
2065-28

Advanced Training Course on FPGA Design and VHDL for Hardware
Simulation and Synthesis

Alexander Kluge

26 October - 20 November, 2009

PH ESE FE Division CERN
385, rte Mayrin CH-1211 Geneva 23

Switzerland

Starting to make an FPGA Project

Starting to make an
FPGA project

FPGA specifications
• How to make an FPGA?

– What should it do?
– How should it do it?

• Systems / Requirements define detailed implementation
scheme/architecture

• Specification need to be worked out before even one thinks
about the FPGA type or code.
– Specification: understand user needs
– define specification of system together with user/costumer

• re-discuss, re-negotiate
– understand
– task of designer to understand and translate specifications

FPGA specifications
• Costumer/boss says:

“I need a system which can calculate the value each
25 ns.”

• What you might understand is:
“The calculation needs to be finished within 25 ns”

• What he means is:
“A new value needs to be processed every 25 ns.
How long it takes to present the result does not
matter”

• First case: might be impossible, maybe not.
Second case: Processors in parallel or in pipeline

Adder
• Example:

– add 16 16-bit values in 25 ns

data0

data_int
(15 downto 0)

data1 data2 data3 data4 data5 data6 data7 data15

adder

sum(19 downto 0)

24
20

Adder

• 533 logic elements, 6%
• 278 pins, 74%
• 29.7 MHz => 33.6 ns

• 33.6 ns > 25 ns -> too slow

Adder
• 533 logic elements, 6%
• 278 pins, 74%
• 29.7 MHz => 33.6 ns

• 33.6 ns > 25 ns -> too slow

• Ask boss to buy faster, more expensive
FPGA

• Work (manually) on FPGA placing&routing
• Help synthesizer to make fater adder
• Ask whether you have understood

specification

FPGA specifications
• Costumer/boss says:

“I need a system which can calculate the value each
25 ns.”

• What you might understand is:
“The calculation needs to be finished within 25 ns”

• What he means is:
“A new value needs to be processed every 25 ns.
How long it takes to present the result does not
matter”

• First case: might be impossible, maybe not.
Second case: Processors in parallel or in pipeline

Pipeline architecture

Adder with pipeline
• Example:

– add 16 16-bit values every 25 ns

data0

data_int
(15 downto 0)

data1 data2 data3 data4 data5 data6 data7 data15

adder

sum(19 downto 0)

adder adder adder adder adder

reg reg reg reg reg

24
20

Adder with pipeline

• Adder with pipeline
• 526 logic elements, 6%
• 278 pins, 74%
• 45.4 MHz => 22 ns

• 22ns < 25 ns, fast enough
and less logic

• Adder without pipeline
• 533 logic elements, 6%
• 278 pins, 74%
• 29.7 MHz => 33.6 ns

FPGA specifications

• re-discuss, re-negotiate
– understand
– task of designer to understand and translate

specifications

Readout Processors

Read-out processors
• Specification

– Challenge - many parallel inputs –
25 ns intervall - short processing time

– Storage during trigger decision time

– Data reduction/encoding (zero suppression)

– pipelining, buffering (FIFO, dual port RAM)

Pixel detector

What do we need to know?

Dez. 11, 2007 A. Kluge

Silicon Sensor
Position resolution: 10 µm

light material: 1 % X0 oder 2 mm

Dez. 11, 2007 A. Kluge

Silicon Sensors

P. Riedler

p+

n-bulk
Vext

Dez. 11, 2007 A. Kluge

Silicon Pixel sensors

P. Riedler

Dez. 11, 2007 A. Kluge

Silicon Pixel Wafers

P. Riedler

silicon sensor
72.72 mm x 13.92 mm
200 µm thin
160 x 256 pixel
425 µm x 50 µm

Dez. 11, 2007 A. Kluge

Pixel read out chip
Time resolution: 25 ns

Repetition frequency: 40 MHz
Storage time: > 3.2 µs

Dez. 11, 2007 A. Kluge

Pixel chip

Sept 3-7, 2007 A. Kluge

Pixel detector

Image:INFN(Padova)

1 sensor

1 sensor

10 readout chips

Sept 3-7, 2007 A. Kluge

Pixel detector

Image:INFN(Padova)

1 sensor

1 sensor

10 readout chips

Pixel detector

00001000000000000000000000
00000000000000000100000000
00000000001000000100000100
00000000000000000000000000

Pixel detector
Full detector 120 x 2560 x 32 bits @ 10 MHz (100ns) =
~ 100 Gbits/s

Separate read-out for each detector module

Each detector module (10 chips) 1 x 2560 x 32 bits @ 10 MHz
00001000000000000000000000000000
00000000000000000100000000000000
00000000001000000100000100000000

Data funnel
Data generator

Data preprocessor

Data processor

Data merging

Data funnel
Data generator

Data preprocessor

Data processor

Data merging

1200 x 256 x 32 bits @ 10 MHz (100 ns) = ~100 Gbit/s

120 x 2560 x 32 bits @ 10 MHz (100 ns) = ~100 Gbit/s

60 x 2 x 2560 x 32 bits @ 10 MHz (100 ns) = 60 x 1.6 Gbit/s

20 x 6 x 2560 x 32 bits * 0.02 @ 10 MHz (100 ns) = 20 x 10 kbit/s

Read-out ASIC

Read-out
controller ASIC

Link receiver
FPGA

Router FPGA

Pixel detector

Data generator
2560 x 32 bits

00001000000000000000000000
00000000000000000100000000
00000000001000000100000100
00000000000000000000000000

Pixel detector

What is the strategy?

00001000000000000000000000
00000000000000000100000000
00000000001000000100000100
00000000000000000000000000
Some body counts values all the time, find out whether they can be divided by three, what to you do in real life? Include serial and
dpm

Pixel detector

serializer

de-serializer

FIFO
zero suppress & address decoder

dual port memory

channel multiplexer

channel1-5

Pixel detector

serializer

de-serializer

FIFO
zero suppress & address decoder

dual port memory

Pixel detector data processing
0 0 0 0 0 0 0 0 0 0 0 0 0

check if any hits

if no hits ->
load new value from FIFO

if 1 hit only ->
decode the hit &
request new value from FIFO

if more than one hit -> decode the hits

Pixel detector data processing
0 0 1 0 0 0 0 1 0 0 0 0 0

How to decode the address?
this line has two hits
the state machine must send two hits into the
dual port memory

hit position = 5

0123456781011..31

row address

hit position = 11row address

Pixel detector data processing
0 0 1 0 0 0 0 1 0 0 0 0 0

Do we know enough to start the project?
How do we encode the address?

hit position = 5

0123456781011..31

row address

hit position = 11row address

Pixel detector data processing

0 0 1 0 0 0 0 1 0 0 0 0 0

FIFO
read

parallelLoad
shiftEnable serialOutshiftRegister

countercntEnable

dual port memorywriteEnable

control

Position decoder – shift register

Position decoder – shift register

Position decoder – shift register – VHDL code

state machine
with case
statement

• Shift register is a parallel load register

Position decoder – shift register

0 0 0 0 0 0 0 0 1 1 0 1 0

0123456781011..31

"00001000001000001100000000011010"

Position decoder – shift register

Position decoder – shift register

Position decoder – shift register

0 0 1 0 0 0 0 1 0 0 0 0 0

Shift register & counter (if then)
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
81 out of 8320 logic elements
44 registers

11% (41/376) of pins

10.6 ns (94.5 MHz) position_count-> position_count

tco: 8.0 ns: data_word_reg -> data_word
tsu: 7.0 ns: new_value_available -> data_encode

0123456781011..31

Position decoder – shift register

0 0 1 0 0 0 0 1 0 0 0 0 0

Shift register & counter (case)
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
50 out of 8320 logic elements (with case statement)
44 registers

11% (41/376) of pins

9.1 ns (109.9 MHz) position_count-> data_encode

tco: 7.0 ns: data_word_reg -> data_word
tsu: 6.3 ns: new_value_available -> data_encode

0123456781011..31

Position decoder – shift register

• Task fulfilled?
– Few logic cells
– Timing constraints fulfilled

• User requirements fulfilled?
– Processing per 32 bit line takes:

• 32 bits * 25 ns = 800 ns
• Data comes each 100 ns -> 1 out of 2560 32 bit line
• Decoding time for all lines is: 2560 * 800 ns => 2 ms
• Within 2 ms => 20480 data lines arrive

– input FIFO would need to be at least 20k * 32 bit deep
• During 2 ms no other trigger acquisition can take place

– dead time => max trigger rate: 488 Hz
• User requirements not fulfilled

Position decoder – priority encoder

0 0 1 0 0 0 0 1 0 0 0 0 0

How to decode the address?
this line has two hits
the state machine must send two hits into the dual port
memory

hit position = 5

0123456781011..31

row address

hit position = 11row address

Position decoder – priority encoder

1 1 0 1 1 1 1 1 1 1 1 1012345678910..31

0 0 1 0 0 0 0 1 0 0 0

FIFOread

load register

priority encoder

address decoder

control
012345678910..31

10

1

1 1

mux

dual port memorywriteEnable

sel

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder –
priority encoder

0 0 1 0 0 0 0 1 0 0 0 0 0

Priority encoder
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
172 (out of 8320) logic elements
33 registers

addressDecoder: 16
prior32: 54

11% (41/376) of pins

20.8 ns (48.0 MHz) data_encode -> state_encoding

tco: 17.1 ns:data_encode -> data_word
tsu: 14.9 ns:new_value -> state_encoding

0123456781011..31

Position decoder –
priority encoder

0 0 1 0 0 0 0 1 0 0 0 0 0

Priority encoder
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
172 (out of 8320) logic elements -> more logic cells
33 registers

addressDecoder: 16
prior32: 54

11% (41/376) of pins

20.8 ns (48.0 MHz) data_encode -> state_encoding
-> slower state machine, but faster processing
tco: 17.1 ns:data_encode -> data_word
tsu: 14.9 ns:new_value -> state_encoding

0123456781011..31

Position decoder – priority encoder

• Task fulfilled?
– Many logic cells
– FPGA Timing constraints fulfilled

• User requirements fulfilled?
– Processing per 32 bit line takes:

• numbHits per line * 25 ns = ?
• Data comes each 100 ns -> one out of 2560 32 bit line
• Decoding time for all lines is: 2560 * ? ns => ? ms
• Within ? ms => ? data lines arrive

– input FIFO would need to be at least ? * 32 bit deep
• During ? ms no other trigger acquisition can take place

– dead time => max trigger rate: ? Hz
• User requirements fulfilled ?

Position decoder – priority encoder

• Task fulfilled?
– Physics simulation:

• max 2% of all pixels will be hit in one acquisition
• User requirements fulfilled?

– Processing per 32 bit line takes:
• (numbHits per line) * 25 ns = (32 * 0.02) * 25 ns = <25 ns
• Data comes each 100 ns -> one out of 2560 32 bit line
• One line with up to 4 hits can be decoded before the next line

arrives
• Input FIFO of 1000 * 32 bits implemented to buffer statistical

fluctuations or calibration sequences
• Dead time defined by transmission of data stream

– 2560 lines each 100 ns => 256 µs => 3900 Hz
– dead time => max trigger rate: 3900 Hz

• User requirements fulfilled: yes

Position decoder – priority encoder

0 0 1 0 0 0 0 1 0 0 0 0 0

Priority encoder
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
172 (out of 8320) logic elements -> more logic cells

20.8 ns (48.0 MHz) data_encode -> state_encoding
-> slower state machine, but faster processing

Slower and more logic can mean more elegant and effective

0123456781011..31

Position decoder – priority encoder

• User requirements fulfilled: yes
• Can we do better?
• Can we do faster or with less logic?
• Do we know something which the synthesizer

does not know?

Position decoder – priority encoder

Position decoder – priority encoder

• Knowledge of implementation in target
technology is important

• Knowledge of what the synthesizer is
doing is important

Processor board with optical inputs
• 12 channels

– Parallel optical receiver
module

– 12 closely packed G-link
deserializer ASICs

