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The color of the ccs=an is recorded by a satellite sensor by measuring the “remots I — E—
sensing reflectancs (R,)" at specific wavelengths. R, is the ratio of light leaving the Wavelength {nm}
waater (L) to the light incident on it (E;) and is determined by the asorption (@ and . e , .
backscattering by of light in the water column R, = L, J/Ey @ byla + by). Figure 1 Oplical characteristics of the picocyanobacteria BS4 and BS5. Monocu llures of

BS4 (a) and BS5 (¢} grown in chemostats, and the light absorption spectra of BS4 (b) and
BSS (d).
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* The use of remote sensing, ocean optics,
knowledge of phytoplankton physiology,
biological and physical oceanography and

geographical information systems to better
understand and manage the coastal marine
ecosystem
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* Once placed 1n service, satellites provide
regular, regionally synoptic data that can
complement conventional shipboard
surveys by filling the gaps between surveys.

Satellite based sensors can be a very cost
effect method for collecting environmental
data.

Remote sensing techniques can be used to
monitor coastal water quality




*Regional synoptic data can help distinguish
between nearfield and farfield effects and
separate local production from that advected into
the region.

eSatellite sensors can also be a continuous source
of information for decadal scale monitoring of

the dynamics of natural and anthropogenic
changes 1n the ecosystem, often providing
baseline data for “before” and “after” conditions.

*We will go over the basic principles of bio-
optics to understand and interpret satellite data
and how to validate 1t with field data




A term project for the final class grade that
would require the processing, analysis, display,
and interpretation of ocean color data.

The students will form two person teams for a
total of six projects

Come up with 1deas for projects that have a
clear application and validation datasets
needed for it.
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Pre-Dreissena Post-Dreissena Post-Dreissena . . . .
Spatial and temporal trends in the data indicate

distinct and persistent increases in water
clarity in the inner bay after the first large
; recruitment of zebra mussels in the fall of
¥ 1991. The pre-Dreissena imagery show that

a)19May91 b) 19May92 c) 10May93

e,
e i turbidity in the inner bay was influenced by the
o Saginaw River discharge in spring,
phytoplankton in summer, and wind-driven
resuspension in fall. Spatial patterns in the
post-Dreissena images were more similar
regardless of season, with low reflectances in
the shallow regions of the inner bay where
zebra mussel densities were highest.

Budd et al. 2001 Limnol. Oceanogr., 46(2),

i) 17Aug93 213-223.
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Hot Button Issues in Coastal Zone

Water quality/ human health
Hypoxia

HABs

Invasive species

Fish farms

Dredging

Climate change/ Greenhouse gases
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Fig. 7. Depths from the three methods and “true-color™ water reflectance for central Kure: (A) ratio. (B) linear. (C) true-color. and (D)
lidar. The lidar swaths are 200 m wide and marked on each image. Depths are shown in meters with scale bar at lower right. The box (at
upper right in each image) marks a patch reef of low reflectance. IKONOS imagery courtesy of Space Imaging.




Deer Island #29,627 May 26, 2000
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What 1s ocean color?

Remote sensing of the visible part of the
electromagnetic spectrum
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What 1s ocean color?

Remote sensing of the visible part of the
electromagnetic spectrum
AVHRR 1979 — present (~ lkm,
SPOT 1986 — present (20m, 500-590, 610-680)
Landsat

— MSS 1972-1983 (30m, 500-600, 600-700)
— TM 1982-present (30m, 450-520, 520-600, 630-690)

GOES 1975 — present (~1 km, 550-750)
Meteosat 1977 — present (2.4 km, 400-1100, 570-710)
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The color of the cc=an is recorded by a satellite sensor by measuring the “remots
sarsing reflectancs (R)" at specific wavelengths. R, is the ratio of light leaving the
water (L) to the light incident on it (Ey) and is determined by the dwsorption (@ and
backscattering by of light in the water column R, = L JEr = byfa + by).




Historical Ocean-Color Sensors

Agency

Satellite

Operating

Dates

Swath
(km)

Resolution

(m)

# of
Bands

Spectral
Coverage
(nm)

CZCS

NASA
(USA)

Nimbus-7
(USA)

10/24/78-
06/22/86

1556

825

433-12500

MOS

DLR
(Germany)

IRS P3
(India)

03/21/96-
05/31/04

200

500

408-1600

OCTS

NASDA
(Japan)

ADEOS
(Japan)

08/17/96-
07/01/97

1400

700

402-12500

Polder

CNES
(France)

ADEOS
(Japan)

08/17/96-
07/01/97

2400

6000

443-910

CMODIS

CNSA
(China)

Shen
Zhou-3

03/25/02-
09/15/02

400

403-12500

CZ1

CNSA
(China)

Hai Yang-
|

05/15/02-
12/01/03

250

420-890

GLI

NASDA
(Japan)

ADEOS II
(Japan)

12/14/02-
10/25/03

250/1000

375-12500

Polder 11

NASDA
(Japan)

ADEOS II
(Japan)

12/14/02-
10/25/03

6000

443-910




Current and Future Ocean-Color Sensors

Agency

Satellite

Operatin
g Dates

Swath
(km)

Resolution

(m)

# of
Bands

Spectral
Coverage
(nm)

OrbView-2
(USA)

08/1997

2806

1100

402-885

ROCSAT-1
(Taiwan)

01/1999

690

825

433-12500

IRS-P4
(India)

05/1999

1420

350

402-885

KOMPSAT
(Korea)

12/1999

800

850

400-900

MODIS

12/1999

2330

1000

405-14385

Envisat —1

(Europe)

03/2002

1150

300/1200

412-1050

MODIS

05/2002

2330

1000

405-14385

HaiYang-1
(China)

05/2002

1400

1100

402-12500




Trichodesmium colonies







Tricho slick

TR




Space shuttle photo
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Earth at Night Astronomy Picture of the Day
More information available at: 2000 November 27
http://antwrp.gsfc.nasa.gov/apod/ap001127.html http://antwrp.gsfc.nasa.gov/apod/astropix.html







“The 27 of January, at the entrance of the vast Bay of Bengal ..., about
seven o’clock in the evening, the Nautilus ... was sailing in a sea of milk ....
Was it the effect of the lunar rays? No: for the moon ... was lying hidden
under the horizon ... The whole sky, though lit by the sidereal rays, seemed
black by contrast with the whiteness of the waters.

It is called a milk sea’, I explained ...

'‘But sir, ... can you tell me what causes such an effect? For I suppose the
water is not really turned into milk.”

'No, my boy: and the whiteness which surprises you is caused only by the
presence of myriads of infusoria, a sort of luminous little worm, gelatinous
and without colour, of the thickness of a hair whose length is not more than
seven-thousands of an inch. These insects adhere to one another
sometimes for several leagues’

... and you need not try to compute the number of these infusoria. You will
not be able, for ... ships have floated on these milk seas for more than forty
miles’.

From Jules Verne Twenty Thousand Leagues Under the Sea — Indian Ocean,
January 24th,
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Figure 1 Optical characleristics of the picocyanobacteria BS4 and BS5. Monocultures of
BS4 (a) and BS5 (¢) grown in chemostats, and the light absorption spectra of BS4 (b) and From Stomp et al Nature 2004
BS5 (d).




FORWARD AND INVERSE
SEMI-ANALYTICAL OCEAN COLOR MODELS

Forward models:
Generate R or Lw from Chl and/or IOPs

Chl, a, b, —» R(A) or Lw(A)

eForward models can be useful to test if specific situations
result in different Lw or reflectance spectra.

Inverse models:
Generate Chl and/or30Ps from R or Lw

R(A) or Lw()) Chl, a, b,,...

From Stephane Maritorena




FORWARD AND INVERSE
SEMI-ANALYTICAL OCEAN COLOR MODELS

Ocean color is very simple:

1) a+b=c (10Ps)

b (AOPs =
2) R b f[1OPs])

a + bb From radiative
transfer models

3) a=1(R;/R,)  Inverse model

From Stephane Maritorena




Ok, ok, it's not always that simple !

The R, to b,/a relationship exists in various flavors

oy
R - t /f b
* n2 Q c1+bb

Water-air transmission *erm"Geome’rry" factor

Can be reasonably well estimated based on viewing and illumination
geometry, wind speed and salinity

From Stephane Maritorena




It's not always that simple and most terms have
their own spectral dependence

w) +b,,(1)

eReflection by bright shallow bottom was not considered here.
e Various ways exist to fill the right-end side of the equation and

get a forward model.

eOptical properties of water is fixed and assumed to be well known

Tricky part:
parameterization of b,, and non-water absorption terms.
Their relative variations need to be realistic

From Stephane Maritorena
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From Stephane Maritorena




Parficulate backscattering, b,

bP(SSO) = 0.416 chl| 0766

byy(A) = §0.002 + 0.01[0.5 - 0.25 log[chl]] (A/550)} b,(550)

v = 0.5 (log,,lchl] - 0.3) and v = O when [chl] > 2 mg m-3

(Morel, 1988; Morel & Maritorena, 2001)
bbp(k) = bbp(ko)(k/ko)V

bbp(ho) = f(chl) and v = F(bbp(xo)) (Reynolds et al., 2001)

b,,(A) = 0.039 b °(A) P, + 0.00064 b (1) P, (Haltrin & Kattawar, 1991)

Small particles Large particles

by, = by, + bbcpl + bbcp?. + ..+ bbcpn + bpget + Bymin + Pppup (Stramski et al., 2001)

bbp(h) = bbp [CP(K) - aP(K)] (Roesler & Boss, 2003)

Other parameterizations of b,, exist (H. Loisel, Z. Lee, ...)
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From Stephane Maritorena




R (3= By (M) +b,, (1)

Absorption

Phytoplankton a (M) = A(\)ch[B®)

From Stephane Maritorena




Absorption a=4a, +a, +a,+ ..+ 04, + a4+ ay, + 4,

Phytoplankton a (M) = A(\)ch[B®)

Detritus ay(A) = ay(n,) expl[Sy (A _ Al

Dissolved organic matter ay(k) = ay(ho) exp[S, (Ao _M)]

From Stephane Maritorena




Wavelength |nm




R () - by (A) + by, (1)

00N | a, (M) +a, (W) +a,(A)+a, (L) +b,, () +b,, (M)

Absorption

Detritus ay(A) = ay(n,) exp[Sy (A _ Al
Dissolved organic matter ag(k) = ag(ko) exp[Sg Ay - N)]

From Stephane Maritorena




= 0.012 nm™’
0.016 nm™’
0.02 nm™'

From Stephane Maritorena Wavelength |nm




FORWARD SEMI-ANALYTICAL OCEAN COLOR
MODELS

Putting all together,

’ + b, () |
n,2 Q4) + 4, (M) + a (M)+ agd)+ + bbP(A)

Rrs( )L) — 1' F()\,)

From Stephane Maritorena




0.012 nm™'
0.016 nm™!
0.02 nm™!

400 500 600
Wavelength |nm
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Absorption Components

. — Phytoplankton
Seawater
f—— Low gilvin
— = High gilvin
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Gaussian Curve Fit to Trichodesmium
Chlorophyll Specific Absorption

Trichodeswium Chlorophyll specific Absorption Spectrum
Constituent Peaks
—— Generated Sum of Peaks (A)
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Reflectance model for Chl=0.1 mg/m3

Low Gilvin 1 Seawater
Trichodesmium colonies
3 — — Mixture of colonies and trichomes
4 — - Average phytoplankton
5 —— Synechococcus
6 — - Trichomes only
7 —— - Colonies - modeled backscatter

High Gilvin
— Seawater
Trichodesmium colonies
— — Average phytoplankton
—--- Synechococcus
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Reflectance Model for Chl=1.0 mg/m3

Low Gilvin
Seawater

Trichodesmium colonies
3 — — Mixture of colonies and trichomes
4 — - Average phytoplankton
5 —— Synechococcus
6 — - Trichomes only
7 — - Colonies - modeled backscatter

—— Seawater
Trichodesmium colonies

— — Average phytoplankton

— - Synechococcus

—— Trichomes

High Gilvin

Wavelength (nm)
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Reflectance model for Chl=10 mg/m3

Seawater
) Trichodesmium colonies
", —— Average phytoplankton
f—- Synechococcus
-— Colonies - modeled backscatter

Reflectance model for special cases

Surface bloom of Trichodesmium (Chl=20 mg/m3)
Coccolithophore bloom (data from Balch ef al. 1991)

T T
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Wavelength (nm)
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Synthetic Aperture RADAR




SAR Image from 3 August 1999
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Del Vecchio, R. and A. Subramaniam (2004) Influence of the
Amazon River on the surface optical properties of the Western

Tropical North Atlantic Ocean. Journal of Geophysical
Research. 109, C11001, doi:10.1029/2004JC002503
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f fver for the Amazon Calculated usmg the technlque of I\/IuIIer-
Karger et al 1989 was 0.03 for the plume implying that N had to

be recycled 39 times to meet the measured primary production
demand.




Relationship between Plume Area and Month Lagged River Discharge at Obidos A

y=0.1536x + 740
=0.9357

y = 0.1444x + 79839 y = 0.1188x + 95392

Monthly Plume Area vs Discharge at Obidos
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Fig. 2. Discharge of the Amazon River at Manacapurt; (A) discharge time series, 1903 to 1985; (B)
descasonalized Q' hydrograph, 1903 to 1985. Arrows indicate occurrence of ENSO events.
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From Lieth (1975)




R
-

Fig. 1. Global annual NPP (in grams of C per square meter per year) for the biosphere, calculated from the integrated CASA-
VGPM model. The spatial resolution of the calculations is 1° 3 1° for land and 1/6° 3 1/6°for the oceans. Input data for ocean
color from the CZCS sensor are averages from 1978 to 1983. The land vegetation index from the AVHRR sensors is the
average from 1982 to 1990. Global NPP is 104.9 Pg of C year' (104.9 x 10" g of C year "), with 46.2% contributed by the
oceans and 53.8% contributed by the land.
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Some useful website sites for more information on ocean color
remote sensing:

For the animations go to:




