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Outline

» ASME Code Cases N-629 and N-631
e Background and approach followed
e Master Curve applied to original data
 Alternative definition of RTr (RT+,)
» Comparison between Charpy-based and Master Curve-based
approaches
e “Conventional” approach (RTr)
e “Advanced” approach (RT,)
e Application to Belgian surveillance database (19 materials)
e Implications for utilities/regulators/engineers

»Pressure-Temperature (P-T) operating limits
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» Ferritic steels suffer significant toughness loss with
decreasing temperature — fracture mode changes from
ductile to brittle (ductile-to-brittle transition region)

» A transition temperature is needed to characterize the
steel behavior in the transition regime

» Data scatter is due to randomly sized and distributed
cleavage initiators, and can be modeled by a 3-parameter
Weibull cumulative probability statistical model

»Smaller specimens tends to display a higher apparent
toughness (weakest link assumption)

» Most ferritic steels tend to conform to one universal
toughness vs. temperature curve (“Master Curve”)



The Master Curve approach (ASTM E1921)"
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»The ASME reference toughness curves (K. and K;) are
based upon a material normalizing and indexing
parameter, RTpr

»In many cases, this parameter is overly conservative
relative to the real toughness of ferritic RPV steels, and
a more direct measure of the fracture toughness is
needed

»The Master Curve method can provide a directly
measured fracture toughness temperature index, as
well as statistically-derived tolerance bounds for both
unirradiated and irradiated materials
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Approach

» In the late 90’s, a task group under the Pressure Vessel Research
Council (PVRC) has evaluated the application of the Master Curve
methodology to the ASME Code, using international databases
collected for this purpose

» The final recommendations of the task group have allowed this
approach to be applied within the ASME Code through two “Code
Cases”:

¢ Code Case N-631 (Section lll, Division 1)
e Code Case N-629 (Section XI, Division 1)

» The application is foreseen as a two-step process:

e first, a new temperature index (RT;,) has replaced RT; for the existing
ASME lower bound curves [ACHIEVED]

e |ater, new statistically-defined lower bound tolerance bounds will replace
the ASME lower bound curves
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The Master Curve is also able to bound the

original K, data

K, - 1T (ksi-in'?)
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The philosophy of the current ASME
Code Cases N-631 and N-629

» The equivalent, Master Curve-based reference temperature
used for indexing the ASME K. and K; lower bound curves
and appropriately bounding the data is defined as:

RT,, =T +35°F =T +19.4 °C

» The definition of RT, uses a 5% Master Curve tolerance
bound

» This alternative reference temperature can be calculated
by direct toughness measurements (without using Charpy
information) for pressure-retaining materials, in both the
unirradiated and irradiated conditions



Applicability of the new curve to the original K. database
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Excellent results for irradiated materials (851 base/weld)

FRACTURE TOUGHNESS, (MPa m"?)
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Full references for

the ASME Code Cases

»ASME Boiler and Pressure Vessel Code Case N-629
Use of Fracture Toughness Test Data to Establish
Reference Temperature for Pressure Retaining
Materials, Section XI, Division 1

»ASME Boiler and Pressure Vessel Code Case N-631
Use of Fracture Toughness Test Data to Establish
Reference Temperature for Pressure Retaining
Materials Other Than Bolting for Class 1 Vessels,

Section lll, Division 1



Comparison between Charpy-based (RTp1)
and Master Curve-based (RT;,) approaches

»Source: E. Lucon, M. Scibetta, R. Chaouadi, E. van
Walle and R. Gérard, Improved Safety Margins for
Belgian Nuclear Power Plants by the Application of the
Master Curve Approach to RPV Surveillance Materials

e Presented at the Advanced Fracture Methods for
Light Water Reactor Components Workshop —
Baltimore, MD (US), July 2006

e Published in International Journal for Pressure
Vessel and Piping 84 (9), p.536-544, Sep 2007



Intrinsic drawbacks of the
“conventional” RT,yr approach

/

»Empirical in nature

»Couples dynamic (Charpy) test data with a static
fracture toughness curve

»Uncertainties are accounted for through imposition of
conservative bounds

»This can penalize plant operation and life management
decisions (premature shut-downs of plants)

» The obvious solution: using direct fracture toughness
measurements



The “advanced” MC-based approach:
reconstitution + toughness tests

» Fracture toughness specimens included in some
surveillance capsules are too few for a Master Curve
analysis

» Charpy specimens have to be tested within the regulatory
framework

» New fracture toughness (PCC) specimens can be
fabricated from broken Cv’s using reconstitution

» Test results are analyzed according to the Master Curve
approach = T_ is obtained

» A revised reference temperature is obtained for indexing
the ASME curve: RT;, =T, + 35°F



“Conventional” vs “advanced”: results for 19

Belgian surveillance materials
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* Large margins with respect to PTS screening criteria, especially when using RT,
and for highly irradiated materials

* RT,, is lower than RTyy in all cases except one



RT\pr @and RT;, are not correlated, but their
: shifts ART,,r and ART,, are correlated
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Large safety margins and tendency to -

underestimate the “real” toughness
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“Improved margins” of RT;, approach seem to
depend on irradiation sensitivity (Cu content)
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“Improved margins” of RT, approach seem to
depend on baseline properties (unirr RTyp7)

Scatter depends on the weak correlation between RT,,; and RT,,
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“Advanced” approach seems more
beneficial for older plants
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» The additional margins entailed by the use of RT,, over RTpr
appear particularly significant in case of:

Conclusions of the study

e highly irradiated materials (40 years of reactor operation and
beyond)

e materials with high irradiation sensitivity (Cu > 0.1-0.15%)
* materials with low reference toughness (RTpr i > -30°C)
e first-generation NPP’s

» Toughness-based approach seems more beneficial for weld than
base metals

»~ In Belgium, the advanced approach is used in a “defense in depth”
perspective:

e to demonstrate the existence of important safety margins
e to give increased confidence on RPV integrity at high doses



Data presented can be considered favourable
from three different viewpoints

» For the utilities which manage the plants:

e using fracture toughness-based approach instead of
Charpy-based approach can considerably increase the
life margins with respect to the PTS screening criteria

» For the safety authorities:

e |legislative approach is significantly conservative,
particularly for the older plants and for the most
highly irradiated conditions

» For the engineer:

e fracture toughness is used to assess ... fracture
toughness!



- Directions fo

»Relationship between Master Curve fracture
toughness and CVN data

» Effect of irradiation on the shape of the Master Curve
at high T, shift levels (for ex. sensitive high-Ni steels)

»Enhanced constraint loss following irradiation due to
reduction in strain hardening

» Constraint limits for the Master Curve method and
PCC specimens; specimen bias effects

»Master Curve applicability for specimens failing by
intergranular fracture (irradiation + thermal annealing)
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»Key features to be defined for developing operating
limit curves for normal plant operations:

= Size and shape of the assumed reference flaw
= Safety factors on pressure and thermal stresses

= Reference fracture toughness curve and safety factor to
be used

» Reference codes:

= US — ASME Code Section lll, Appendix G and Section Xl
Japan —JEAC 4206-2000

France — RCC-M Code, chapter B.3260 (two methods)
Russia — PNAE-G-7-002-86

Germany — KTA 3201.2, Paragraph 7.9 (two methods)



/— Assumed reference flaw —

~ » Reference flaws are generally quite large compared to current
non-destructive inspection capabilities

» Flaw dimensions:

= US, Japan, Germany (method 2), France (method 1): depth
Ya-thickness, width 1.5 x thickness

= Russia: depth %-thickness, width %-thickness

= France (method 1): depth 15 mm, length 90 mm (smaller, more realistic
flaw)

Safety factors on stresses

» For most methodologies:
» factor 2 on pressure stress (1.5 for leak and hydrostatic tests)

« factor 1 on thermal stress
» Russian approach and French method 2: factor 1 on pressure
stress, but fracture toughness curves have additional safety
factors included



Reference fracture toughness curve

» US (similar approach in Japan)
= ASME Code: K,. lower bound curve
= ASME Code Case N-641: use of K, lower bound curve allowed

» France (method 1) and Germany: only K, curve allowed
» Russia: specific K,. curve with safety factor
» France (method 2): combination of K, and K,_ curves

Damage attenuation into RPV wall

» Values of toughness are needed at J-thickness and %-thickness
location in the RPV wall

> Flux/fluence attenuates from inside surface of RPV into the wall

» dpa is used as measure of fluence change (e.g. Reg. Guide 1.99,
Rev. 2 and ASTM E900-02)

> dpa is used to adjust the parameter @ in the correlation





