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A Walk Through the Nitrogen Cycle (part 2)
Nitrogen Isotopes:  Tracer and Natural Abundance Studies

(and what they tell us about Nutrient Cycles and Food Webs) 
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Plan for Today
• Marine N cycle

– N distribution and N:P stoichiometry
(Capone did a lot of this)

– Oceanic N budget (some today, more on Friday)
• Rate measurements

– Kinetics
– Mechanics and examples

• Stable isotopes
– N (and C) isotope biogeochemistry
– N2-fixation and bulk isotopic signatures
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Conveyer Belt

UN Environment Programme
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PO4
3- on 3000 m Horizon

Data Source:  World Ocean Atlas 2001.  Figure prepared with ODV
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NO3
- on 3000 m Horizon

Data Source:  World Ocean Atlas 2001.  Figure prepared with ODV
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Global Ocean NO3
- & AOU Section

Data Source:  World Ocean Atlas 2001.  Figure prepared with ODV

Atlantic Pacific
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N-Cycle as a Redox Web

(Modified from Codispoti 2001and Liu 1979)
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Oceanic Nitrogen Budget Estimates

N Budget Terms 
(Tg N y-1 = 1012 g N y-1) 

1970 
(Delwiche)

1979 
(Liu) 

1985 
(Codispoti & 
Christensen) 

1997 
(Gruber & 
Sarmiento) 

2007 
(Codispoti)  

Inputs      
atmospheric 4.1 49 40 15 30 
runoff 30 17 25 41 78 
N2-fixation 10 30 25 125 135+++ 
Total Inputs 44.1 96 90 181 

 
243 

 
Outputs      
pelagic denitrification 40 50 60 85 150++ 
sedimentary denitrification 0 10 60 85 300+ 
burial & other 0.2 36 38 19 25 
Total Outputs 

(net balance) 
40.2 96 158 

(-68) 
189 475 

(-232) 
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Who Cares?
• Broad reaches of the ocean are N-limited.

– Recycling of N within the water column supports 
biological production, but…

– Injection of new N into the upper water column is 
required to support export production.

• The N and C cycles are tightly coupled through 
biological production of organic matter (C:N ≈ 7).

• N2-fixation plays a key role in regulating the 
global C cycle and we still don’t how much N2-
fixation is occurring in the ocean, who’s doing it, 
and where!
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NH4
+

New vs. Regenerated Production 

modified from http://www.up.ethz.ch/research/nitrogen_cycle/index

Biological
Pump
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North Atlantic Nutrient Ratios

Data:  eWOCE.  Plot prepared with ODV

N:P ~ 16:1

Si:P is complicated
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R/V Seward Johnson
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Nutrient Uptake
• Uptake generally involves an active transport system and 

typically shows saturation kinetics.  
• Measuring uptake

– Substrate disappearance
– 15N tracer studies
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Nutrient Uptake Kinetics:  M-M

• Michaelis-Menten equation
– V = specific uptake rate (t-1)

Vmax = maximal uptake rate
S = substrate concentration
Ks = half satn concentration

– Saturation behavior with asymptotic 
approach to Vmax.

– Ks provides a rough measure of the 
affinity of the uptake system for the 
substrate.

– Lineweaver-Burke transform:
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M-M and L-B Plots for  Nutrient Uptake

Valiela Fig. 2.16

• Michaelis-Menten (M-M) 
and Lineweaver-Burke (L-B) 
plots for uptake of ammonium, 
nitrate, and silicate.  

• The x-intercept of the L-B 
plot provides an estimate of -
Ks

• How realistic are the 
concentrations used in these 
experiments?
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Nutrient Uptake Kinetics:  Monod

• Monod equation
– µ = specific growth rate (t-1)

µmax = maximal growth rate
S = substrate concentration
Kµ = half satn concentration

– Describes dependence of growth, 
not uptake, on substrate availability.

– In general, Kµ ≠ Ks

Miller Fig. 3.11
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Nutrient Uptake Kinetics:  Droop

µ vs. Q for Thalassiosira pseudonana.

Valiela Fig. 2.19

• Droop equation
– µ = specific growth rate (t-1)

µ = growth rate when Q 
is very high

KQ = minimum viable quota

– Generates a nicely hyperbolic 
relationship for nutrients with a large 
range of Q (B12, P, Fe all show 30 -
100x variation).

– Does less well in describing growth 
on nutrients for which Q is less 
variable (N and Si show only about 
5x variation).
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Step Back to the Big Picture:
N* Distribution Shows Interplay Between N2-Fixation and Denitrification

N* = 0.87( [NO3
-] - 16[PO4

3-] + 2.9)    (Gruber & Sarmiento 1997)
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Trichodesmium:  the usual suspect
• Diazotrophs, including Trichodesmium, are broadly distributed 

in nutrient poor oceanic waters, but their contribution to the 
marine N budget remains poorly constrained.

Trichodesmium puffs 
(above) and tufts (right).
Photos by Hans Paerl.

Trichodesmium
blooms from aboard 
ship (left) and from 
space (below).
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Hunting Trichodesmium
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Trichodesmium
Rate Measurements
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Trichodesmium:  NO3
- Uptake and N2-Fixation

(Holl and Montoya, 2005.  J. Phycol. 41:  1178-1183.)
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Diazotroph Diversity

(Images courtesy R. Foster)

(Zehr et al., 2001.  Nature 412)?
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CTD-Rosette
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• 15N2-fixation measures net 
incorporation of N2 into 
organic matter.

• Parallel studies (Zehr Lab) 
quantify the diversity of 
diazotrophs (nifH DNA) 
and their pattern of 
activity (nifH mRNA).

Experimental Approach
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15N2- 13C-Fixation Experiments
• Prefilter water through 110 µm Nitex.  
• Add 15N2 and NaH13CO3

• Incubate
• Filter (10 µm prefilter)
15N2 → 15N-PON
13C-HCO3

- → 13C-POC
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Cook-25:  Volumetric 15N2-Fixation Rates

(Montoya et al., 2004.  Nature 430:  1027-1031)
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EW9912:  Volumetric 15N2-Fixation Rates

(Montoya et al., 2004.  Nature 430:  1027-1031)
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KM0703 Areal N2-Fixation RatesAreal Rate ( µmole m-2 d-1)
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Areal Rates of  N2-Fixation
Location/System Dates Areal Rate 

(µmol N m-2 d-1)
SE  N 

Station ALOHA 2000 Š 2001 66 19 7 

Kaneohe Bay 2000 Š 2002 24 6 12 

Eastern North Pacific Gyre Jun Š Jul 2002 505 165 10 

Timor - Arafura Š Coral Seas Nov 1999 126 47 7 

Arafura Sea (Stations 26 & 27) Nov 1999 3955  2 

Trichodesmium (range) 1964 - 2001 35 - 283   

Richelia/Hemiaulus (bloom) Oct 1996 3110   

 KM0703 (range) Mar - Apr 2007 50 Š 5300   

(Refs in Montoya et al., 2004.  Nature 430:  1027-1031)
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• Experiment G6
– Water collected outside 

Kaneohe Bay, Hawaii.
– Time-series of nifH

expression (mRNA) and 15N2-
fixation measurements.

• Major Results
– N2-fixation rate relatively 

constant through the diel
cycle.

– Groups A and B show very 
different expression patterns 
with inverse phasing through 
the light cycle.

Rate & Molecular Data

(Zehr et al., 2007.  L&O 52:  169-183)
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• Eastern Tropical Atlantic
– Measurable N2-fixation below the 

mixed layer in the presence of 
substantial nitrate.

(Voss et al. 2004, GRL 31)

Controls on N2-Fixation

NO3
NFix

• South China Sea
– N2-fixation highest at low 

salinity, which may reflect inputs 
of nutrients, Fe, organic matter, 
etc. from the Mekong.

(Voss et al. 2006, GRL 33)
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Tropical Rivers and N2-Fixation
• Differential consumption, remineralization, and 

mobilization of N, P, and Fe modify the nature and 
degree of nutrient limitation in the river plume.

• Different regions/water masses in and around the 
plume are characterized by different patterns of 
nutrient/metal limitation and distinct plankton 
assemblages.

• Changes in nutrient and trace metal loading due 
to land-use and climate changes will likely alter 
patterns of nutrient limitation in coastal waters.   
(e.g., Mekong, Yangtze, Mississippi…)
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Stable Isotope 
Natural Abundance Approaches
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Basic Stable Isotope Terminology

• X = 15N or 13C
• R = isotope ratio (15N:14N or 13C:12C)
• Standard = atmospheric N2 or PDB
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Isotopic Fractionation
• Many reactions 

discriminate against 
the heavy isotope 
(15N, 13C)

• In a closed system, 
this will generate 
predictable changes in 
isotope abundance in 
the substrate and 
product pools.
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Biological Processes and δ15N of NO3
-
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In general, δ15N scales with trophic position …

(Minagawa and Wada, 1984, GCA) (Fry and Sherr, 1984, Contrib. Mar. Sci.)
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… but δ15N also reflects source contrasts
• N2-fixation can (potentially) alter the isotopic 

composition of oceanic fixed N. 
– N2-fixation produces combined N with a low δ15N 

(~-2‰).
– This contrasts sharply with the typical δ15N of 

deepwater nitrate (~ 4.5 to 6‰).
• In oligotrophic waters, N2-fixation injects 

isotopically depleted N into the upper water 
column, lowering the δ15N of the ecosystem. 
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N Isotopes in the 
Upper Water Column

• Subsurface NO3
- has δ15N ~ 4.5‰

• N2-fixation produces organic 
matter with a  low δ15N (~ -2‰)

• The δ15N of organic matter in the 
upper water column is pulled in 
opposite directions by upwelled
NO3

- and in situ N2-fixation.
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Plankton 
Nets
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North Atlantic Nutrient Ratios and Isotope Budgets

• Contours show N* on σΘ=26.5

(Figure courtesy Nicky Gruber)(Data: Montoya et al., 2002.  Limnol Oceanogr. 47:  1617-1228)



Georgia Tech Biological Oceanography

Gulf of Mexico:  Diazotroph Contribution to Zooplankton

(Holl et al., 2007.  Limnol Oceanogr. 52:  2249-2259))
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Gulf of Mexico:  Isotope Cross-Plot

(Holl et al., 2007.  Limnol Oceanogr. 52:  2249-2259))
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MOCNESS



Georgia Tech Biological Oceanography

SJ0005:  PN Section

Jason Landrum, in prep
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SJ0005:  PN Section
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SJ0005:  Zooplankton

Jason Landrum, in prep
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Gruber & Galloway, 2008, Nature

Biogeochemical “Gears”Fluxes in Tg N y-1
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Sewage Produces an Isotopic Signature in PN

Nearfield Farfield

δ15N of NH4+

δ15N of PN (with losses)

δ15N of PN (no losses)

Initial δ15N of sewage DIN
and average marine N

A

DistanceOutfall
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The Isotopic Signature of PN 
Propagates into Zooplankton

Nearfield Farfield

δ15N of zooplankton

δ15N of PN (with losses)

B

Initial δ15N of sewage DIN
and average marine N

DistanceOutfall
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Massachusetts Water Resources Authority Outfall

New MWRA Outfall
• Operational in Sep 2000
• Sewage transported 

through a tunnel to a 
diffuser field outside 
Boston Harbor.

(Fig. Courtesy MWRA)
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Center for Coastal Studies Survey Stations 

GMT 2003 Apr  4  (jpm)

71Þ00'W

71Þ00'W

70Þ30'W

70Þ30'W

70Þ00'W

70Þ00'W

41Þ30'N 41Þ30'N

42Þ00'N 42Þ00'N

42Þ30'N 42Þ30'N

10 km

Outfall
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Baseline Isotopic Composition of Sewage
• Deer Island Effluent (Primary Treatment)

Samples collected Nov 1994 – Dec 1995.
– Mean δ15NH4

+ = 7.2  ± 0.7 ‰
Range:  6.1 to 8.3‰ (N=9, Sheats 2000)

• Deer Island Effluent (Secondary Treatment)
Samples collected Feb 1999 to Mar 2001 and 
analyzed at the BU Stable Isotope Lab. 
– Mean δ15NH4

+ = 6.1 ± 0.2‰
Range:  5.0 to 7.7‰ (N=18)

– Oct 1999 outlier: Mean δ15NH4
+ = 23.6  ± 1.2 ‰
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Survey:  Summer 2001
δ15N of samples collected between 28 
July and 4 August 2001 (cruises 
SW216, SW217, and SW220) as a 
function of distance southward from the 
outfall along the mean flow path 
through Massachusetts Bay and into 
Cape Cod Bay.  A smoothed trend line 
is shown for each data set.  

A: zooplankton from the 250 – 500 µm 
size fraction (circles) and zooplankton 
from the 500 – 1000 µm size fraction 
(squares).  

B:  Surface particulate nitrogen (open 
circles) and deep particulate nitrogen 
(filled circles).



Georgia Tech Biological Oceanography

Estimated Contribution of Sewage to PN
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Summary of Previous Isotopic Measurements

ε = 10‰

Estimated Contribution of Sewage to Zooplankton
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Thanks for Listening!


