

2055-23

Joint ICTP/IAEA School on Physics and Technology of Fast Reactors Systems

9 - 20 November 2009

Nuclear reactor dynamics - IV & V

RAVETTO P. Picca P. and Dulla S. Politecnico di Torino Dipartimento di Energetica Italy A unifying approach to reactor kinetics by variational methods

S. Dulla, P. Ravetto, P. Picca Politecnico di Torino, Torino, Italy

Outline

- Introduction
- Variational formulation of kinetic models
 - Multipoint
 - Modal Methods
- Results and performance comparison
- Conclusions

Introduction

- Space-energy models are needed for the time-dependent analysis of nuclear reactors
- Approximate kinetic models can be of use to provide accurate results with reduced computational effort
- □ The variational approach is useful in the study of approximate methods ...

Introduction

All kinetic models can be given a unifying variational foundation

Favorite J. A., Stacey W. M. Jr, A new variational functional for space-time neutronics, *Nuclear Science and Engineering*, **125**, 101–106 (1997).

- Point kinetics
- Quasi-statics

Favorite J. A., Stacey W. M. Jr, Variational estimates for use with the improved quasistatic method for reactor dynamics, *Nuclear Science and Engineering*, **126**, 282–292 (1997).

Dulla S., Picca P., Consistent multipoint kinetics for source-driven systems, *Progress in Nuclear Energy*, **48**, 617–628 (2006).

- Multipoint kinetics
- Synthesis methods
- The variational approach is very useful to discuss potentialities and shortcomings of various methods

- The variational approach is based on the following steps:
 - Definition of a general functional with physical significance
 - Introduction of the balance equations + BC and IC with *proper* Lagrange multipliers
 - Determination of equations for the Lagrange multipliers
 - Introduction of suitable trial functions

$$\begin{split} H[\varphi, \mathscr{E}_{i}, \varphi^{\dagger}, \mathscr{E}_{i}^{\dagger}, \vartheta, \Gamma, \Lambda] &= G[\varphi] + \int_{0}^{t} dt \int d\mathbf{x} \varphi^{\dagger} \left[-\frac{1}{v} \frac{\partial \varphi}{\partial t} + \left(-\hat{\mathbf{L}} \varphi + \hat{\mathbf{M}}_{p} \varphi \right) \right. \\ &+ \sum_{i=1}^{R} \mathscr{E}_{i} + S \right] + \sum_{i=1}^{R} \int_{0}^{t} dt \int d\mathbf{x} \mathscr{E}_{i}^{\dagger} \left[\frac{1}{\lambda_{i}} \frac{\partial \mathscr{E}_{i}}{\partial t} + \mathscr{E}_{i} - \hat{\mathbf{M}}_{i} \varphi \right] \\ &+ \int d\mathbf{x} \Gamma \left(\mathbf{x} \right) \left[\varphi \left(\mathbf{x}, t = 0 \right) - \varphi_{0} \left(\mathbf{x} \right) \right] + \sum_{i=1}^{R} \int d\mathbf{x} \Lambda_{i} \left(\mathbf{x} \right) \left[\mathscr{E}_{i} \left(\mathbf{x}, t = 0 \right) - \mathscr{E}_{i,0} \left(\mathbf{x} \right) \right] \\ &+ \int_{0}^{t} dt \int_{\partial V} d\mathscr{A} \int dE \int_{\Omega_{in}} d\Omega \vartheta \left\{ \varphi(\mathbf{r}_{s}, E, \Omega_{in}, t) \right. \\ &- f(\mathbf{r}_{s}, E, \Omega_{in}, t) - \left[\hat{\mathbf{R}} \varphi \right] \left(\mathbf{r}_{s}, E, \Omega_{in}, t \right) \right\}. \end{split}$$

problem considered (more general view of the dynamic problem)

Variations with respect to flux and precursor emissivities yield equations for Lagrange multipliers (adjoint model)

$$\begin{split} -\frac{1}{v} \frac{\partial \varphi^{\dagger}\left(\mathbf{r}, E, \Omega, t\right)}{\partial t} &= \left[-\hat{\mathbf{L}}^{\dagger}\left(t\right) \varphi^{\dagger} + \hat{\mathbf{M}}_{p}^{\dagger}\left(t\right) \varphi^{\dagger} \right] \left(\mathbf{r}, E, \Omega, t\right) \\ &+ \sum_{i=1}^{R} \left[\hat{\mathbf{M}}_{i}^{\dagger} \mathscr{E}_{i}^{\dagger} \right] \left(\mathbf{r}, E, t\right) + Q^{\dagger}(\mathbf{r}, E, \Omega, t) \\ -\frac{1}{\lambda_{i}} \frac{\partial \mathscr{E}_{i}^{\dagger}\left(\mathbf{r}, E, t\right)}{\partial t} &= -\mathscr{E}_{i}^{\dagger}\left(\mathbf{r}, E, t\right) + \frac{1}{4\pi} \oint d\Omega \varphi^{\dagger}\left(\mathbf{r}, E, \Omega, t\right), \qquad i = 1, ..., R \end{split}$$

<u>Note</u>: adjoint for delayed emissivities also appear → *importance*

□ Introduction of trial functions:

$$\begin{split} \varphi(\mathbf{x},t) &= \sum_{j=1}^{J} \left(N_j(t) u_j(\mathbf{x}) \right) \phi(\mathbf{x};t) = \sum_{j=1}^{J} N_j(t) \phi_j(\mathbf{x};t), \\ \mathscr{E}_i(\mathbf{x},t) &= \sum_{j=1}^{J} \left(E_{i,j}(t) u_j(\mathbf{x}) \right) \epsilon_i(\mathbf{x};t) = \sum_{j=1}^{J} E_{i,j}(t) \epsilon_{i,j}(\mathbf{x};t), \\ \varphi^{\dagger}(\mathbf{x},t) &= \sum_{j=1}^{J} \left(N_j^{\dagger}(t) u_j(\mathbf{x}) \right) \phi^{\dagger}(\mathbf{x};t) = \sum_{j=1}^{J} N_j^{\dagger}(t) \phi_j^{\dagger}(\mathbf{x};t), \\ \mathscr{E}_i^{\dagger}(\mathbf{x},t) &= \sum_{j=1}^{J} \left(E_{i,j}^{\dagger}(t) u_j(\mathbf{x}) \right) \epsilon_i^{\dagger}(\mathbf{x};t) = \sum_{j=1}^{J} E_{i,j}^{\dagger}(t) \epsilon_{i,j}^{\dagger}(\mathbf{x};t), \end{split}$$

 With proper choices, standard models can be retrieved:

$$\begin{split} \varphi(\mathbf{x},t) &= \sum_{j=1}^{J} \left(N_j(t) u_j(\mathbf{x}) \right) \phi(\mathbf{x};t) = \sum_{j=1}^{J} N_j(t) \phi_j(\mathbf{x};t), \\ \mathscr{E}_i(\mathbf{x},t) &= \sum_{j=1}^{J} \left(E_{i,j}(t) u_j(\mathbf{x}) \right) \epsilon_i(\mathbf{x};t) = \sum_{j=1}^{J} E_{i,j}(t) \epsilon_{i,j}(\mathbf{x};t), \\ \varphi^{\dagger}(\mathbf{x},t) &= \sum_{j=1}^{J} \left(N_j^{\dagger}(t) u_j(\mathbf{x}) \right) \phi^{\dagger}(\mathbf{x};t) = \sum_{j=1}^{J} N_j^{\dagger}(t) \phi_j^{\dagger}(\mathbf{x};t), \\ \mathscr{E}_i^{\dagger}(\mathbf{x},t) &= \sum_{j=1}^{J} \left(E_{i,j}^{\dagger}(t) u_j(\mathbf{x}) \right) \epsilon_i^{\dagger}(\mathbf{x};t) = \sum_{j=1}^{J} E_{i,j}^{\dagger}(t) \epsilon_{i,j}^{\dagger}(\mathbf{x};t). \end{split}$$

Full time-space factorization \rightarrow PK

Use of different time scales \rightarrow QS

How can Multipoint (MPK) and Modal approaches be retrieved ?

Multipoint kinetics \Box The expression chosen for $u_i(\mathbf{x})$ in the formula $\varphi(\mathbf{x},t) = \sum_{j=1}^{J} \left(N_j(t) u_j(\mathbf{x}) \right) \phi(\mathbf{x};t) = \sum_{j=1}^{J} N_j(t) \phi_j(\mathbf{x};t),$ can lead to different models □ In MPK, $u_j(\mathbf{x}) = \begin{cases} 1 & \text{on } \Gamma_j \\ 0 & \text{otherwise.} \end{cases}$ macrodomains Γ_i are introduced:

Modal approach

- In the modal approach, a set of modes on the full phase-space are introduced;
- In both cases, the kinetics of the system is described by the superposition of separate evolutions, obeying a coupled systems of equations (obtained setting to zero the variations δN_i[†]):

$$\frac{d}{dt}|X\rangle = \hat{M}X\rangle + |S\rangle$$

$$|X\rangle^{t} = |N_{1}, N_{2}, ..., N_{K}, E_{1,1}, ..., E_{1,K}, E_{2,1}, ..., E_{R,K}\rangle^{t}$$
$$|S\rangle^{t} = \left|\tilde{S}_{1}, \tilde{S}_{2}, ..., \tilde{S}_{K}, 0, ..., 0\right\rangle^{t},$$

The coefficients here appearing are adjointweighted integrals

Results and performance comparison

- Objective: to show different physical features, advantages and shortcomings of models
- The modal method is constructed using the steady-state harmonics (solutions of the homogeneous problem)
- Two alternative MPK are considered (based on a different choice of trial functions for the adjoint)

■ MPK-2: definition of *local* adjoint source for each of K subdomains → K adjoints obtained

The MPK versions

Critical case

Percentage error on power

time [ms]	modal	modal	MPK-1	MPK-1	PK	Modal:
	(case c)	(case d)	(case a)	(case b)		Affected by the choice of
0.5	-0.14	-0.14	-0.13	-0.15	-0.14	the modes
1	-0.24	-0.24	-0.23	-0.25	-0.25	Works better than MPK
10	-0.60	-0.64	-0.92	-0.96	-0.95	
50	-1.58	-1.80	-3.42	-3.53	-3.53	MPK:
100	-2.65	-3.07	-6.28	-6.44	-6.46	No large influence of the
500	-11.00	-12.91	-26.53	-27.13	-27.17	the system is physically
1000	-21.35	-24.89	-47.51	-48.41	-48.47	coupled

Error increases with time \rightarrow *necessity to couple with a QS algorithm*

Subcritical case						
The same configuration is considered in subcritical status (k _{eff} =0.97)						
An external source is placed in the center of the system, spanning over an interval of 3L						
The introduction of the localized perturbation amounts to +1311 pcm						

Percentage error on power

time [ms]	modal (case c)	modal (case d)	MPK-1 (case a)	MPK-1 (case b)	MPK-2 (case a)	MPK-2 (case b)	PK
0.1	0.03	-0.26	-0.11	-0.19	-0.02	-0.24	-0.18
0.5	-0.004	-1.40	-0.97	-1.08	-0.28	-1.27	-1.07
1	-0.10	-2.70	-2.10	-2.23	-0.64	-2.44	-2.22
5	-1.12	-8.86	-8.09	-8.33	-2.79	-8.18	-8.33
100	-2.69	-12.11	-11.45	-11.72	-4.51	-11.48	-11.73

	time [ms]	modal (case c)	modal (case d)	MPK-1 (case a)	MPK-1 (case b)	MPK-2 (case a)	MPK-2 (case b)	РК
	0.1	0.03	-0.26	-0.11	-0.19	-0.02	-0.24	-0.18
	0.5	-0.004	-1.40	-0.97	-1.08	-0.28	-1.27	-1.07
	1	-0.10	-2.70	-2.10	-2.23	-0.64	-2.44	-2.22
Multinoint kinatics	5	-1.12	-8.86	-8.09	-8.33	-2.79	-8.18	-8.33
Multipoint Kinetics	100	-2.69	-12.11	-11.45	-11.72	-4.51	-11.48	-11.73

- MPK-2 largely improves with respect to MPK-1
 - Choice of subdomains plays a major role
- Modal approach

- Choice of modes is important as well
- With inappropriate choices, nothing better than PK can be obtained

□ MPK-1

□ MPK-2

Modal

Conclusions

- The variational technique allows consistent and unambiguous definition of integral parameters, for any type of systems
- Results show that, to obtain good performance, choice of modes and subdomain subdivision is crucial
- Need of adaptive algorithms
- Need of automatic scale choice