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INTRODUCTION

NEUTRON DOSIMETRY IS A VERY 
IMPORTANT AND LEADING 
PARAMETER FOR RPV 
INTEGRITY AND LIFETIME 
EVALUATION

- DETERMINATION OF FLUENCE 
DEPENDENCE OF MATERIAL 
TRANSITION TEMPERATURE 
CHANGES

- DETERMINATION OF FLUENCE 
TREND IN RPV
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DEFINITIONS
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Epithermal neutrons
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CALCULATIONS

� CALCULATIONS ARE PERFORMED MOSTLY FOR 
DETERMINATION OF NEUTRON FLUENCE ON RPV WALL 

� CALCULATION PROCEDURES MUST BE VALIDATED BY 
EXPERIMENTAL DATA – FROM SURVEILLANCE SPECIMEN 
PROGRAMMES AND, IF POSSIBLE, FROM EX-VESSEL 
MEASUREMENTS

� CALCULATION IS BASED ON:
– TRANSPORT THEORY
– MONTE CARLO METHOD 

� THE FOLLOWING DATA MUST BE AVAILABLE FOR ANY 
CALCULATIONS:
– DETAILED GEOMETRY OF ACTIVE CORE INCLUDING FUEL 

ELEMENTS AND ALL MATERIALS
– DETAILED GEOMETRY BETWEEN ACTIVE CORE, SURVEILLANCE 

SPECIMENS AND RPV WALL INCLUDING MATERIALS
– EVERYDAY OUTPUT OF INDIVIDUAL FUEL ELEMENTS 
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CALCULATIONS

� CALCULATIONS ARE PERFORMED EITHER IN 2-D OR 3-D 
GEOMETRY BY SEVERAL PROGRAMMES, LIKE DORT, TORT, 
ANISN etc.

� OUTPUT FROM CALCULATIONS:
– NEUTRON ENERGY SPECTRA IN DIFFERENT LOCATIONS 

INSIDE RPV AND THROUGH RPV
– NEUTRON FLUXES IN THESE LOCATIONS
– NEUTRON FLUENCES IN THESE LOCATIONS
– ACTIVITY OF NEUTRON MONITORS – FOR COMPARISON 

AND VALIDATION OF THE CALCULATION PROGRAMME
� COMPARISON OF CALCULATED AND MEASURED ACTIVITIES 

SERVES FOR A VALIDATION OF THE PROGRAMME AS WELL AS 
FOR ITS FITTING
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CALCULATIONS – EXAMPLE OF GEOMETRY



26.11.2009 13

CHOICE OF MONITORS

� EXPERIMENTAL NEUTRON DOSIMETRY IN EXPERIMENTAL/ POWER 
REACTORS DEPENDS ON A PROPER AND EFFECTIVE  CHOICE OF 
MONITORS

� MONITORS MUST BE CHOSEN PREFERABLY REGARDING THEIR HALF-
TIME AND TIME OF IRRADIATION
– AT LEAST ONE MONITOR SHOULD COVER THERMAL NEUTRON 

REGION
– SEVERAL MONITORS (IF POSSIBLE) SHOULD COVER FAST 

NEUTRON REGION
– MOST OF REACTORS FOR FAST NEUTRON REGION ARE OF 

THRESHOLD TYPE WITH THRESHOLD MUCH HIGHER THAN 0.5/1 
MeV, THUS FISSION MONITORS AND Nb ARE VERY USEFUL

– FOR DETERMINATION OF NEUTRON FLUENCE, MONITORS CAN BE 
PRACTICALLY USED UP TO 5-TIMES THEIR HALF LIFE

�
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CHOICE OF MONITORS
 

ENERGY RESPONSE RANGE, 
MeV REACTION ISOTOPIC 

ABUNDANCE, % 

235U FISSION 
SPECTRUM 

AVERAGED CROSS 
SECTION (mb) 

LOW, 
E0.5 

MEDIAN, 
 E50 

HIGH,  
E95 

HALF-
TIME E�, MeV 

 100.0 37 233 thermal   5.271 y 1.332 
        

 100.0 1344.0 0.684 1.96 5.61 30.17 y 0.662 

 depleted 309.0 1.44 2.61 6.69 30.17 y 0.662 
        

 100.0 146.2 0.97 4.5 11 16.13 y 16.6 and 
17.7 keV 

 100.0     20 300 y 704 and 
897 keV 

 68.27 108.5 1.98 3.94 7.51 70.82 d 0.8108 

 5.9 80.5 2.27 4.09 7.54 312.5 d 0.8348 

 8.1 19.0 3.70 5.72 9.43 83.81 d 0.8893 
1.1205 

 69.17 0.50 4.53 6.99 11.0 5.271 y 1.1732 
1.3325 
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CHOICE OF MONITORS
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CHOICE OF MONITORS
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NEUTRON FLUENCE INDEXATION

� ENGINEERING APPROACH USES INDEXATION FOR PRACTICAL 
PURPOSES – i.e. NEUTRON FLUX AND NEUTRON FLUENCE IS 
DETERMINED/CALCULATED FOR ENERGIES HIGHER THAN SOME 
INDEX/LIMIT

� THIS LIMIT IS SUPPOSED TO BE A MINIMUM NEUTRON ENERGY FOR 
SUBSTANTIAL RADIATION DAMAGE IN MATERIALS, i.e. FOR 
CREATION OF LARGE CASCADES OF KNOCK-ON ATOMS (AND HAS 
NOTHING TO DO WITH THRESHOLD ENERGIES OF ACTIVATED MONITORS)

� THIS ENERGY FOR RPV MATERIALS WAS CHOSEN BY DIFFERENT 
WAYS:
– FOR LWR (PWR AND BWR) : En = 1 MeV
– FOR VVER                          : En = 0.5 MeV

RELATION BETWEEN FLUXES/FLUENCES WITH THESE TWO ENERGIES 
DEPENDS ON REACTOR TYPE AND LOCATION, BUT FOR 
SURVEILLANCE/RPV POSITION IS USUALLY APPROXIMATELY:

�(En � 0.5 MeV)/ �(En � 1 MeV) � 1.6



26.11.2009 19

ACTIVITY OF MONITORS

� ACTIVITY OF MONITORS ARE A STARTING POINT FOR 
DETERMINATION OF NEUTRON ENERGY SPECTRUM, NEUTRON FLUX 
AND NEUTRON FLUENCES

� ACTIVITY OF MONITORS IS CALCULATED FROM MONITOR CONSTANT 
(HALF-LIFE) AND NUMBER OF COUNTS MEASURED DURING A 
CERTAIN PERIOD

� THIS MEASUREMENT MUST BE PERFORMED ON A STANDARD 
EXPERIMENTAL FACILITY WITH FIXED GEOMETRY, USING 
STANDARDIZED/VALIDATED COUNTING EQUIPMENT 

� IMPORTANT PARAMETERS ARE:
– MASS OF THE MONITOR
– TIME OF IRRADIATION
– TIME DEPENDENCE OF REACTOR OUTPUT
– TIME SINCE THE END OF IRRADIATION
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DETERMINATION OF 
NEUTRON ENERGY SPECTRUM

� NEUTRON FLUENCE CAN BE DETERMINED ONLY WITH 
THE PROPER KNOWLEDGE OF NEUTRON ENERGY 
SPECTRUM

� NEUTRON ENERGY SPECTRUM CAN BE DETERMINED BY:
- CALCULATIONS THAT MUST BE VALIDATED BY 
EXPERIMENTS
- EXPERIMENTALLY ON MOCK-UP/ZERO POWER REACTOR 
(DIRECT MEASUREMENTS USING e.g. Ge DETECTORS)
- EXPERIMENTALLY USING A SET OF 
ACTIVATION/FISSION MONITORS AND UNFOLDING CODE 
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DETERMINATION OF 
NEUTRON ENERGY SPECTRUM

� DETERMINATION OF NEUTRON ENERGY SPECTRUM FROM 
MEASUREMENT OF ACTIVITIES OF A SET O MONITORS IS USUALLY 
PERFORMED BY APPLICATION OF SO-CALLED „UNFOLDING METHOD“

� THIS  METHOD REPRESENTS SOME SORT OF ITERATIONS OR 
STATISTICAL EVALUATIONS. IT STARTS WITH AN „INPUT SPECTRUM“
THAT COULD BE EITHER FISSION ONE OR A SPECTRUM THAT WAS 
OBTAINED FROM CALCULATIONS OR OTHER SIMILAR 
MEASUREMENTS

� COMPUTER PROGRAMME BY ITERATION OR STATISTICAL METHODS 
TRIES TO FIND THE SPECTRUM THAT FITS BEST TO THE MEASURED 
ACTIVITIES OF THIS SET OF MONITORS

� RESULT OF THIS COMPUTATION VERY MUCH DEPENDS ON ITS INPUT 
SPECTRUM ESPECIALLY WHEN NUMBER OF MONITORS IS SMALL OR 
THEY COVER ONLY A LIMITED AREAS OF ENERGY SPECTRUM (e.g. 
MONITORS WITH HIGH THRESHOLD ENERGIES)



26.11.2009 29

DETERMINATION OF 
NEUTRON ENERGY SPECTRUM
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TYPICAL SPECTRUM FOR VVER-1000
WALL THICKNESS = 190 mm
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TYPICAL SPECTRUM FOR VVER-1000
WALL THICKNESS = 190 mm
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CHANGES IN FLUXES THROUGH A RPV WALL
THICKNESS = 190 MM
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SPECTRAL INDEXES

� IN DIFFERENT LOCATIONS IN THE RPVs, NEUTRON 
ENERGY SPECTRA ARE DIFFERENT, AS WELL AS NEUTRON 
FLUXES ARE CHANGED

� CHANGES IN NEUTRON ENERGY SPECTRA ALSO CHANGES 
VALUES OF NEUTRON FLUX DEFINED FOR DIFFERENT 
THRESHOLD ENERGIES OF NEUTRONS, e.g. 0.5 OR 1 MeV

� THIS EFFECT CAN BE DESCRIBED MBY SO-CALLED 
„SPECTRAL INDEXES“ DEFINED AS A RATIO OF TWO 
FLUXES WITH DIFFERENT NEUTRON ENERGY 
THRESHOLDS, e.g.

SPECTRAL INDEX = �(En�0.5 MeV)/� (En�1 MeV)
OR SOMETIMES IT IS DEFINED AS

SI(3 MeV)X MeV = �(En�X MeV)/� (En�3 MeV)
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SPECTRAL INDEXES
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EXAMPLE OF EFFECTIVE CROSS SECTIONS
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NEUTRON FLUENCE

� NEUTRON FLUENCE IS THEN DETERMINED FROM THE 
NEUTRON FLUX AND TIME OF IRRADIATION (SUMMATION 
OF INDIVIDUAL IRRADIATION PERIODS)

� NEUTRON FLUENCE USUALLY DEPENDS LINEARLY ON 
REACTOR OUTPUT UNDER NORMAL OPERATION 
CONDITIONS

� INCREASE IN REACTOR OUTPUT BY CHANGES OF THE 
REACTOR CORE (DIFFERENT FUEL ELEMENTS, INCREASE 
OF REACTOR OUTPUT BY OF HEAT PRODUCTION etc.) 
CAN EITHER BE LINEARLY DEPENDENT WITH REACTOR 
OUTPUT INCREASE OR, IS CASES WITH CHANGES OF 
FUEL RE-LOADING SCHEME, BE SUBSTANTIALLY HIGHER
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NEUTRON FLUENCE

� NEUTRON FLUX ON RPV AND/OR SURVEILLANCE SPECIMENS 
DEPENDS STRONGLY ON:
– DESIGN OF THE RPV WITH RESPECT THICKNESS OF THE WATER 

MODERATOR
– DESIGN OF SURVEILLANCE SPECIMEN CAPSULES AND THEIR 

LOCATION
– FUEL LOADING SCHEME 

� FULL CORE 
– ALL FUEL ELEMENTS ARE FRESH OR NEW OR PARTIALLY 

BURNT FUELD ELEMENTS ARE LOADED EVEN INTO 
PERIPHERY REGION

� LOW-LEAKAGE CORE
– ONLY PARTIALLY BURNT (IN THEIR LAST CYCLE) FUEL 

ELEMENTS ARE LOADED INTO PERIPHERY
� REDUCED CORE

– DUMMY ELEMENTS (I.E. ELEMENTS WITH SHIELDING 
MATERIALS LIKE AUSTENITIC STEEL ARE LOADED INTO 
PERIPHERY REGION OF ACTIVE CORE)
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TYPICAL NEUTRON FLUENCE OSCILATIONS

REALIZED CYCLES
105 %

NEW FUEL 
WITH Gd

105 %FULL CORE

LOW LEAKAGE 
CORE

FULL CORE

LOW LEAKAGE CORE
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EFFECT OF DUMMY ELEMENTS
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EFFECT OF DUMMY ELEMENTS AND 
ANNEALING
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FOR LWR – SURVEILLANCE POSITION AND RPV:
1023 m-2 � 0.015 dpa
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dpa

� IN SOME CASES, dpa IS USED AS A MEASURE OF RADIATION DAMAGE 
OF MATERIALS

� THIS PARAMETER OF NEUTRON FIELD IS MOSTLY APPLIED IN THE 
FOLLOWING CASES: 
– NEUTRON EXPOSURE OF RPV MATERIALS IN GCR (DIFFERENT NEUTRON 

SPECTRA)
– NEUTRON EXPOSURE OF MATERIALS OF INTERNALS (VERY HIGH 

NEUTRON FLUENCES, SPECTRUM VERY CLOSE TO FISSION SPECTRUM)
– NEUTRON EXPOSURE OF MATERIALS IRRADIATED BY PARTICLES (IN 

ACCELERATORS)
– COMPARISON OF RADIATION EXPOSURE OF MATERIALS BY NEUTRONS 

AND BY PARTICLES
– PRACTICALLY FOR ALL MATERIALS IN GEN IV REACTORS (FAST AND 

THERMAL) 

�
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� THE LINHARD MODEL OF ENERGY PARTITION BETWEEN ATOMS AND 
ELECTRONS AND THE NORGETT-ROBINSON-TORRENS (NRT) 
RECOMMENDED CONVERSION OF DAMAGE ENERGY TO 
DISPLACEMENTS WITH AN EFFECTIVE DISPLACEMENT THRESHOLD 
ENERGY OF Ed = 40 Ev (FOR IRON)  AND AN ATOMIC SCATTERING 
CORRECTION FACTOR OF � = 0.8 IS USED FOR CALCULATION OF 
NUMBER OF DISPLACEMENT Nd, CORRESPONDING TO A GIVEN 
DAMAGE ENERGY, Td, THROUGH THE EQUATION
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dpa

� AS RPV STEELS USUALLY CONTAIN MORE THAN 95 % OF 
IRON, dpa FOR STEELS IS CALCULATED USING CROSS 
SECTIONS GIVEN IN ASTM E 693-01

� dpa CROSS SECTIONS HAVE BEEN ALSO DETERMINED 
FOR SOME OTHER ELEMENTS – CHROMIUM AND NICKEL –
TO BE APPLIED MAINLY FOR AUSTENITIC MATERIALS 
WITH HIGH CONTENT OF BOTH ELEMENTS (18/8, 25/10 
etc.)
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dpa
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COMPARISON OF dpa AND FLUENCE

� COMPARISON OF dpa AND NEUTRON FLUENCE IN MODEL 
IRRADIATION EXPERIMENT WITH RPV WALL OF 190 mm THICKNESS 
SHOWED THAT THE CLOSEST INDEXATION OF NEUTRON FLUENCE 
TO THE dpa VALUES ARE THRESHOLD ENERGY En = 0.5 MeV AS 
THEIR RATIO REMAINS PRACTICALLY CONSTANT THROUGH THE 
WHOLE THICKNESS ON THE CONTRARY WITH OTHER INDEX 
ENERGIES
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REQUIREMENTS FOR UNCERTAINTY

� ALL EXPERIMENTS AS WELL AS CALCULATIONS ARE CONNECTED 
WITH SOME UNCERTAINTY

� THIS UNCERTAINTY MAINLY DEPENDS ON:
– UNCERTAINTY IN NEUTRON CROSS SECTIONS
– LIMITED NUMBER OF NEUTRON MONITORS
– LIMITATIONS IN MODELLING OF REACTOR ACTIVE CORE etc.

� UNCERTAINTY OF NEUTRON FLUENCE DETERMINATION IS A CRUCIAL 
PARAMETER FOR A RELIABLE AND EFFECTIVE:
– CREATION OF A DATABASE FOR EVALUATION OF PREDICTIVE FORMULAE 

OF RADIATION DAMAGE
– COMPARISON OF ANY EXPERIMENTAL DATA
– COMPARISON OF CALCULATED AND EXPERIMENTAL DETERMINED 

FLUENCES
– PREDICTION OF SAFE OPERATION LIFETIME

�
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MATERIAL MONITORS

� ADDITIONALLY TO NEUTRON FLUENCE MONITORS, SO-CALLED 
MATERIAL MONITORS CAN BE ALSO INSERTED INTO SURVEILLANCE 
PROGRAMMES

� SUCH MATERIAL CAN MONITOR SIMUTANEOUSLY NEUTRON FLUENCE 
AND IRRADIATION TEMPERATURE – THESE PARAMETERS CAN BE 
CHECKED IF TREND CURVE FOR THIS MATERIAL ALREADY EXISTS

� ASTM E 185 DEFINES
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MATERIAL MONITORS

�SOME OF LWR REACTORS INSERTED SPECIMENS 
FROM HSSTP PLATE 02 AS REFERENCE 
MATERIALS

�WHILE IN MANY VVER SURVEILLANCE 
PROGRAMMES AS WELL AS IN SEVERAL IAEA CO-
ORDINATED RESEARCH PROGRAMES „IAEA 
REFERENCE STEEL – JRQ“ HAS BEEN INSERTED
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EXAMPLES OF NEUTRON DOSIMETRY IN 
SURVEILLANCE PROGRAMMES

� CHOICE OF MONITORS, THEIR TYPE, SIZE, NUMBER AND 
LOCATION DEPENDS ON TYPE OF REACTOR, RPV DESIGN, 
OPERATION CONDITIONS, WITHDRAWAL SCHEDULE etc.

� IN PRINCIPLE, STANDARDS REQUIRED THAT NEUTRON 
MONITORS SHOULD HAVE TO BE INSERTED IN EACH 
IRRADIATION CAPSULE
– THIS IS NOT A CASE OF ALL REACTORS, MAINLY VVER 

OF OLDER DESIGN
� NEUTRON MONITORS SHOULD BE ABLE TO DETERMINE 

NEUTRON FIELD IN THE WHOLE OF EACH CAPSULE, 
PREFERABLY IN CRITICAL POINTS OF SPECIMENS, i.e. IN 
THEIR NOTCHES/CRACKS
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TYPICAL C-E SURVEILLANCE CAPSULE
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TYPICAL C-E SURVEILLANCE CAPSULE
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LOCATION OF NEUTRON MONITORS IN 
VVER CAPSULES
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NEUTRON FIELD IN SURVEILLANCE 
CAPSULES

�TYPICAL DISTRIBUTION OF NEUTRON FLUX 
ALONG THE HEIGHT OF CHAIN OF CAPSULES 
IN VVER-440/V-213 TYPE
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NEUTRON FLUX DISTRIBUTION WITHIN A 
CAPSULE



26.11.2009 66

VVER-1000/V-320 STANDARD PROGRAMME
VARIATION IN NEUTRON FIELD IN ONE LEVEL 

COULD BE UP TO 180 – 200 %
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CONCLUSIONS

�NEUTRON DOSIMETRY IS A VERY IMPORTANT 
PART OF RADIATION DAMAGE STUDY AS WELL 
AS RPV INTEGRITY AND LIFETIME ASSESSMENT

�NEUTRON DOSIMETRY MUST BE CARRIED OUT 
WITH A HIGH PRECISION, NEUTRON 
PARAMETERS (CROSS SECTIONS etc.) MUST BE 
CONTINUOUSLY IMPROVED

�NEUTRON DOSIMETRY IS ALSO VERY IMPORTANT 
FOR RPV LIFE EXTENSION WHEN EX-VESSEL 
MEASUREMENTS ARE OF HIGH IMPORTANCE 
WHEN NO SURVEILLANCE CAPSULES WILL BE 
LOCATED INSIDE RPV
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Thank you for your attention
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