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Introduction

The effect of fishing activities on marine populations dynamics is
currently approximated by the mean of theoretical fisheries models.
Models representing the evolution of a stock exploited, are divided
in two groups: global models and structured models.

Global models (Clark et al.).

Structured models (Armsworth et al, Alonzo et al, R.R
Warner et al.).

Our work consists on the study of a structured model representing
the grouper population and we try to find an optimal policy of the
fishing problem.
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Species biology

Some marine fish change from male to female and others change
from female to male; these fish are called hermaphrodites.
Protogynous hermaphrodites are those in which, individuals begin
life as females and subsequebtly become males.
Grouper are protogynous hermaphrodite because they can produce
successively female and then male gametes 9Sadovy et al, R.R
Warner).
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After fecundation, the fertilized egg remains in the plankton
until it hatches to let the larva out. Then each larva goes
down to the bottom of the sea and occupies a small hole, its
shelter.

In spring, when the water warms up, the larva can reach 10
cm in length and thus passes from the larva class to the
immature adult class.

The young grouper is females, immature up to 5 years. The
time to move from the class of immature adults to the class of
females is 4 years.

The mechanism of sexual inversion occurs between 9 and 16
years old.
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Demographic model

We subdivide the population into 4 classes according to the length
of the individual:

Larva,

Immature adults,

Female

Male.

Let ni (t) be the number of individuals in the class i (i = 1, . . . , 4)
at time t and Nt = (n1(t).., n4(t))

T the vector which describes the
number of individuals in each class at time t.
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Reproduction

The reproduction rate is calculated by taking the ratio of the total
number of living immatures at birth by the average number of
fertilized females for a given year. Reproduction rate depends on
the number of eggs produced per year and on the survival rate
from the state eggs to the youthful grouper.
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Mortality

Mortality, or mortality rate, is the number of annual deaths
reported to the number of individuals in a given territory.
The eggs and larvae suffer from a predation pressure, leading to a
high death rate.
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Dispersion

There are two types of dispersion:

A dispersion which affects larvae due to physical and chemical
environmental conditions (water currents, wind, nature of
water). larvae suffer from a predation pressure, leading to a
high death rate, immature adults leave to go and occupy free
shelters in nearby territories, but adults have very few
predators because of their size, they sedentary.

A juvenile dispersion due to the competition for shelter.The
outcome of the shelter competition between two groups is
always in favor of the older group and leads immature adults
to completely leave the area.
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The diagram of the model
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Figure: Conceptual diagram of the Grouper population
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The diagram of the model

parameters definition

si : The survival rate of the class i .

ti , i + 1: The transition rate of individuals from the class i to
the class i + 1.

mi : The natural mortality of individuals of the class i, we have
(mi = 1− si − ti , i + 1)

.ki : The rate of the remaining individuals in the class i after
dispersion.

K2: The function giving the rate of remaining immatures after
dispersion. We have

K (n2, n3, n4) =
T − t23n2 − (s3 + t34)n3 − s4n4

T

This function is density dependent, it gives the rate of
remainder immature adults after dispersion.
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Mathematical model

When we have a no fishing territory, the model is:

Nt+1 = M(n2, n3, n4)LNt

L: The density dependent matrix associated to the demographic
process.
M(n2, n3, n4): The density dependent matrix associated to the
dispersal process.

L =

⎛
⎜⎜⎝

s1 0 f 0
t12 s2 0 0
0 t23 s3 0
0 0 t34 s4

⎞
⎟⎟⎠ , and

M(n2, n3, n4) =

⎛
⎜⎜⎝

k1 0 0 0
0 K2(n2, n3, n4) 0 0
0 0 k3 0
0 0 0 k4

⎞
⎟⎟⎠ .
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The final model is:
⎧⎪⎪⎨
⎪⎪⎩

n1(t + 1) = k1s1n1(t) + k1fn3(t)
n2(t + 1) = K2(n2, n3, n4)t12n1(t) + K2(n2, n3, n4)s2n2(t)
n3(t + 1) = k3t23n2(t) + k3s3n3(t)
n4(t + 1) = k4t34n3(t) + k4s4n4(t)

(1)
Such that :

∀i = 1...4; ni (0) = ni ,0
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Mathematical model

Let H(t) = (h1(t), ..., h4(t))
′ the vector which describes the

number of individuals captured by fishing. The complete model is :

N(t + 1) = MLN(t)− H(t) (2)

Where, For all i=1...4,

hi (t) = qiEi (t)ni(t)

(Beverton Holt)
Ei (t) is the fishing effort( vessels number) between t and t + 1 and
qi the catchability, it is the capture probability per unit of effort.



DR
defaultOutlines Introduction Model construction Optimisation problem Maximum principle Disscussion

Optimisation principle

The system (3) is thus expressed by:

⎧⎪⎪⎨
⎪⎪⎩

n1(t + 1) = k1s1n1(t) + k1fn3(t)− q1E1(t)n1(t)
n2(t + 1) = K2t12n1(t) + K2s2n2(t)− q2E2(t)n2(t)
n3(t + 1) = k3t23n2(t) + k3s3n3(t)− q3E3(t)n3(t)
n4(t + 1) = k4t34n3(t) + k4s4n4(t)− q4E4(t)n4(t)

(3)

Let π(Nt ,Ht) the total net revenue in the period t:

π(Nt ,Ht) = pH(t)− cE (t) = (pqN(t)− c)E (t)

Thus we have :
π(Nt ,Ht) = (p1q1n1(t)− c1)E1(t) + (p2q2n2(t)− c2)E2(t)+

(p3q3n3(t)− c3)E3(t) + (p4q4n4(t)− c4)E4(t).
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The total discounted net revenue on an infinite horizon derived
from the exploitation of the resource is given by:

J(E1(t),E2(t),E3(t),E4(t)) =

∞∑
t=1

αt−1π(Nt ,Ht)

Where α > 0 the constant denoting the rate of discount. Thus, we
have :
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Our goal is the maximization of the total revenue. Moreover, we
assume that we can act on the fishing effort E . Then, we face the
following control problem :

max
E1,E2,E3,E4

J(E1(t),E2(t),E3(t),E4(t)) (4)

Such that (3) is verified and the controls Ei are constrained:

∀i = 1...4;Ei ,min ≤ Ei (t) ≤ Ei ,max ,∀t ≥ 0 (5)
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Why we use the maximum principle?

General objective

The aim is to maintain the system state fisheries around a point of
operation n∗ (threshold point or equilibum point) by ensuring a
sustainable development of the resource and ensuring at the same
time a maximization of fishing revenues by using an optimal
control. This control has to minimize or to maximize the efforts of
fisheries around this point so as to ensure a conservation of the
population and a stable income.
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Maximum principle

The maximum principle is formulated in terms of the following
expression called the Hamiltonian:

H(t) = αt−1π(Nt ,Ht) + λ(t)(MLN(t)− H(t)) (6)

Where λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t))
T is the additional

unknown function called the adjoint variable.
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Resolution steps

Define the Hamiltonian

Use the equation∀i = 1...4; ∂H
∂λi

= 0 to find a expression of λi .

Use the equation λi(t)− λi(t − 1) = − ∂H(t)
∂ni (t)

.

Make the equality between the two equations to find a
solution of the problem.
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The maximum principle asserts the following equation:

∀i = 1...4;
∂H

∂λi

= 0

Thus we have :
⎧⎪⎪⎨
⎪⎪⎩

αt−1(p1q1n1 − c1)− λ1(t)q1n1 = 0
αt−1(p2q2n2 − c2)− λ2(t)q2n2 = 0
αt−1(p3q3n3 − c3)− λ3(t)q3n3 = 0
αt−1(p4q4n4 − c4)− λ4(t)q4n4 = 0

(7)
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We deduce from (8) that:

λi(t) = αt−1(pi −
ci

qini

),∀i = 1, . . . , 4 (8)

And consequently :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1(t)− λ1(t − 1) = (αt−1 − αt−2)(p1 −
c1

q1n1
)

λ2(t)− λ2(t − 1) = (αt−1 − αt−2)(p2 −
c2

q2n2
)

λ3(t)− λ3(t − 1) = (αt−1 − αt−2)(p3 −
c3

q3n3
)

λ4(t)− λ4(t − 1) = (αt−1 − αt−2)(p4 −
c4

q4n4
)

(9)

Then, we use the adjoint equation:λi (t)− λi(t − 1) = − ∂H(t)
∂ni (t)
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We obtain the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(t)− λ1(t − 1) = −αt−1p1q1E1 + αt−1(
c1

q1n1
− p1)(k1s1 − q1E1)+

αt−1(
c2

q2n2
− p2)K2(n2, n3, n4)t12 − αt−1 c1

q1n2
1

(k1s1n1+

k1fn3 − q1E1n1).

λ2(t)− λ2(t − 1) = −αt−1p2q2E2 + αt−1(
c2

q2n2
− p2)(−t23t12n1 − t23s2n2+

K2(n2, n3, n4)s2 − q2E2) − αt−1 c2
q2n2

2

[K2(n2, n3, n4)t12n1+

K2(n2, n3, n4) − q2E2n2] + αt−1(
c3

q3n3
− p3)k3t23.

λ3(t)− λ3(t − 1) = −αt−1p3q3E3 + αt−1(
c1

q1n1
− p1)k1f + αt−1(

c2
q2n2

− p2)(−s3−

t34)(t12 + s2n2) − αt−1 c3
q3n2

3

(k3t23n2 + k3s3n3 − q3E3n3)+

αt−1(
c3

q3n3
− p3)(k3s3 − q3E3) + αt−1(

c4
q4n4

− p4)k4t34.

λ4(t)− λ4(t − 1) = −αt−1p4q4E4 + αt−1(
c2

q2n2
− p2)s4 − αt−1 c4

q4n2
4

(k4t34n3+

k4s4n4 − q4E4n4) + αt−1(
c4

q4n4
− p4)(k4s4 − q4E4).

(10)
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Making the equality between the two systems (13) and (14), we
obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(αt−1
− αt−2)(

c1
q1n1

− p1) = αt−1(−p1k1s1 + (
c2

q2n2
− p2)K2(n2, n3, n4)t12−

c1
q1n2

1

k1fn3)

(αt−1
− αt−2)(

c2
q2n2

− p2) = αt−1((
c2

q2n2
− p2)(−t23t12n1 − t23s2n2)−

K2(n2, n3, n4)[p2s2 −
c2t12n1

q2n2
2

] + (
c3

q3n3
− p3)k3t23)

(αt−1
− αt−2)(

c3
q3n3

− p3) = αt−1((
c1

q1n1
− p1) + (

c2
q2n2

− p2)(−s3 − t34)(t12n1+

s2n2) −
c3

q3n2
3

k3t23n2 − p3k3s3 + (
c4

q4n4
− p4)k4t34)

(αt−1
− αt−2)(

c4
q4n4

− p4) = αt−1((
c2

q2n2
− p2)(t12n1 + s2n2)s4 −

c4
q4n2

4

k4t34n3−

p4k4s4)

(11)
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we have:

n∗3(n4) =
(α− 1− αk4s4)p4q4n

2
4 + (1− α)c4n4

αc4k4t34
(12)

n
∗

4 (n2, n3) =
αc4q3n2

3

[(1 − α)p3 + p3k3s3 + αp4k4t34]q3q4n2
3 + (1− α)c3q4n3 + αq4c3k3t23n2

(13)
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Optimal control of fishing

Theorem

Let the couple {n3, n4} satisfies (4), then the optimal policy of the
fishing problem is given as following:

1 If n3 > n∗3(n4) then the optimal strategy is E ∗3 = Emax
3 .

2 If n3 < n∗3(n4) then the optimal strategy is E ∗3 = Emin
3 .

3 If n4 > n∗4(n2, n3) then the optimal strategy is E ∗4 = Emax
4 .

4 If n4 < n∗4(n2, n3) then the optimal strategy is E ∗4 = Emin
3 .
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Optimal control of fishing
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Disscussion and Conclusion

1 Let n3 > n∗3(n4), then we have an important biomass of
females. Then, in order to have considerable fishing revenues,
we must maximize the fishing effort, then E ∗3 = Emax

3 .

2 Let n3 < n∗3(n4), then we have a minor amount of females and
the population is threatened. Thus, in order to preserve it, we
must stop fishing this stage. Thus E ∗3 = 0.

3 Let n4 > n∗4(n2, n3),. Thus, we must maximize the fishing
effort in order to ensure a important income, then E ∗4 = Emax

4 .

4 If n4 < n∗4(n2, n3), then the population is in danger. So, it is
prohibited to capture this stage. Then E ∗4 = 0.

5 Finally, if n3 > n∗3(n4) and n4 > n∗4(n2, n3), then the biomass
of both males and females is broad and important. The
optimal control consists of holding (E ∗3 ,E ∗4 ) = (Emax

3 ,Emax
4 ).
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It is easy to verify that

n∗3 = A1p4 + B1

and

n∗4 =
A2

B2p3 + C2p4 + D2

with A1, A2, B1, B2, C2 and D2 are strictly positive constants.
We remark that, at fixed costs, n∗3 depends linearly on p4, thus n∗3
is proportional to the price of males p4. But n∗4 is inversely
proportional to both p3 and p4.
On the other hand, if the price and the cost are are linearly
proportional, i.e p4 = ap3 and c4 = bc3 where a > 0 and b > 0
then we have

n∗3 = E (
p3

c3
) + F

and

n∗4 = (
G

H
(
p4

c4
) +

I

H
)−1
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ñ
∗ 3

p4=1

p4=5

p4=10

p4=15

(c) Curve of the func-
tion n

∗

3 (p3) for different
values of p4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

p3

ñ
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Conclusion and Perspectives

Indeed, the grouper fishery is particularly difficult to protect,
the slow development of grouper to sexual maturity means
that rebuilding a population could take years.

The effect of fishing on protogynous populations are difficult
to measure without very complete information on the
reproductive patterns, sex ratios, and other biological aspects
of fish stocks.

It would be interesting to study the impact of the creation of
marines reserves on the dynamics of the hermaphrodite
population.

It is also interesting to study the effect of climate change on
the dynamics of these hermaphrodite populations.
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