actel/ARM LEON3

Gaisler

Core Size (Tiles)

AMBA

AMBA: Advanced Microcontoller Bus Architecture DMIPS: Dhrystone MIPS (Million Instructions Per Second)

Actel Corporation © 2009 23Introduction to Cortex-M1 v1.8

Cortex-M1
Overview of Features

Soft 32-bit IP Core for FPGAs
High-frequency, Low-area Design
Executes All Existing Thumb® Code
ARMv6-M Instruction Set (Thumb2)
Nested Vectored Interrupt Controller (NVIC)

Balance between Size and Speed
Operates at up to 62MHz
Implemented in as few as 4300 Tiles (A3P / Fusion)
Uses Three-stage Pipeline

Interfaces
ARM AMBA® AHB-Lite™ Interface (Single Master)
Separate Data & Instruction Memory Interfaces
Debug via JTAG Interface

Actel Corporation © 2009 24Introduction to Cortex-M1 v1.8

Cortex-M1
Nested Vectored Interrupt Controller (NVIC)

Source: ARM Inc.

Actel Corporation © 2009

Cortex-M1 Architecture

Actel Corporation © 2009 26Introduction to Cortex-M1 v1.8

Processor Architectures

von Neumann Harvard

MPU MPU

One Bus - Program and
Data Located in Same

Address Space

Two Buses - Program and
Data Located in Separate

Address Spaces

Actel Corporation © 2009 27Introduction to Cortex-M1 v1.8

Cortex-M1
Architecture and Memory Organization

Cortex-M1 is von Neumann Architecture …
Linear 32-bit Address Space (4 GB)
Only Load, Store, and Swap Instructions Can Access Data from Memory

… Separate Tightly-Coupled Memories Make It ‘Slightly Harvard’
Separate Instruction and Data TCMs
Limited to 1MB (Maximum) Each

Cortex-M1 Processor Supports Three Data Types
Word (32-bit)
Half-word (16-bit)
Byte (8-bit)

Data Alignment
Words Must Be Aligned to Four-byte Boundaries
Half-words Must Be Aligned to Two-byte Boundaries
Bytes Can Be Placed on any Byte Boundary

Supports Both Big- and Little-endian Formats

Actel Corporation © 2009 28Introduction to Cortex-M1 v1.8

Cortex-M1
Architecture and Memory Organization

Historically, Intel uses Little-endian and RISC Big-endian
ARM allows the user to choose the byte order

Actel Corporation © 2009 29Introduction to Cortex-M1 v1.8

Cortex-M1
Architecture and Memory Organization

When data transfers are a full word, the data on the bus is
identical for both big-endian and little-endian byte order

Endianness becomes important for both master and slave
when data transfers on the bus are for 1 or 2 bytes

One of the first questions to always ask for a new design is,
“What is the byte order of the design, big or little endian?”

Actel Corporation © 2009 30Introduction to Cortex-M1 v1.8

Cortex-M1
Architecture and Memory Organization

RISC 32-bit architecture gives best performance to
operate on 32-bit data

Drawback: amount of memory required to hold 32-
bit instructions, especially in embedded systems

Code Density in Embedded Systems

ARM allows running 16-bit instructions called
Thumb: 30% less memory for 30% less
performance

Actel Corporation © 2009 31Introduction to Cortex-M1 v1.8

Cortex-M1
Memory Map

0x00000000

0x1FFFFFFF
0x20000000

0x3FFFFFFF
0x40000000

0x5FFFFFFF
0x60000000

0x9FFFFFFF
0xA0000000

0xDFFFFFFF
0xE0000000

0xE0100000

0xFFFFFFFF

DTCM

ITCM

External

External

511MB

511MB

1MB

1MB
0x00000000

0x00100000

0x1FFFFFFF

0x20000000

0x20100000

0x3FFFFFFF

Reserved

Internal Private Peripheral Bus

External Device

External

Peripheral

SRAM

Code 0.5GB

0.5GB

0.5GB

1GB

1GB

0xE0000000

0xE0001000

0xE0002000

0xE0003000

0xE000E000

0xE000F000

0xE0040000

0xE0041000

0xE0042000

0xE00FF000

0xE00FFFFF

0xE003FFFF

Reserved

DW

BPU

Reserved

NVIC

Reserved

Reserved

Reserved

Reserved

ROM Table

0xE000ED00
Debug Control

Tightly-Coupled
Memory Spaces

Little-endian Is
Default Memory
Access Format

Actel Corporation © 2009 32Introduction to Cortex-M1 v1.8

M1’s 3-Stage Instruction Pipeline

Three Stages Are:
Fetch - Fetching an Instruction from Memory Containing Code
Decode - Decoding Instruction and Preparing Datapath Control Signals for
Next Cycle
Execute – Reading Source Registers, Performing Shift or ALU Operations,
and Writing Back Result to Destination Register

One Instruction is Executed Every Cycle when Pipeline is Full
3 cycles Needed to Completely Process One Instruction
3 cycles Needed to Reload Pipeline – Branch Instructions
Pipeline Halted for One Cycle if Multiple Memory Accesses Needed to
Execute Instruction

Actel Corporation © 2009 33Introduction to Cortex-M1 v1.8

Sequential Processor

Pipelined Processor

Increasing Processor Performance
Pipelining

Instruction Queue

Instruction Queue

Instructions Retired

Instructions Retired

Actel Corporation © 2009 34Introduction to Cortex-M1 v1.8

Increasing Processor Performance
Pipelining

Sequential Processor

Pipelined Processor

Instruction Queue

Instruction Queue

Instructions Retired

Instructions Retired

Actel Corporation © 2009 35Introduction to Cortex-M1 v1.8

Increasing Processor Performance
Pipelining

Sequential Processor

Pipelined Processor

Instruction Queue

Instruction Queue

Instructions Retired

Instructions Retired

DONE!

Actel Corporation © 2009 36Introduction to Cortex-M1 v1.8

Cortex-M1 Without Debug
Block Diagram

Actel Corporation © 2009 37Introduction to Cortex-M1 v1.8

Cortex-M1 with Debug
Block Diagram

Dbg Core

AHB Master

Debug ITCM interface

Debug DTCM interface
Breakpoint unit

Data watchpoint unit

Debug control

ROM table

AHB Decoder

AHB Multipexer

AHB Matrix

External interface Debug portNVIC interrupt interface

NVIC

AHB-PPB

AHB-AP SWJ-DP
DAP

Internal PPB signals
External bus signals

Debug subsystem

Processor with debug

ITCM

DTCM

Actel Corporation © 2009 38Introduction to Cortex-M1 v1.8

Cortex-M1 Architectural Diagram
Block by Block

Actel Corporation © 2009 39Introduction to Cortex-M1 v1.8

Cortex-M1 Architectural Diagram Acronyms

TCM
Tightly-Coupled Memories

NVIC
Nested Vectored Interrupt
Controller

AHB IF
AMBA AHB Bus Interface

DAP
Debug Access Port (See Next
Slide)

ROM_TB
ROM Table

BP
Breakpoint Unit

DW
Data Watchpoint Unit

Actel Corporation © 2009 40Introduction to Cortex-M1 v1.8

Debug Control Registers

Name Description

ABORT Access Port Abort Register

IDCODE ID Code Register

CTRL/STAT Debug Port Control/Status Register

SELECT Access Port Select Register

RDBUFF Read Buffer

Access to Debug and AHB Access Control Registers is via
Debug Port

UJTAG Macro Is Included in Debug Port Logic

Actel Corporation © 2009 41Introduction to Cortex-M1 v1.8

Debug Control Registers

Two configurations for debug:
The full debug configuration has four breakpoint comparators and
two watchpoint comparators. Default configuration.
The reduced debug configuration has two breakpoint comparators
and one watchpoint comparator.

Debug facilitates:
core halt
core stepping
core register access while halted
read/write to: TCMs, AHB address space, internal Private Peripheral
Bus (PPB)
Breakpoints
watchpoints

Actel Corporation © 2009 42Introduction to Cortex-M1 v1.8

Main debug components

Debug control registers to access and control
debugging of the core
BreakPoint Unit (BPU) to implement breakpoints
Data Watchpoint (DW) unit to implement
watchpoints
debug memory interfaces to access ITCM and
DTCM
ROM table.

Actel Corporation © 2009 43Introduction to Cortex-M1 v1.8

UJTAG Macro Symbol

UJTAG Macro Is Already Instantiated
in Cortex-M1 Debug Unit!

These ports connect to
the JTAG TAP Controller

Contents of the JTAG
instruction register. Updated
when the TAP Controller
state machine enters the
Update_IR state

Connected to the JTAG TDI
and TDO ports

High when the TAP Controller is
in the Update_DR state

High when the TAP Controller
is in the Shift_DR, and
Capture_DR states

Actel Corporation © 2009 44Introduction to Cortex-M1 v1.8

UJTAG Interconnection

These ports must
NOT be connected to
any I/O buffer in
the netlist

Actel Corporation © 2009 45Introduction to Cortex-M1 v1.8

Cortex-M1
Technical Overview

Core
Three-stage Pipeline
ARMv6-M Instruction Set Architecture

All 16-bit Thumb Instructions and Some Thumb-2 32-bit Instructions
Datapath Optimized for Thumb and for FPGA Implementation

Multiplier, Adder, Shifter and Logic Unit, All in Parallel
Tightly-coupled Interface to Interrupt Controller
Supports Tightly-Coupled Memory (TCM) for Instructions and Data

Registers
13 General-purpose 32-bit Registers
Link Register (LR), Program Counter (PC), Program Status Register
(xPSR), Stack Pointer (SP)

Actel Corporation © 2009 46Introduction to Cortex-M1 v1.8

Cortex-M1
Technical Overview (cont.)

Debug
Debug via JTAG or 2-pin Serial-wire Interface
Provides Access to All Registers and Memory
Includes Break-point Unit (BP) and Data-watchpoint (DW) Unit

4 Breakpoints and 2 Watchpoints

Nested Vectored Interrupt Controller (NVIC)
NVIC Is Tightly Coupled to Processor Core
Low-latency Exception Processing
Level and Pulse Interrupts Supported
Processor State Automatically Saved and Restored when Switching
to Interrupt Service Routine (ISR)

Actel Corporation © 2009 47Introduction to Cortex-M1 v1.8

AMBA Bus Interface Signals
AHB-Lite Bus

Signal Function

HCLK Bus Clock

HRESETn ACTIVE-LOW Bus Reset

HADDR(31:0) System Address Bus

HTRANS(1:0) Transfer Type

HWRITE Transfer Direction (1=Write, 0=Read)

HSIZE(2:0) Transfer Size

HBURST(2:0) Indicates if Transfer Forms Part of a Burst

HPROT Protection Control

HWDATA(31:0) 32-bit Write Data (from Master)

HRDATA(31:0) 32-bit Read Data (to Master)

HREADY Transfer Complete

HRESP(1:0) Transfer Response

HMASTLOCK Master Signal

Actel Corporation © 2009 48Introduction to Cortex-M1 v1.8

Cortex-M1
Debug Interfaces

Note: Debug Interface Signals Are ALWAYS Present!
Name Type Description
RV_TCK Input RealView JTAG

RV_nTRST Input RealView JTAG

RV_TMS Input RealView JTAG

RV_TDI Input RealView JTAG

RV_nSRST_IN Input RealView JTAG

RV_TRCK Input RealView JTAG

RV_TDOUT Output RealView JTAG

RV_nTDOEN Output RealView JTAG

UJTAG_TCK Input FlashPro3 JTAG

UJTAG_TDI Input FlashPro3 JTAG

UJTAG_TMS Input FlashPro3 JTAG

UJTAG_TRSTB Input FlashPro3 JTAG

UJTAG_TDO Output FlashPro3 JTAG

EDBGRQ Input External debug request

Actel Corporation © 2009 49Introduction to Cortex-M1 v1.8

Cortex-M1
Miscellaneous Signals

Name Type Description
HCLK Input Main processor clock
NSYSRESET Input External push-button/power-

up reset
WDOGRES Input Watchdog reset to Cortex-

M1
WDOGRESn Output Reset of watchdog timer
HRESETn Output Reset to other components

in AHB system
IRQ[31:0] Input External Interrupts
NMI Input Non-maskable Interrupt
nTRST Input JTAG reset
JTAGTOP Output State Controller Indicator
nTDOEN Output JTAG data out enable
LOCKUP Output Core is locked up
HALTED Output Core is in Halt debug state

Actel Corporation © 2009 50Introduction to Cortex-M1 v1.8

Cortex-M1
Processor Operating States and Modes

States
Thumb

Normal Execution
Runs 16-bit Halfword-aligned Thumb and Thumb-2 Instructions plus 32-
bit BL, MRS, MSR, ISB, DSB, and DMB Instructions
Data Types Supported – 32-bit Words, 16-bit Halfwords, 8-bit Bytes

Debug State
Used for Halting Debug

Modes
Thread Mode

Entered on Reset
Can Be Re-entered after Exception Return

Handler Mode
Used for Handling Exceptions

Actel Corporation © 2009 51Introduction to Cortex-M1 v1.8

Cortex-M1
Registers

17 Registers
13 General-Purpose Registers

Stack Pointer
Link Register
Program Counter

Low Registers –
Accessible by All
Instructions

High Registers –
Accessible by
SOME 16-bit
Instructions

Actel Corporation © 2009 52Introduction to Cortex-M1 v1.8

Cortex-M1
SP, LR and PC Registers

Stack Pointer
Auto-aligned to Word Boundary
Has Banked Register Aliases SP_process and SP_main
Handler Mode Always Uses SP_main, but You Can Configure
Thread Mode to Use Either SP_main or SP_process

Link Register
Receives Subroutine Return Address from PC when Branch and
Link (BL) Instruction Is Executed
LR Is also Used for Exception Return
At All Other Times, Treat R14 as General-purpose Register

Program Counter
Auto-aligned to Halfword Boundaries

Actel Corporation © 2009 53Introduction to Cortex-M1 v1.8

Cortex-M1
Special-Purpose Program StatusRegisters (xPSR)

Processor Status at System Level is Broken into Three Categories
Registers Can Be Accessed Individually or Two or Three at a Time
Using MRS and MSR Instructions
Application PSR

Contains Condition-code Flags
Before Entering Exception, Processor Saves Condition-code Flags on the Stack

Accessed with MSR and MRS Instructions
Interrupt PSR

Contains Interrupt Service Routine (ISR) Number Current Exception
Execution PSR (EPSR)

Contains the Thumb state bit (T-bit)
Not Directly Accessible except in Debug State
All Fields Read as Zero using an MRS Instruction
MSR Instruction Writes Are ignored

On Entering an Exception, the Processor Saves Combined Information
from the Three Status Registers on the Stack

Actel Corporation © 2009 54Introduction to Cortex-M1 v1.8

Cortex-M1
Exception Types and Priorities

Actel Corporation © 2009 55Introduction to Cortex-M1 v1.8

Servicing an Exception

Push 8 Registers (xPSR, ReturnAddress(), R0, R1, R2, R3,
R12, and LR) on Selected Stack
Read Vector from Appropriate Vector Table Entry

Example: (0x0) + (exception_number *4)
Only after ALL EIGHT Registers in Previous Step Are Pushed onto
Stack

On Reset Only, Update SP_main from First Entry in the
Vector Table

Other Exceptions Do Not Modify SP_main this Way
Update PC with Vector Table Read Location

No Other Late-arriving Exceptions Can Be Processed until the First
Instruction of This Exception Starts to Execute

Set LR to EXC_RETURN to Exit from Exception

Actel Corporation © 2009

Cortex-M1 Instruction Set

Actel Corporation © 2009 57Introduction to Cortex-M1 v1.8

ARM Instructions

32-bit Instruction
Length
36 Instruction
Formats
ALL ARM
Instructions Can
Be Conditional!

Actel Corporation © 2009 58Introduction to Cortex-M1 v1.8

Thumb Instructions

16-bit Instruction Length
Maps 32-bit Instructions into 16-bit Instructions
Thumb Instructions Are Most-often-used 32-bit Instructions
Thumb Instructions Transparently Expand in Real Time to Full 32-bit
ARM Instructions

Thumb-instruction Decoder
Placed in Pipeline
Change to Thumb Mode
Effected by Changing State
of Multiplexers Feeding
Instruction Decoders and
Data Bus

Actel Corporation © 2009 59Introduction to Cortex-M1 v1.8

Thumb Instruction Set

Instruction Word Length
Shrunk to 16-bits

Some Functionality Is Not
Available
19 Different Thumb Instruction
Formats

Instructions Have their Own
Syntax

Each Instruction Has Native
ARM Instruction Counterpart

Only ONE Conditional
Instruction!

Actel Corporation © 2009 60Introduction to Cortex-M1 v1.8

ARM Code vs. Thumb Code
Comparison

Performance
32-bit Memory

ARM Code Is 40% Faster than Thumb Code
16-bit Memory

Thumb Code Is 45% Faster than ARM Code

Code
Thumb Code Requires 65% – 70% of the Space of ARM Code
Thumb Code Uses 40% More Instructions than ARM Code

Thumb Code Has Higher Density and Better Performance
with 16-bit Memory
ARM Code Has Better Performance with 32-bit Memory

Actel Corporation © 2009 61Introduction to Cortex-M1 v1.8

What’s Thumb-2?
Remember – 16-bit Thumb Instructions Are Mapped into 32-
bit ARM Instructions for Execution

Some ARM Special Features Were NOT Supported in Thumb
ARM Wanted to Eliminate …

… Tradeoff of Size vs. Speed
… Confusion about Which Instruction Set to Select

Thumb-2 Combines 16- and 32-bit Instructions in a Single
Instruction Set

Allows Mixing of Instructions without Mode Switching
Halfword Pairs of Instructions Are Inserted in Thumb Instruction
Stream

Thumb-2 Features
Mostly 16-bit Instructions

5% Better Code Density than Existing Thumb Code
2-3% Faster than Thumb Code

Code Density – 74% of ARM Code Density
Code Performance – 98% of ARM Code Performance

Actel Corporation © 2009 62Introduction to Cortex-M1 v1.8

Thumb-2 Instruction Set
Changes vis-à-vis Thumb

IF-THEN Instruction
Additional Conditional Instruction

New Bit Instructions
Bit Fields
Bit Reversal

New Branch Instructions
Table Branch

Facilitates SIMD Execution
Compare and Branch (‘Branch if Zero’)

Coprocessor Access Instructions
Don’t Need to Mix Thumb Code and ARM Code

16-bit Constants

NOT in Cortex M1!

Actel Corporation © 2009 63Introduction to Cortex-M1 v1.8

Thumb-2 32-bit Instructions
Summary

ARM-like
Data Processing Instructions
DSP and Media Instructions
Load and Store Instructions
Branch Instructions
System Control – BXJ, RFE, SRS, etc.
Coprocessor (VFP, MOVE™, etc.)

New
Bit-field Insert/Extract/Clear – BFI, {S|U}BFX, BFC
Bit Reverse – RBIT
16-bit Immediate Instructions – MOVW, MOVH
Table Branch – TB{B|H} [Rbase, Rindex]
Additional Memory System Hints – PLD

Most Not Supported in
Cortex-M1!

Actel Corporation © 2009 64Introduction to Cortex-M1 v1.8

Cortex-M1 Instruction Set
Overview

Branch instructions (6)
B Conditional Branch, Unconditional, with Link…
BX Branch and Exchange instruction set.

Data processing instructions
ADD, CMP, MOV, MULT, SUB…

Load and store register instructions
Load and store multiple instructions

Two instructions, LDMIA & STMIA, to support block copy
Exception generating instructions

Software Interrupt (SWI) instruction used to cause a SWI
exception to occur
Main mechanism in the Thumb instruction set by which User
mode code can make calls to privileged Operating System code

Actel Corporation © 2009 65Introduction to Cortex-M1 v1.8

Cortex-M1 Instruction Set
16-bit Instructions

CPS – Change Processor State
Enables/Disables Interrupts

NOP – No Operation
Certain New Thumb-2 Instructions Are Ignored (IF-THEN)

SEV – Send Event
Event Signaled to All CPUs in Multiprocessor System

WFE – Wait for Event
Suspend Execution until Reset, Exception, etc. Occurs

WFI – Wait for Interrupt
Suspend Execution until Interrupt Occurs

YIELD – Yield (Multithreaded Systems)
Software Can Indicate that Task Can Be Swapped Out

Actel Corporation © 2009

Actel’s Cortex-M1

Actel Corporation © 2009 67Introduction to Cortex-M1 v1.8

Full Range of Configurable Options Will Be Available …

… Actel Will Deliver Restricted Range of Configurations
Fixed, Black-box Implementations with Predefined Configurations
(Similar to CoreMP7)

Cortex-M1
Configurable Options

Feature Configurable Option
Debug Debug Functionality Can Be Included or Excluded
Interrupts 1, 4, 8, 16 or 32 Interrupts (0 Interrupts Not Supported)
Instruction TCM 0KB (None), 1KB, 2KB, and Powers of 2 to 1MB
Data TCM 0KB (None), 1KB, 2KB, and Powers of 2 to 1MB
Multiplier Normal (3-cycle Execution) or Small (33 Cycles)
OS Extensions Present or Absent
Endianness Little-endian or Big-endian (BE8)

Actel Corporation © 2009 68Introduction to Cortex-M1 v1.8

Cortex-M1 Configurations

Current Release – v2.6

Future Releases
More Variants, More Devices

Variant Configuration

M1AFSxxxxDebug
M1A3PxxxxDebug
M1A3PExxxxDebug
M1A3PLxxxxDebug
M1AGLxxxxDebug
M1AGLExxxxDebug

Debug Support (2 breakpoints, 1 watchpoint)
No TCMs, Small Multiplier, 1 Interrupt, No OS Extensions,
Little-endian Only

M1AFSxxxxNodebug
M1A3PxxxxNodebug
M1A3PExxxxNodebug
M1A3PLxxxxNodebug
M1AGLxxxxNodebug
M1AGLExxxxNodebug

No Debug Capability
No TCMs, Small Multiplier, 1 Interrupt, No OS extensions,
Little-endian Only

Actel Corporation © 2009 69Introduction to Cortex-M1 v1.8

Supported Devices and Availability

M1-enabled Devices 250 400 600 1000 E1500 E3000
M1 IGLOO

M1 ProASIC3 Planned

M1 ProASIC3L Planned

M1 Fusion

ARM Cortex-M1 processor Actel M1 devices
One user selectable option: with or without debug.
Pre-configured settings

0K ITCM, 0K DTCM, small multiplier, little-endian,
No OS extensions, and 1 interrupt

Fully Configured M1AFS1500 - 2009
8kB ITCM, 4kB DTCM, 16 interrupts, OS extensions, fast multiplier,
little-endian.
Contains upgraded BFM

Information updated March 2009

Actel Corporation © 2009 70Introduction to Cortex-M1 v1.8

Optimized Cortex-M1 in M1 Fusion

Optimized Firm-macro Implementation
Optimized for M1 Fusion Devices
Porous Implementation Placed in FPGA Fabric by Actel

Simplified Routing of User-
added IP
Enables Rapid Design
Development

Cortex-M1 Black Box
M1 Functionality
User Can Add IP and
Program into M1 Fusion
Timing Shell and BFM
Included

Actel Corporation © 2009 71Introduction to Cortex-M1 v1.8

Cortex-M1
Utilization and Performance

Actel Corporation © 2009 72Introduction to Cortex-M1 v1.8

Cortex-M1 Summary

New FPGA-targeted Processor from ARM
Small and Fast

4300 Tiles, 62 MHz without Debug
Some Nice Features

Thumb-2 Instruction Set
Mostly 16-bit Instructions – Good Code Density)

Good Interrupt Support (Closely-coupled NVIC)
Easier to Program than CoreMP7

Porting CoreMP7 Software Fairly Straightforward
V2.6 Available Now

Actel Corporation © 2009

System-on-Chip and SmartDesign
Introduction to AMBA

Actel Corporation © 2009 74Introduction to Cortex-M1 v1.8

System-on-Chip and SmartDesign
Agenda

AMBA Bus Architectures
SmartDesign and IP Cores
Using SmartDesign
IP Database
Testing

Actel Corporation © 2009

AMBA Bus Architectures

Actel Corporation © 2009 76Introduction to Cortex-M1 v1.8

Bus: definition

Set of wires connected to many bus actors
Wires are grouped in functional groups:

Address: bus actor identifiers
Data
Control: physical support for the protocol

Wires are shared
Access protocols are required
Control logic + control wires embody the protocol

Actel Corporation © 2009 77Introduction to Cortex-M1 v1.8

What Is AMBA?

Open-standard, On-chip Bus Specification
Interconnection & Management of SoC Functional Blocks
Widely-adopted Protocol and Standard with ARM Processors

Three distinct buses
AHB (the Advanced High-performance Bus).

High-performance system backbone bus.
Multi-Master, Split Transactions, Burst Transfers and Other Modes
Example Components – Cortex-M1, CoreMP7, and Memory Controllers

ASB (the Advanced System Bus).
An alternative system bus.

APB (the Advanced Peripheral Bus).
Minimal power consumption.
Reduced interface complexity.
Example Components – Watchdog and UART

AHB & APB AMBA Protocols Supported by SmartDesign
When Both AHB and APB Are Used in System, They Must
Be Bridged (AHB2APB Bridge Provided)

Actel Corporation © 2009 78Introduction to Cortex-M1 v1.8

What Is AMBA?

Three distinct buses
AHB (the Advanced High-performance Bus).

High-performance system backbone bus.
ASB (the Advanced System Bus).

An alternative system bus.
APB (the Advanced Peripheral Bus).

Minimal power consumption. �Reduced interface complexity.

Actel Corporation © 2009 79Introduction to Cortex-M1 v1.8

AMBA Subsystem
Block Diagram

Actel Corporation © 2009 80Introduction to Cortex-M1 v1.8

AMBA Subsystem
Block Diagram

Actel Corporation © 2009 81Introduction to Cortex-M1 v1.8

ASB Bus
Features

First-generation system bus that evolved from ARM7TDMI
bus protocol
Supports pipelining, bursts, and multiple bus masters
The four bus agents in ASB are:

Arbiter: Implements a simple request/grant structure to support
multiple bus masters
Decoder: Centralized address decoder to determine which slave is
responsible for servicing a bus transaction
Master: Initiates reads and writes on the bus
Slave: Responds to master initiated reads and writes

Drawbacks
Use of double-edging clock
Bi-directional data bus

Actel Corporation © 2009 82Introduction to Cortex-M1 v1.8

AMBA Bus Fabric

Bus Fabric Components
AHB Controller
AHB to APB Bridge
APB Controller

AHB and APB Controllers
Incorporate All Bus Switching
and Decoding Logic
Two AHB Controller
Configurations

Single Master (AHB-Lite)
Multi-Master (3 Masters)
Supports Full AHB Slaves

AHB Controller

AHB2APB Bridge

APB Controller

16 slave interfaces

16 slave interfaces

AHB Master

Actel Corporation © 2009 83Introduction to Cortex-M1 v1.8

AHB Bus
Features

High Bandwidth
No Maximum Clock Frequency Specified
Designs up to 2 GHz!

Burst Transfers
Split Transactions
Single-cycle Bus Master Handover
Single-clock-edge Operation
Non-tristate Implementation
Support for Multiple Masters
Bridging to APB Bus

Actel Corporation © 2009 84Introduction to Cortex-M1 v1.8

AHB Bus
Burst vs. Split

Burst transaction
Slave to increment (or decrement) address
No need of sending many sequential addresses through bus
Reduces power (computations at the slave)

Split transaction
When a master transaction can potentially take a long time (i.e.
communicating with APB peripherals).
To avoid holding the bus for many cycles
Masters issues a request, then releases the bus, and waits for
notification, which can come many cycles after.

Actel Corporation © 2009 85Introduction to Cortex-M1 v1.8

AMBA Bus Interface Signals
AHB Single-Master and AHB-Lite Buses

Source: ARM Inc.

Actel Corporation © 2009 86Introduction to Cortex-M1 v1.8

AMBA Bus Interface Signals
AHB Single-Master and AHB-Lite Buses

Source: ARM Inc.

Actel Corporation © 2009 87Introduction to Cortex-M1 v1.8

AMBA Bus Interface Signals
AHB Single-Master and AHB-Lite Buses

Source: ARM Inc.

Actel Corporation © 2009 88Introduction to Cortex-M1 v1.8

Timing Diagram Conventions

Source: ARM Inc.

Actel Corporation © 2009 89Introduction to Cortex-M1 v1.8

Simple AHB Transfer

Source: ARM Inc.

Actel Corporation © 2009 90Introduction to Cortex-M1 v1.8

AHB Transfer
No Wait States

First Rising Edge of HCLK
Master Drives Address and
Control Signals onto Bus after
this Edge

Second Rising Edge of HCLK
Slave then Samples Address and
Control Information on Next
Rising Edge of Clock

Third Rising Edge of HCLK
Slave Can Start to Drive
Appropriate Response
Sampled by Bus Master

Address Phase of Any Transfer
Occurs during Data Phase of
Previous Transfer

Pipelining Is Key Part of AHB
Architecture

Source: ARM Inc.

Actel Corporation © 2009 91Introduction to Cortex-M1 v1.8

AHB Transfer
Wait States

Wait States
When HREADY = 0

Data Transferred
when HREADY = 1

Source: ARM Inc.

Actel Corporation © 2009 92Introduction to Cortex-M1 v1.8

AHB Transfer
Pipelined Operations

Control of Next Transfer Overlaps Data from Previous
Transfer

Source: ARM Inc.

Actel Corporation © 2009 93Introduction to Cortex-M1 v1.8

AHB Bus
Burst Signal Encoding

Note that Transfer Size Can Be Larger than 16
INCR Indicates Unspecified Length

Source: ARM Inc.

Actel Corporation © 2009 94Introduction to Cortex-M1 v1.8

AHB Bus
Transfer Type Encoding

Granted & unused

Locks the bus
but no transfer
within a burst

Starts a Burst or a
single transfer

Continues a burst

Source: ARM Inc.

Actel Corporation © 2009 95Introduction to Cortex-M1 v1.8

AHB Bus
Four-beat Wrapping Burst

Sequential Addresses 38, 3C, 30, 34

Source: ARM Inc.

Actel Corporation © 2009 96Introduction to Cortex-M1 v1.8

AHB Bus
Four-beat Incrementing Burst

Sequential Addresses 38, 3C, 40, 44

Source: ARM Inc.

Actel Corporation © 2009 97Introduction to Cortex-M1 v1.8

AHB Bus
Transfer with Slave Retry Response

Slave Indicates Response on HRESP(1:0)
Can Be OK, ERROR, RETRY, or SPLIT

Source: ARM Inc.

Actel Corporation © 2009 98Introduction to Cortex-M1 v1.8

AHB Bus
SPLIT vs. RETRY Responses

SPLIT and RETRY Responses BOTH Allow …
… Slaves to Release Bus when They Cannot Immediately Supply Data for
Transfer
… Transfer to Finish on Bus and therefore Higher-priority Master Can
Access Bus

Difference between SPLIT and RETRY … How Arbiter Allocates Bus
after SPLIT or RETRY Has Occurred

RETRY
Arbiter Continues to Use Normal Priority Scheme
Only Masters with Higher Priority Get Bus Access

SPLIT
Arbiter Adjusts Priority Scheme so that Any Other Master Requesting Bus
Gets Access, even if Lower Priority
Transfer Completion Requires Informing Arbiter when Slave Has Data
Available
Requires Extra Complexity in Both Slave and Arbiter, but Completely Frees
Bus for Use by Other Masters

Master Should Treat SPLIT and RETRY the SAME WAY
Should Continue to Request Bus and Attempt the Transfer until Successful
Completion or ERROR Response Termination

Actel Corporation © 2009 99Introduction to Cortex-M1 v1.8

AMBA Bus Interface Signals
AHB Multi-Master Bus

Signal Function

HBUSREQx Request from Master x to Use Bus

HLOCKx Indicates that Master Requires Locked Access to Bus

HGRANTx Grant to Master x to Use Bus

HMASTx Indication from Arbiter that Master x Is Using Bus

HSPLITx(15:0) Indication from Slave x as to which Bus Masters May Re-Attempt
Split Transaction

Actel Corporation © 2009 100Introduction to Cortex-M1 v1.8

AHB Multi-Master Subsystem
Three Masters, Four Slaves

Source: ARM Inc.

Actel Corporation © 2009 101Introduction to Cortex-M1 v1.8

CoreAHB
Arbitration

CoreAHB Uses Simple Priority Arbitration Scheme

Master 3 Has Highest Priority

Master 0 which Is Internal ‘Dummy’ Master Is Next-highest

Master 2 Is Next

Master 1 (Default) Is Lowest Priority
This Is Normally Processor Master

Master 0 Handles Several Situations
Example – Breaks Deadlock when Multiple Masters Are Locked in SPLIT
Transactions

Actel Corporation © 2009 102Introduction to Cortex-M1 v1.8

CoreAHBLite
Single Master

Single AHB Master Interface
Default Interface for Cortex-M1

16 AHB Slave Interfaces
Each Is Allocated Fixed Memory Location
Two ‘Standard’ Locations

Mem at 0
Interrupt at Top of Memory

Tile Count: 800

Actel Corporation © 2009 103Introduction to Cortex-M1 v1.8

AHB-Lite System
Single Master, Three Slaves

CoreAHBLite Works Fine Here …

Actel Corporation © 2009 104Introduction to Cortex-M1 v1.8

AHB-Lite System
TWO Masters, Multiple Slaves

… BUT … How Do We Implement THIS?

Actel Corporation © 2009 105Introduction to Cortex-M1 v1.8

AHB or AHB-Lite
Multi-Layer Interconnect Scheme

Interconnect Matrix Can Be
Extended to Multiple Masters and
Slaves
Masters Can Be AHB or AHB-Lite

Actel Corporation © 2009 106Introduction to Cortex-M1 v1.8

AMBA Bus Interface Signals
APB Bus

Signal Function

PCLK Bus Clock

PRESETn ACTIVE-LOW Bus Reset

PADDR(31:0) System Address Bus (up to 32 Bits Wide)

PSELx Select Signal for APB Slave

PENABLE Indicates Second and Subsequent APB Transfer Cycles

PWRITE Transfer Direction (1=Write, 0=Read)

PWDATA Write Data (up to 32 Bits from Master)

PRDATA Read Data (up to 32 Bits from Slave)

PREADY Transfer Complete (Used by Slave to Insert Wait States)

PSLVERR Indicates APB Transfer Failure (OPTIONAL)

Actel Corporation © 2009 107Introduction to Cortex-M1 v1.8

APB Bus
State Machine

IDLE
Default APB State

SETUP
Bus Moves Here when Transfer Is
Required
Select PSELx for Targeted Slave
Asserted
Bus Remains Here Only One Clock Cycle
Moves to Access State on Next Clock
Rising Edge

ACCESS
Enable PENABLE Asserted
PADDR, PWRITE, PSELx, and PWRITE
Must Remain Stable during Transition
from SETUP to ACCESS State
Exit from ACCESS State Controlled by
PREADY from Slave

PREADY HIGH – Successful Transfer
PREADY LOW – State Machine Remains
in ACCESS State

Actel Corporation © 2009 108Introduction to Cortex-M1 v1.8

APB Write Transfer
No Wait States

IDLE State

SETUP State

ACCESS State
•Data Transfer

IDLE State
•Follows
Successful
Transfer

Actel Corporation © 2009 109Introduction to Cortex-M1 v1.8

APB Write Transfer
With Wait States

ACCESS States
•Remains Here until PREADY = 1

Actel Corporation © 2009 110Introduction to Cortex-M1 v1.8

APB Read Transfer
No Wait States

PWRITE
•Low for Read

Slave Provides
PRDATA

PREADY
•High for Data
Transfer

Actel Corporation © 2009 111Introduction to Cortex-M1 v1.8

APB Read Transfer
With Wait States

ACCESS States
•Remains Here until PREADY = 1

Actel Corporation © 2009 112Introduction to Cortex-M1 v1.8

AHB to APB Transactions
Example

Actel Corporation © 2009 113Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

APB write cycle (yellow) – write 0x00000100 to CoreTimer TimerLoad register
Note that paddr = 0x000 – CoreAHB2APB strips off the upper 8 address bits and drives the appropriate PSEL

Address
phase

Data
phaseSETUP

State
ACCESS

State

Actel Corporation © 2009 114Introduction to Cortex-M1 v1.8

AMBA Bus Architecture
Summary

AHB is a High-performance Bus
Supports Bursting and Split Transfers

APB is a Simple, Low-performance Bus

Actel Corporation © 2009

SmartDesign and IP Cores

Actel Corporation © 2009

Using SmartDesign

Actel Corporation © 2009 117Introduction to Cortex-M1 v1.8

SmartDesign Vision

Next Generation Design Entry Tool
First tool in the industry that can be used for designing System on a
Chip designs, custom FPGA designs or a mixture of both types in
the same design.

Simple and Intuitive
Designers can work at the level
of abstraction that suits their
needs

Actel Corporation © 2009 118Introduction to Cortex-M1 v1.8

What is SmartDesign?

Powerful Block-based Visual Design Creation Tool
Instantiate blocks from a variety of sources

DirectCore IP, SmartGen, User HDL, Companion Cores, Actel library cells, and
the list goes on.

Supported for all platforms
Simple and Intuitive Design Creation

Auto Connect
Fast manual connectivity between blocks
Hierarchical design support

DRC
Checks rules to guarantee correct by construction design

Connectivity errors
Configuration errors
Special silicon rules

SOC Features
Auto Connect

clocks and resets for processors and peripherals
Other known DirectCore connections

Memory Map Configuration Dialog
Testbench and Bus Functional Model (BFM) script generation

Actel Corporation © 2009 119Introduction to Cortex-M1 v1.8

SmartDesign Canvas

SmartDesign Canvas
Instance pins are displayed on canvas
Connections are shown using nets

Displaying of Nets is optional
Selective enabling / disabling of showing nets

Drag and Drop directly from the Catalog into the Canvas
All Design Operations Available in the Canvas

Connect / Disconnect
Promote To Top
Tie Low / Tie High / Tie Constant / Inversion
Float
Split (if bus)
Group

Actel Corporation © 2009 120Introduction to Cortex-M1 v1.8

SmartDesign Canvas

Actel Corporation © 2009 121Introduction to Cortex-M1 v1.8

Design with any Block Types

One Tool to Connect Your Design
DirectCore IP
SmartGen Cores
User HDL
Actel Macros (And, Or, I/Os, etc)

Actel Corporation © 2009 122Introduction to Cortex-M1 v1.8

Canvas Instance

Instance Name

Unconnected
Required input pins

are shown red

Connected pins are
shown green

Pin with a default
tie off value are
shown in light

green
Pin tied off to ‘1’

Inverted signal

Group Pin can be
expanded for using

sub pins

Pin marked as
unused

Pin tied off to ‘0’

Bus tied to a
constant value

Bus Interface Pin

Actel Corporation © 2009 123Introduction to Cortex-M1 v1.8

Making Connections

Right-click on a pin for Available Operations
Select 2 or More Pins With the CTRL key, Right-click and
Connect

Actel Corporation © 2009 124Introduction to Cortex-M1 v1.8

Modifying Memory Map

Easy and Intuitive Method to Connect Peripherals at
Particular Addresses on the Bus
Interactive and Immediate Updating of Base Addresses

Actel Corporation © 2009 125Introduction to Cortex-M1 v1.8

Testbench Generation

Design Testbench
Generates a top level testbench

Clock and Reset drivers automatically generated and connected

Bus Functional Model Script Generation
Generates BFM script file for processor based designs
Based on your peripheral connectivity in your designs
Look at Processor Core Handbooks (ex: CortexM1) for more
details on BFMs and usage

Actel Corporation © 2009 126Introduction to Cortex-M1 v1.8

Design Rule Checker

Checks your Design for Errors
Invoke with Checker icon (see picture)
Connectivity

Unconnected/Required input pins
Floating output pins
Silicon required connection

Example: RTC must be driven by Crystal Oscillator
Configuration

Check consistency between configurations
Example: CoreMP7 and CoreMP7Bridge debug configuration

Errors Reported in a Connectivity Grid
Directly fix your connectivity mistakes
Enables fast sorting / filtering

Actel Corporation © 2009 127Introduction to Cortex-M1 v1.8

Datasheet Generation
Design Datasheet

Pin outs of the design
Cores used and their description
Memory Map

Actel Corporation © 2009 128Introduction to Cortex-M1 v1.8

Fast Design Search
Design Level Search

Find Pins, Instances, and Nets quickly and easily
Wild card query
Matching objects will be highlighted in the Canvas

Actel Corporation © 2009 129Introduction to Cortex-M1 v1.8

Multiple Design Representations

Connectivity Grid
Spreadsheet like view of your design
Enables quick filtering / sorting

Schematic
Shows all pins and nets
Traditional schematic
view

Actel Corporation © 2009 130Introduction to Cortex-M1 v1.8

Cores Catalog

Library of Proven
Configurable Core
Functions

Actel Macros

Quick-find

Intuitive Configuration

Drag and drop to
Canvas

IP Configurator
(DirectCore)

Standard Configurator
(SmartGen)

Actel Corporation © 2009 131Introduction to Cortex-M1 v1.8

SmartDesign IP Delivery

Actel Corporation © 2009 132Introduction to Cortex-M1 v1.8

Cortex-M1 System-on-Chip

Processor System
Processor
Bus Fabric
Components

Components
Cortex-M1
AMBA
IP Cores

SmartDesign
Automatically
Creates Basic
System

… OR …
User Can Create
System Manually UARTUART WatchdogWatchdog

AHB2APB
Bridge

AHB2APB
Bridge

AHB Bus

APB Bus

I/O Control I/O Control

Static Memory
Controller

Static Memory
Controller

TimersTimers

Cortex-M1Cortex-M1
•No Bridge
Required
•Built-in Interrupt
Controller

Actel Corporation © 2009 133Introduction to Cortex-M1 v1.8

SmartDesign
Building an SoC

Decide on Components Needed to Meet System
Requirements
Add Cortex-M1, Busses, and Components
Autostitch
Configure Components where Necessary
Add Any Other Required Connections
Check Memory Map
Generate System

Actel Corporation © 2009 134Introduction to Cortex-M1 v1.8

Libero IP Catalog

IP Catalog

Actel Corporation © 2009 135Introduction to Cortex-M1 v1.8

IP Cores in Libero Catalog
Processors

Cortex-M1, CoreMP7
Core8051s, CoreABC

AMBA Interfaces
CoreAHB, CoreAHBLite
CoreAPB, CoreAPB3
CoreAHB2APB

Other Interfaces
Core10/100, Core429, CorePCIF
Core1553BRT, Core1553BRM

Subsystem Cores
CoreAHBNvm
CoreAHBSram
CoreAI
CoreCFI
CoreDDR
CoreFMEE
CoreFROM
CoreGPIO
CoreI2C
CoreInterrupt
CoreMemCtrl
CorePWM
CoreRemap
CoreSDR
CoreSMBus
CoreTimer
CoreUART, CoreUARTapb
CoreWatchdog

Actel Corporation © 2009 136Introduction to Cortex-M1 v1.8

Cortex-M1
SmartDesign Configuration

Select Debug Interface
None (Default)
RealView JTAG
FlashPro3

Select Die
Die already Selected in Libero

M1AFS600, M1A3P1000, etc.
Other Options Inactive

Actel Corporation © 2009 137Introduction to Cortex-M1 v1.8

CoreAHBLite and CoreAHB
SmartDesign Configuration

CoreAHBLite CoreAHB

Identical Configuration
Enable/Disable Slots

Actel Corporation © 2009 138Introduction to Cortex-M1 v1.8

CoreAPB3 Configuration Options

Enable or Disable Each of 16
APB Slots

APB Slot Size
Default Is 256 Locations per
Slot

Actel Corporation © 2009 139Introduction to Cortex-M1 v1.8

CoreAPB
SmartDesign Configuration

Implements APB in Single Component
Uses Selects from CoreAHB2APB
Tile Count: 125

Actel Corporation © 2009 140Introduction to Cortex-M1 v1.8

Other SmartDesign Cores

UART
Static Memory Controllers

Optimized for Internal and External Memory
Timers
General-Purpose I/O Controller (Small-footprint GPIO)
Watchdog Controller
CoreAI for Fusion
PCI Controllers

Target, Master, and Target+Master
Ethernet
1553
All Actel IP Cores Are Now Distributed through SmartDesign

Actel Corporation © 2009 141Introduction to Cortex-M1 v1.8

CoreUARTapb

APB Slave
Extension of CoreUART

Wrapped with APB Interface
Configuration Settings Exposed in Control Registers

Not Hardwired as in CoreUART
ReceiveFull and TxRdy Exposed

Can Be Used as Interrupt Sources

Tile Count: 300

Actel Corporation © 2009 142Introduction to Cortex-M1 v1.8

CoreMemCtl

AHB Slave
Optimized for Actel Development Kit
Memory Interfaces

External Asynchronous/Synchronous SRAM
External Asynchronous Flash

Two AHB Ports
Flash RAM (Typically Slot 0)
SRAM (Typically Slot 1)

Tile Count: 100

Actel Corporation © 2009 143Introduction to Cortex-M1 v1.8

CoreMemCtrl
Configuration

SRAM Mode
Synchronous or Asynchronous

Synchronous SRAM Mode
Pipeline or Flow-through

Flash Data Bus Width
32 or 16 bits

Flash Read Wait States
0, 1, 2, or 3

Flash Write Wait States
1, 2, or 3

SRAM Read Wait States
0, 1, 2, or 3

SRAM Write Wait States
1, 2, or 3

Shared Flash/SRAM Read/Write
Enables

Select ‘Yes’ or ‘No’

Actel Corporation © 2009 144Introduction to Cortex-M1 v1.8

CoreMemCtl
External Memory Interfaces

External Memory Interface of CoreMemCtl Should Be
Routed to Subsystem Top Level

Generic Interface Accommodates a Variety of Flash and SRAM
Configurations

Memory Devices Typically Have Several Inputs Fixed at
Static Levels

These Should Be Handled in the Top-level Description for FPGA
(above Subsystem Top Level)

Actel Corporation © 2009 145Introduction to Cortex-M1 v1.8

CoreMemCtl
Interfacing

Flash
Read and Write Wait States Can be Inserted

Asynchronous SRAMs
Read and Write Wait States Can be Inserted

Synchronous SRAMs
CoreMemCtrl Designed to Connect to either Pipelined or Flow-
through Devices
Pipeline Mode – Output Data Assumed Valid just after the SRAM
Clock Edge that Follows the Edge on which the Read Address Is
Clocked into the SRAM
Flow-Through Mode, Additional Register Is Implemented FPGA
Logic to Accomplish the Same Thing

Actel Corporation © 2009 146Introduction to Cortex-M1 v1.8

Flash Interfacing
Write Wait States – 2-Wait-State Example

0 WS
Write
Addr
A0

2 WS
Write
Addr
A0

0 WS
Write
Addr
A1

2 WS
Write
Addr
A1

1 WS
Write
Addr
A0

1 WS
Write
Addr
A1

Actel Corporation © 2009 147Introduction to Cortex-M1 v1.8

Flash Interfacing
Read Wait States – 1-Wait-State Example

0 WS
Read
Addr
A0

1 WS
Read
Addr
A0

0 WS
Read
Addr
A1

1 WS
Read
Addr
A1

Actel Corporation © 2009 148Introduction to Cortex-M1 v1.8

Asynchronous SRAM Interfacing
Write Wait States – 1-Wait-State Example

0 WS
Write
Addr
A0

1 WS
Write
Addr
A0

0 WS
Write
Addr
A1

1 WS
Write
Addr
A1

Actel Corporation © 2009 149Introduction to Cortex-M1 v1.8

Asynchronous SRAM Interfacing
Read Wait States – 1-Wait-State Example

0 WS
Read
Addr
A0

1 WS
Read
Addr
A0

0 WS
Read
Addr
A1

1 WS
Read
Addr
A1

Actel Corporation © 2009 150Introduction to Cortex-M1 v1.8

Synchronous SRAM Interfacing
Multiple Reads and Writes

Actel Corporation © 2009 151Introduction to Cortex-M1 v1.8

CoreTimer

APB Slave
Dual 32-bit Timers

One Interrupt per Timer
Can Be Extended to Include More Timers
Free-running or Periodic Modes (One-shot Operation also
Possible)

Tile Count: 310 – 535

Actel Corporation © 2009 152Introduction to Cortex-M1 v1.8

CoreGPIO

APB Slave
32-bit Output Register (Write Only)
32-bit Input Register (Clear on Read)

Tile Count: 100

Actel Corporation © 2009 153Introduction to Cortex-M1 v1.8

CoreWatchdog

APB Slave
Generates Interrupt at
Programmed Interval
If Interrupt Is Not Serviced,
Watchdog Generates System
Reset Signal
Watchdog Can Be Enabled and
Disabled
If Synchronized Reset Is Not
Available from System,
Watchdog Should Be Used with
MP7Bridge

Tile Count: 280 – 490

Advanced High Performance Bus (AHB) - Lite

Advanced Peripheral Bus (APB)

Cortex-M1

RC
Oscillator

SRAMAHB to APB
Bridge

UART Watchdog

PLL

System Clock

Flash (NVM)

NSYSRESET
WDRES

WDRESn

Actel Corporation © 2009 154Introduction to Cortex-M1 v1.8

Component Versioning

Where Available, Different Versions of Component May Be
Selected
Select Show Core Version from IP Catalog Options

Select Version You Want to use in Design
Only One Version of Component Can Be in Project

DON’T MIX VERSIONS!

Actel Corporation © 2009 155Introduction to Cortex-M1 v1.8

Component Help

Libero Information Window Provides
Essential Designer Information About
Core Selected in Catalog
Includes a Link to Documentation for
Core

Actel Corporation © 2009

IP for ARM in Fusion

Actel Corporation © 2009 157Introduction to Cortex-M1 v1.8

Building Fusion Systems
Overview

CoreAI is Main Fusion-enabling
Component
Analog Signals Are Auto-
stitched
Analog Interface (AI) is
Instantiated and Can Be Fully
Configured inside SmartDesign
ACM Configuration File is
Output to SoftwareExport for
Application Use

Actel Corporation © 2009 158Introduction to Cortex-M1 v1.8

CoreAI
Analog Interface

CoreAI Brings Cortex-M1 and Fusion Together
Available FREE as Part of SysBASIC IP
Configurable IP Block (150-460 tiles)
Simplifies Fusion Analog Interface to Cortex-M1

Advantages for Designers
Parameterizable Control of Fusion Analog Block (AB) and I/O
Controlled by Cortex-M1 via APB Bus

Actel Corporation © 2009 159Introduction to Cortex-M1 v1.8

CoreAI
Features

APB Slave
Connect to CoreAPB

Instantiates Analog Block (AB)
Configure via Dialog Box

Define How Analog Pins Are Used (0V to 4V Input, Current
Monitoring, Temperature Monitoring, …)
Has Implications for Required Connections to Top-level Analog Pads

“AnalogPads” Port on CoreAI Groups All Connections to
Analog Pads

Actel Corporation © 2009 160Introduction to Cortex-M1 v1.8

CoreAI Connections
AnalogPads Bus

AnalogPads Contain 47 Individual Signals…
Route Connection to AnalogPads to Top Level
of Your Design
Bus Connection to AnalogPads Labelled
“AnalogPads” in Example Below
Possible to Connect Signals Individually – Not
Advised!

Actel Corporation © 2009 161Introduction to Cortex-M1 v1.8

CoreAI Configuration Dialog

ACM Clock Divider – PCLK Divided by 2, 4, 8 or 16
ACM Clock Frequency Must Not Exceed 10 MHz

Internal Temperature Monitor – Enable/Disable
Interrupt – Enable/Disable
Interrupt Polarity – Active-high/Active-low

Actel Corporation © 2009 162Introduction to Cortex-M1 v1.8

CoreAI Configuration
Quad Settings

10 Analog Quads (Quad 0 to Quad 9)
Analog Quad => 4-channel System for Pre-conditioning Analog
Signals before Passing to ADC for Conversion into Digital Signal
Quads Can Be Configured via CoreAI Configuration Dialog

Actel Corporation © 2009 163Introduction to Cortex-M1 v1.8

CoreAI Configuration
Additional Options

Real-Time Clock Usage
Select ‘Yes’ or ‘No’

VAREF Selection
Internal 2.56v Reference
Voltage brought out on
VAREF Pin

ADC Resolution Control
Fixed (8-bit, 10-bit, or 12-bit)
or selectable via register

TVC Control
Clock divider fixed or
selectable via register

STC Control
Sample time fixed or
selectable via register
ADC FIFO Control
Select ‘Yes’ or ‘No’ and
almost full/empty values

APB Interface Width
16 bits (Fixed)

Actel Corporation © 2009 164Introduction to Cortex-M1 v1.8

CoreAhbNvm, CoreAhbSram, CorePWM

CoreAhbNvm (Fusion Only)
AHB Slave Providing Access to Nonvolatile (Flash) Internal Memory
on Fusion Device
Configure Size (256KB, 512KB or 1MB) in SmartDesign

CoreAhbSram (Fusion and ProASIC3/E)
AHB Slave which Allows AHB Master (Cortex-M1) to Access Internal
SRAM
Size (2KB, 10KB, 14KB or 28KB) Configured in SmartDesign

(2KB of Internal SRAM Reserved for Cortex-M1)

CorePWM (Any Family)
Not Fusion-specific but Has “Analog Flavor”
APB Slave Providing up to 8 Pulse-Width-Modulation Outputs (Motor
Control, Tone Generation)

Actel Corporation © 2009 165Introduction to Cortex-M1 v1.8

SmartDesign Files in Libero
Libero Project Complete - 1

SmartDesign Component

Actel Corporation © 2009 166Introduction to Cortex-M1 v1.8

SmartDesign Files in Libero
Libero Project Complete - 2

SmartDesign Output

Actel Corporation © 2009

Bus-Functional Models

Actel Corporation © 2009 168Introduction to Cortex-M1 v1.8

SoC Testing with BFM

Test Script
Human

Readable

memmap uart 0xC3000000;
write b uart 0x0C 0x06;
read b uart 0x08;
readcheck b uart 0x0C 0x06;

Cortex-M1Cortex-M1

AMBA AHB bus

AMBA based SoC

SmartDesign SoC Subsystem Everything Is Generated by SmartDesign !

Editable by User to Add His Own Test Functionality

Actel Corporation © 2009 169Introduction to Cortex-M1 v1.8

BFM Features

Allows User to Test Integration of Subsystem
Test that All Peripherals Can Be Accessed
Test Address Decoding and Bus Connections

Pin-compatible with Cortex-M1 Processor Core
Primarily AMBA Interface

Models Big-/Little-endian Operation

BFM Includes Timing Shell
Facilitates Back-annotation of Delay Information during Post-synthesis
Simulation

Support for Interrupts

Actel Corporation © 2009 170Introduction to Cortex-M1 v1.8

BFM Test Script

User Can Extend Test Script
Write Specific Values to Control
Registers of a Peripheral
Read Status Registers and Verify
against Expected Data

write to ssram resource (offset 20)
write w ssram 0x20 0x55555555

read back from same location
(expect same data)
read w ssram 0x20 0x55555555

write to flash resource (offset 100)
write h flash 0x100 0xaaaa

read back from same location
(expect same data)
read h flash 0x100 0xaaaa

SmartDesign Generates ‘Connectivity Testing’ BFM Test Script
HDL- and Simulator-independent

Uses User-specified Resource
Names for Ease of Understanding

Actel Corporation © 2009 171Introduction to Cortex-M1 v1.8

Cortex-M1 Signals Modeled by BFM

General
NSYSRESET
SYSCLK
RESETn

AMBA AHB Bus
HADDR
HSIZE
HTRANS
HWRITE
HWDATA
HRDATA
HBURST
HMASTLOCK
HPROT
HREADY
HRESP

TCM Interface
Embedded Trace Interfaces Are NOT Modeled by BFM

Often These Are Not Used Anyway!

Actel Corporation © 2009 172Introduction to Cortex-M1 v1.8

SoC System Testbench

SmartDesign Output (Black)
User Adds Modules, Tasks (Blue)
BFM Is Embedded within SoC (Red)

System Testbench

CoreMP7
BFM

BFM
Test

Script
MP7
Bridge

Video
Codec MAC UART

Memory
ControlSRAM

FLASH

Subsystem
SoC_Top
Level

User-defined
Modules,
Tasks, Functions

Cortex-M1

Actel Corporation © 2009 173Introduction to Cortex-M1 v1.8

BFM Log Output

BFM Outputs Log Messages to Simulator (ModelSim) Console

write to ssram resource (offset 20)
write 55555555 to offset 20 in ssram
read back from same location
read data = 55555555, as expected
write to flash resource (offset 100)
Write aaaa to offset 100 in flash
read back from same location
read data = aaaa, as expected
Wait for ARM interrupt
Interrupt detected
Write 22 to offset 4 in videoCodec
read back from same location
Error in read of videoCodec
Expected 22, actual value 20

Actel Corporation © 2009

BFM Scripts

Actel Corporation © 2009 175Introduction to Cortex-M1 v1.8

Top-Level BFM Script
subsystem.bfm

Actual Read and Write Commands
Are in Scriptlets Referenced by
include Statements
include References File with
Added Suffix “_scriptlet.bfm”

memmap resource_name base_address;
#
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;
#
#---
Memory Map
Define name and base address of each resource.
#---

memmap CoreMemCtrl_00 0x0;
memmap CoreMemCtrl_00 0x10000000;
memmap CoreAhbSram_00 0x30000000;
memmap CoreGPIO_00 0x40000000;
memmap CoreUARTapb_00 0x41000000;

#---
Include resource scriptlets
#---

include CoreMemCtrl CoreMemCtrl_00;
include CoreMemCtrl CoreMemCtrl_00;
include CoreAhbSram CoreAhbSram_00;
include CoreGPIO CoreGPIO_00;
include CoreUARTapb CoreUARTapb_00;

Template

System memory map

References File
CoreGPIO_scriptlet.bfm

References peripheral listed in
memory map

Actel Corporation © 2009 176Introduction to Cortex-M1 v1.8

BFM Scriptlet Example
CoreAhbSram_scriptlet.bfm

VAR_resource Is Dummy
Instance Name
Actual Name Is Referenced in
subsystem.bfm

#---
Resource: CoreAhbSram
Instance: VAR_resource
#---#
BFM scriptlet for CoreAhbSram
Test byte/halfword/word writes and reads
write w VAR_resource 0x0 0x12345678;
readcheck w VAR_resource 0x0 0x12345678;
write b VAR_resource 0x0 0x9a;
readcheck w VAR_resource 0x0 0x1234569a;
readcheck b VAR_resource 0x0 0x9a;
readcheck b VAR_resource 0x1 0x56;
readcheck b VAR_resource 0x2 0x34;
readcheck b VAR_resource 0x3 0x12;
readcheck h VAR_resource 0x0 0x569a;
readcheck h VAR_resource 0x2 0x1234;
write b VAR_resource 0x1 0xbc;
write b VAR_resource 0x2 0xde;
write b VAR_resource 0x3 0xf0;
readcheck w VAR_resource 0x0 0xf0debc9a;
write w VAR_resource 0x4 0xaabbccdd;
readcheck h VAR_resource 0x6 0xaabb;

Actel Corporation © 2009 177Introduction to Cortex-M1 v1.8

BFM Script Command
write

Function
BFM Performs Write to Specified Offset within Memory Map of
Specified Resource

Syntax
write width resource_name byte_offset data;

where
width – W (Word), H (Halfword), B (Byte)
resource_name – User-defined Resource Name
byte_offset – Hex Offset from Resource Address Base
data – Hex Value of Data to Be Written

Example
write W VideoCodec 20 11223344;

Actel Corporation © 2009 178Introduction to Cortex-M1 v1.8

BFM Script Command
read

Function
BFM Performs Read from Specified Offset within Memory Map of
Specified Resource

Syntax
read width resource_name byte_offset;

where
width – W (Word), H (Halfword), B (Byte)
resource_name – User-defined Resource Name
byte_offset – Hex Offset from Resource Address Base

Example
read W VideoCodec 20;

Actel Corporation © 2009 179Introduction to Cortex-M1 v1.8

BFM Script Command
readcheck

Function
BFM Performs Read from Specified Offset within Memory Map of
Specified Resource

Syntax
readcheck width resource_name byte_offset data;

where
width – W (Word), H (Halfword), B (Byte)
resource_name – User-defined Resource Name
byte_offset – Hex Offset from Resource Address Base
data – Hex Value of Expected Data

Example
readcheck W VideoCodec 20 11223344;

Actel Corporation © 2009 180Introduction to Cortex-M1 v1.8

BFM Script Command
wait

Function
BFM Stalls (Doesn’t Initiate Any Bus Transactions) for Specified
Number of Clock Periods

Syntax
wait num_clock_ticks;

where
num_clock_ticks – Number of Clock Cycles that BFM Stalls

Example
wait 20;

Actel Corporation © 2009 181Introduction to Cortex-M1 v1.8

BFM Script Command
poll

Function
Continuously Reads Specified Location until Requested Value Is
Obtained

Syntax
poll width resource_name byte_offset data_bitmask;

where
width – W (Word), H (Halfword), B (Byte)
resource_name – User-defined Resource Name
byte_offset – Hex Offset from Resource Address Base
data_bitmask – Bitmask Is ANDed with Read Data and Result Is

Compared with Bitmask Itself
• If Equal, Poll Command Is Complete
• If Not Equal, Polling Continues

Example
poll W VideoCodec 40 567890AB;

Actel Corporation © 2009 182Introduction to Cortex-M1 v1.8

Accessing Peripheral Locations

Writes / Reads to Memory Locations Are Valid Accesses
Example – CoreAHBSram

Writes / Reads to Meaningful Register Addresses Have the
Desired Effect on a Peripheral

Register Locations Have Specific Meanings in Core
Example – CoreTimer Used in Lab

Reads to Unused Register Addresses Still Return Data
Written …

… even if No Actual Register Is Present
NO Checking for Invalid Addresses

Actel Corporation © 2009

Modifying Test Scripts

Actel Corporation © 2009 184Introduction to Cortex-M1 v1.8

User Modifications

Users Can Modify subsystem.bfm or Scriptlets to Add
New Tasks or Test Additional Functionality
BFM Scripts Are Overwritten When Core is Re-generated in
SmartDesign

Actel Corporation © 2009 185Introduction to Cortex-M1 v1.8

User Modifications
Scriptlets

Open File in Libero HDL Editor and Add New Tasks
Perform “Save As” on Modified Scriptlet

Name Convention: <peripheral_name>_scriptlet.bfm

#--
Resource: CoreTimer
Instance: VAR_resource
#--
write W VAR_resource 0x00 0x00000100;
readcheck W VAR_resource 0x00 0x00000100;
readcheck W VAR_resource 0x04 0x00000100;
write h VAR_resource 0x0C 0x0001;
readcheck h VAR_resource 0x0C 0x0001;
write h VAR_resource 0x08 0x0003;
readcheck h VAR_resource 0x08 0x0003;
poll b VAR_resource 0x014 0x01;
read h VAR_resource 0x04;
write h VAR_resource 0x10 0x1234;

Modified Scriptlet Saved as CoreTimer_user_scriptlet.bfm

Actel Corporation © 2009 186Introduction to Cortex-M1 v1.8

User Modifications
subsystem.bfm

Modify subsystem.bfm to use Modified Scriptlets
Perform “Save As” on Modified File

#--
Memory Map
Define name and base address of each resource.
#--

memmap CoreAhbSram_00 0x00000000;
memmap CoreAhbSram_01 0x10000000;
memmap CoreGPIO_00 0xc2000000;
memmap CoreUARTapb_00 0xc3000000;
memmap CoreTimer_00 0xc4000000;

#--
Include resource scriptlets
#--

include CoreAhbSram CoreAhbSram_00;
include CoreAhbSram CoreAhbSram_01;
include CoreGPIO CoreGPIO_00;
include CoreUARTapb CoreUARTapb_00;
include CoreTimer_user CoreTimer_00;

Use modified scriptlet

Actel Corporation © 2009 187Introduction to Cortex-M1 v1.8

Modified BFM Files in Libero

Files Appear Under User Files After “Save As”

Modified Files appear
under User Files in Libero

Actel Corporation © 2009

Simulation

Actel Corporation © 2009 189Introduction to Cortex-M1 v1.8

BFM Log Output

BFM Outputs Log Messages to ModelSim Transcript
Window

Actel Corporation © 2009 190Introduction to Cortex-M1 v1.8

BFM Simulation Errors and Error Messages

BFM Simulation Error Messages Reference
bfmCompile.log

CoreMP7 Compiler v2.0
Error: CoreMP7 BFM Compile: "subsystem_i.bfm"
Line 47: Invalid command on bus cycle 4
CoreMP7 BFM Compile: 1 error(s) encountered
Please fix BFM script and re-run simulation

bfmCompile.log displays error messages

Actel Corporation © 2009 191Introduction to Cortex-M1 v1.8

Initial BFM Simulation

By Default Only nsysreset and sysclk Appear in the
Wave Window

Clock and Reset ONLY

Actel Corporation © 2009 192Introduction to Cortex-M1 v1.8

Viewing All Cortex-M1 Signals
Option 1 – Change Top-Level Instance

Use DUT
Instance

Actel Corporation © 2009 193Introduction to Cortex-M1 v1.8

Viewing All Cortex-M1 Signals
Option 2 – Include Wave File

Add Custom
.do File

Actel Corporation © 2009 194Introduction to Cortex-M1 v1.8

BFM Simulation
System

Actel Corporation © 2009 195Introduction to Cortex-M1 v1.8

BFM Summary

Allows User to Test Integration of Subsystem
Tests that All Peripherals Can Be Accessed
Tests Address Decoding and Bus Connections

Includes ARM Cortex-M1 Processor Core
AMBA Interface
Memory (TCM) Interface

Includes Timing Shell
Facilitates Back-annotation of Delay Information during Post-
synthesis Simulation

Actel Corporation © 2009

Cortex-M1 Development Tools

Actel Corporation © 2009 197Introduction to Cortex-M1 v1.8

Cortex-M1 Ecosystem Support

Actel Tools
Libero Integrated Design Environment
SoftConsole Program Development Environment

Compilers and Debuggers
ARM RealView Developer Suite

C Compiler, Debugger, Instruction Set Simulator
Keil –Compiler, Debugger
IAR – Compiler, Debugger
CodeSourcery - GNU/GDB

RTOS
μC/OS-II - Micrium

Actel Corporation © 2009 198Introduction to Cortex-M1 v1.8

Actel Processor Design Flow

Actel Corporation © 2009 199Introduction to Cortex-M1 v1.8

Hardware Design

Design Creation
SmartDesign
Free Processor IP
Add FREE Peripherals
Add non-Processor IP

Design Implementation
Synplify Synthesis
Modelsim Simulation
Designer FPGA Layout

Design Analysis
Timing Analysis
Power Analysis

Actel Corporation © 2009 200Introduction to Cortex-M1 v1.8

Software Development

Actel Corporation © 2009 201Introduction to Cortex-M1 v1.8

SoftConsole v2.2
Processor SW Development

FREE Software development environment
Eclipse-based IDE - easy user interface
Supports Cortex-M1, CoreMP7, Core8051/s
Can be downloaded from www.actel.com

C/C++ programming and debug
CodeSourcery G++ ARM tools
SDCC 8051 compiler
Programming and debug with
Actel’s FlashPro3

Can import existing code
Open platform for application development

Support for RTOS and stacks
uC/OS-II
TCP/IP, USB, IPMI

Actel Corporation © 2009 202Introduction to Cortex-M1 v1.8

SoftConsole Features

Tools
C/C++ Programming
Debugging
Disassembly
Signals
Evaluation of Expressions at Runtime

Intelligent Software Analysis
Citing Points of Declaration and Definition
Source Code Outlining
Syntax Highlighting and Comment Toggling
Code History for Tracking Changes
Code Assist Mode

Source Code Completion to Avoid Syntax Errors
Code Templates to Auto-insert Standard Code

Examples – switch Statement and try/catch Block

Actel Corporation © 2009 203Introduction to Cortex-M1 v1.8

SoftConsole Eclipse IDE

Provides Open Platform for Application Development Tools
Implemented in Java for Easy OS Migration

Tight Integration of Tools
CodeSourcery Sourcery G++ ARM Tools
FS2 FlashPro3 In-Target System Analyzer

Simple User Interface
Supports All Levels of Development

Coding, Debugging, Disassembly, Edit & Recompile
Builds Applications with Minimal User Effort

Existing Code Can Be Imported and Built in New
SoftConsole Project

Actel Corporation © 2009 204Introduction to Cortex-M1 v1.8

SoftConsole GNU C/C++ Compiler

Extensive Intelligent ARM Optimization
Built from CodeSourcery G++ GNU/GDB

Includes Many Features Useful for Embedded Systems
Powerful inline assembly syntax
Comprehensive linker script language permitting exact placement of
code and data

Large Developer Base Results in Tool Stability
ISO C and C++ Language Support

Complete runtime libraries
Aggressive code usage analysis and syntax warnings
Supports ARM EABI for better portability

Actel Corporation © 2009 205Introduction to Cortex-M1 v1.8

SoftConsole GDB Debugger

Support for Source- and Assembly-level Debugging
Live Debugging of New Code

In an FPGA or in the GDB ARM simulator
Breakpoints Can Occur When Conditions Are Met
Intelligent Access to Hardware

Register banks and memory ranges
Hover over a variable to read its current value
Current stack frame displayed while debugging

Evaluation of Expressions at Runtime

Actel Corporation © 2009 206Introduction to Cortex-M1 v1.8

On-Chip Debugging via FlashPro3

Download and Debug Executable Programs to Cortex-M1
Development Kits using FlashPro3

No RealView ICE – Micro Edition (RVI-ME) required
Reduces Pin Count

Utilizes Dedicated FPGA JTAG Pins via UJTAG versus GPIO RVI-ME
Configuration (10 Pins)

Full Debugging of Code on Remote Target
View Internal Registers, Memory Locations, Variables, etc.

Uses Same Interface as Instruction Set Simulator
Only One Tool to Learn

Actel Corporation © 2009 207Introduction to Cortex-M1 v1.8

SoftConsole Requirements

Licensing
SoftConsole Is Open Source
Free download from Actel’s web site
Individual Licenses for SoftConsole Elements Are Presented in
Installation Agreement

Supported Platforms
Microsoft Windows – US Version

Windows 2000 with SP4
Windows XP SP2 (Professional Version Only)

System Requirements
1.0 GHz Pentium-class Processor
400MB Available Disk Space
128 MB System RAM
1024x768 Video Resolution

Actel Corporation © 2009 208Introduction to Cortex-M1 v1.8

Micrium µC/OS-II

Cortex-M1 port can be downloaded for FREE
Open source model
To use for evaluation and development
License ($4K) required to use in an application that is sold
License is Royalty-Free

#2 Commercial RTOS
Used in 1000s of products all over the world
Real-time kernel
Scalable and ROMable
5K to 20K bytes code, 1K to 3K bytes data (Cortex-M1)
Provides standard services

Semaphores, message mailbox, queues, task & time management
Available Micrium Stacks

uC/TCP-IP (Ethernet)
uC-FS (File System for embedded applcations)
uC/GUI (efficient GUI for any application with an LCD)
uC/USB (USB device or host controller)
uC/CAN (CAN protocol framework)
uC/FL (Flash loader for embedded update via PC)

Actel Corporation © 2009 209Introduction to Cortex-M1 v1.8

RealView MDK (Keil)

Now with full Support for Actel’s Cortex-M1
Version 3.23a or later

Free eval download available
Full version costs $4K

Features
µVision IDE, debugger and simulation environment
RealView industry-leading C/C++ compiler from ARM
MicroLib highly optimized run-time library
Real-Time Trace for Cortex-M3 processor based devices
Keil RTX – deterministic Real-Time Operating System

Keil has written an app note
on using the MDK with Actel’s
M1A3P SOC board

Includes several examples
Requires Keil’s uLink probe
for download and debug

Plugs into 20-pin header on
Actel boards

Actel Corporation © 2009 210Introduction to Cortex-M1 v1.8

ARM Cortex-M1 Development Kits

Kit Name Status Ordering Code Device Supported Price

ARM Cortex-M1 IGLOO Development Kit Production M1AGL1000-DEV-KIT M1AGL1000V2-FGG484 $340

ARM Cortex-M1 ProASIC3L Development Kit* First Article M1A3PL-DEV-KIT M1A3P1000L-FGG484 $370

Fusion Embedded Development Kit Production M1AFS-EMBEDDED-KIT M1AFS1500-FGG484 $199

Fusion Advanced Development Kit * First Article M1AFS-ADV-DEV-KIT M1AFS1500-FGG484 $650

*First Customer Ship on track for April 09

Fusion Advanced Development Kit Fusion Embedded Development Kit M1AGL and M1A3PL
Development Kit

Actel Corporation © 2009 211Introduction to Cortex-M1 v1.8

Fusion Embedded Development Kit

Develop designs using
Fusion Mixed-Signal FPGA

M1AFS1500-FGG484
Cortex-M1 embedded processor
8051s embedded processor
Ethernet applications

The development kit includes
Low Cost Programming Stick
Libero IDE
Free Libero IDE Gold license
SoftConsole for Compile/Debug
On Chip Program and Debug
User’s guide and tutorial
Example designs
PCB schematics and layout files

Ordering code
M1AFS-EMBEDDED-KIT @ $199

Actel Corporation © 2009 212Introduction to Cortex-M1 v1.8

Fusion Embedded Development Board Features

RoHS compliant
10/100 Ethernet interface
USB-to-UART interface
I2C interface
Built-in temperature monitor
Voltage potentiometer
RealView debug header
OLED 96x16 pixel display
4,000,000 SRAM

Actel Corporation © 2009 213Introduction to Cortex-M1 v1.8

Where Can I Learn More?

ARM Website
Cortex-M1 Technical Reference Manual

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/
ARMv6-M Architecture Reference Manual

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/
ARM and Thumb-2 Instruction set Quick Reference Card

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/

Actel Cortex-M1 User’s Guide
Generate from SmartDesign

Actel Corporation © 2009 214Introduction to Cortex-M1 v1.8

Cortex-M1 Summary

Cortex-M1 Allows Designers to Benefit from
Hassle-free, Industry-standard ARM Architecture

Optimized for Use in M1 Devices (ProASIC3/E, IGLOO/e & Fusion)
Actel FPGA Tools Offer Seamless Development Flow

Libero, SmartDesign, Dev Kit Hardware Development Tools
SoftConsole with GNU Software Development Tools
RealView and Third-party Ecosystem Support

Brings Flexibility and Fast Time to Market to System-level
Designs

Actel Corporation © 2009

Reference

Lab Simulation Results

Actel Corporation © 2009

Lab Simulation Results

Actel Corporation © 2009 217Introduction to Cortex-M1 v1.8

Cortex-M1 Subsystem

Actel Corporation © 2009 218Introduction to Cortex-M1 v1.8

Cortex-M1 Subsystem
Memory Map

Actel Corporation © 2009 219Introduction to Cortex-M1 v1.8

CoreTimer
Register Memory Map

Actel Corporation © 2009 220Introduction to Cortex-M1 v1.8

#---
Memory Map
Define name and base address of each resource.
#---

memmap CoreMemCtrl_00 0x00000000;
memmap CoreMemCtrl_00 0x10000000;
memmap CoreGPIO_00 0xc2000000;
memmap CoreTimer_00 0xc4000000;
memmap CoreRemap_00 0xcf000000;

#---
Include resource scriptlets
#---

#include CoreMemCtrl CoreMemCtrl_00;
#include CoreMemCtrl CoreMemCtrl_00;
#include CoreGPIO CoreGPIO_00;
include CoreTimer_lab CoreTimer_00;
#include CoreRemap CoreRemap_00;

subsystem.bfm
Explanation

System memory map –
Syntax:
resource_name base_address

Specifies which scriptlet to run and base
address for peripheral (see above for
address)
Here only CoreTimer_lab_scriptlet.bfm will
be executed; all others are commented out
Note that “_scriptlet.bfm” is not required

Execute CoreTimer_lab_scriptlet.bfm with base address 0xc4000000 for CoreTimer

Actel Corporation © 2009 221Introduction to Cortex-M1 v1.8

CoreTimer_lab_scriptlet.bfm
Explanation

write W VAR_resource 0x00 0x00000100; #write 0x00000100 to TimerLoad register
#load a starting count in the timer

readcheck W VAR_resource 0x00 0x00000100; #read TimerLoad register; expect 0x00000100
readcheck W VAR_resource 0x04 0x00000100; #read TimerValue register; expect 0x00000100
write h VAR_resource 0x0C 0x0001; #write 0x0001 to TimerPrescale register

#set counter clock rate (PCLK ÷ 4)
readcheck h VAR_resource 0x0C 0x0001; #read TimerPrescale register; expect 0x0001
write h VAR_resource 0x08 0x0003; #write 0x0003 to TimerControl register
readcheck h VAR_resource 0x08 0x0003; #read TimerControl register; expect 0x0003
poll b VAR_resource 0x014 0x01; #read TimerRIS register; wait until bit 0 = 1
read h VAR_resource 0x04; #read TimerValue register
write h VAR_resource 0x10 0x1234; #write TimerIntClr register to clear
interrupt

#any write value clears the interrupt
poll b VAR_resource 0x014 0x01; #read TimerRIS register; wait until bit 0 = 1
read h VAR_resource 0x04; #read TimerValue register
write h VAR_resource 0x10 0x1234; #write TimerIntClr register to clear
interrupt
poll b VAR_resource 0x014 0x01; #poll TimerRIS register; wait until bit 0 = 1
read h VAR_resource 0x04; #read TimerValue register
write h VAR_resource 0x10 0x1234; #write TimerIntClr register to clear
interrupt

Syntax:
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;

Actel Corporation © 2009 222Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Transcript Window

Actel Corporation © 2009 223Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

AHB write cycle – write 0x00000100 to CoreTimer TimerLoad register (0xc400000)
Initiated by readcheck W VAR_resource 0x00 0x00000100; in CoreTimer_lab_scriptlet.bfm

htrans = 10 (nonsequential cycle)

haddr = c4000000 (CoreTimer)

hburst = 001 (incrementing burst)

hsize = 010 (32 bits)

hwdata = 00000100

Actel Corporation © 2009 224Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

APB write cycle (yellow) – write 0x00000100 to CoreTimer TimerLoad register
Note that paddr = 0x000 – CoreAHB2APB strips off the upper 8 address bits and drives the appropriate PSEL

Address
phase

Data
phase

Actel Corporation © 2009 225Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

AHB read cycle – read CoreTimer TimerLoad register
Initiated by write W VAR_resource 0x00 0x00000100; in CoreTimer_lab_scriptlet.bfm

Actel Corporation © 2009 226Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

APB read cycle (yellow) – write 0x00000100 to CoreTimer TimerLoad register
Note that paddr = 0; prdata = 0x00000100

Actel Corporation © 2009 227Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

AHB idle cycle

Actel Corporation © 2009 228Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

AHB read cycle – read CoreTimer TimerValue register
Initiated by write W VAR_resource 0x04 0x00000100; in CoreTimer_lab_scriptlet.bfm

hready = 1 ends cycle hrdata = 00000100

Actel Corporation © 2009 229Introduction to Cortex-M1 v1.8

BFM Simulation
ModelSim Wave Window

APB read cycle (yellow) – write 0x00000100 to CoreTimer TimerLoad register
Note that paddr = 4; prdata = 0x00000100

