

2055-27

Joint ICTP/IAEA School on Physics and Technology of Fast Reactors Systems

9 - 20 November 2009

Advanced partitioning of MOX fuels by aqueous route (1)

Dominique Warin

CEA / Nuclear Energy Division Radiochemistry and Processes Department Marcoule France

dominique.warin@cea.fr dominique.warin@cea.fr

IAEA/ICTP School on Physics and Technology of Fast Reactor Systems

Advanced partitioning of MOX fuels by aqueous route (1)

Dominique Warin

CEA / Nuclear Energy Division Radiochemistry and Processes Department

Marcoule, France dominique.warin@cea.fr

CEA / Nuclear Energy Division

CEA/Nuclear Energy Directorate missions

A WORLD CLASS LABORATORY FOR SUSTAINABLE NUCLEAR FISSION ENERGY DEVELOPMENT

REACTORS

• R and D in support of existing LW Reactors (material ageing, fuels,

power plant life time, safety,...)

- R and D for innovative future GEN IV Fast Neutron Reactors
- Basic nuclear science and technology studies, materials
- Thermal and fast neutron Test Reactors
- Simulation program

FUEL CYCLE

- R and D in support of existing reprocessing plants (Areva La Hague, Sellafield, Rokkasho Mura,..) and for future recycling plants
- R and D for nuclear waste management (1991 and 2006 French Acts)
- Hot radioactive facilities

INTERNATIONAL COLLABORATIONS : Europe (SNE-TP), USA (GNEP), Japan, China,...

CEA/ Nuclear Energy Directorate organization

Final waste radiotoxicity

TIME after unloading (years)

Contributions to residual heat (UOX spent fuel)

CEA / Nuclear Energy Division

Actinide recycling : what fuel cycle option ?

How to partition Np, Am and Cm?

- How to reprocess spent nuclear fuels?
- **€** Which industrial technology?
 - Criteria
 - Safety, performance, cost, secondary waste...

- Reference route
 - Solvent extraction, PUREX Process
 - Already mastered at the industrial scale
 - La Hague plant (AREVA NC)

UP3 plant: 800 tons reprocessed / year

- » High separation yields achieved
- » Few technological waste generated

LLRN recovery by solvent extraction

Trieste 17-18/11/2009

Reprocessing process : requirements

Reprocessing requirements and constraints

- High recovery yields (99.9 %)
 - High purification yields (10⁶)
 - Low amount of secondary waste... •
 - Confinment

 - Shielding
 Criticality risk
 Nuclear material accounting
 - Radiolysis...

PUREX, the reference since 1950's...

- TBP, a <u>selective</u> and <u>strong</u> molecule
- <u>High recovery /purification yields</u>
 (<u>99.9 %</u> U &Pu recovered, DFs ~ <u>10⁷</u>)
- Low secondary waste amount
- No extreme conditions, <u>no severe materials issues</u>
- A <u>heavy work</u> for development

PUREX : some important steps

•	U.S.A.	1950s (Sa	1950s (Savannah, Hanford)		
•	UK	1953	(Windscale)		
•	France	1958 1967 1976 1989 1994	(Marcoule, UP1) (La Hague, UP2) (La Hague, UP2-HAO) (UOX) (La Hague, UP3) (La Hague, UP2-800)		
•	UK	1994	(Sellafield, THORP)		
	• •	 U.S.A. UK France UK 	 U.S.A. 1950s (Sa UK 1953 France 1958 1967 1976 1989 1994 UK 1994 		

• Japan 2007 (Rokkashomura)

PUREX main steps

1. DISSOLVE

2. EXTRACT

3. CONDITION

CEA / Nuclear Energy Division

PUREX Process : 1. « HEAD-END »

<u>GOAL</u> : SOLUBILIZE ALL THE SPENT FUEL COMPONENTS

STEPS : SHEARING- DISSOLUTION-CLARIFICATION

DOWNSTREAMS :

1 – DISSOLUTION LIQUOR (U, Pu, P.F., A.M.)] to next steps		
2 - "HULLS " (and end-pieces) (AP)) \ to be conditionned		
3 – DISSOLUTION RESIDUES (noble metals,)	f to be conditionned		
4 – GASEOUS EFFLUENTS (gaseous FPs)] to be purified		
	before release		

œ

✓ <u>UO₂ Dissolution</u>: $\Delta H = -420 \text{ J/kg}$ < 2M : UO₂ + 8/3 HNO₃ → UO₂ (NO₃)₂ + 2/3 NO + 4/3 H₂O > 8M : UO₂ + 4 HNO₃ → UO₂ (NO₃)₂ + 2 NO₂ + 2 H₂O UO₂ + 3 HNO₃ → UO₂ (NO₃)₂ + ¹/₂ NO + ¹/₂ NO₂ + 3/2 H₂O

✓ PuO_2 Dissolution : PuO₂ + 4 HNO₃

 $PuO_2 + 4 HNO_3 \rightarrow Pu (NO_3)_4 + 2 H_2O (very slow)$

PUREX Volatile Radionuclides

œ	➔ Iodine	(I ₂)	[¹²⁹]		
	→ Carbone	(CO ₂)	[¹⁴ C]		
	→ Tritium	(HTO)	[³ H]		
	Krypton	(Kr)	[⁸⁵ Kr]		
	To be considered too : - NO/NO ₂				

The principle of solvent extraction

$$(M)_{aq} \leftrightarrows (M)_{org}$$

Very diverse mechanisms:

- solvatation (complexes)
- ion exchange (anions, cations)
- chelation

$$D_{M} = \frac{\left[\overline{M}\right] + \left[\overline{complex 1}\right] + \left[\overline{complex 2}\right] + \dots}{\left[M\right] + \left[\overline{complex 1}\right] + \left[\overline{complex 2}\right] + \dots}$$
(all aqueous species)

For two elements,
$$M_1$$
 and M_2 to be separated :
$$FS_{M_1/M_2} = \frac{D_{M_1}}{D_{M_2}}$$

« Non compensated « extraction

œ

• « Passive extraction », solvation of a lipophilic compound in the organic phase

« Non compensated « extraction

Solvatation of a neutral complex:

(acid or metallic salt in the initial aqueous solution)

$$M^{n+} + e \overline{E} + n A^{-} \xrightarrow{K_{ex}(M)} \overline{MA_{n}E_{e}} \rightarrow \overline{MA_{n}E_{e}}$$
$$K_{ex}(M) = \frac{\left[\overline{MA_{n}E_{e}}\right]}{\left[M^{n+}\right] \cdot \left[\overline{E}\right]^{e} \cdot \left[A^{-}\right]^{n}} = \frac{D_{M}}{\left[\overline{E}\right]^{e} \cdot \left[A^{-}\right]^{n}}$$

• Uranyl nitrate by TBP

• Am³⁺ by HDEHP

Synergistic extraction

Synergistic extraction...

CEA / Nuclear Energy Division

Uranyl Extraction by TBP

$UO_2^{2+} + 2 NO_3^{-} + 2 \overline{TBP} \Leftrightarrow \overline{UO_2(NO_3)_2, 2 TBP}$

Uranyl Extraction by TBP

Actinide extraction by TBP

	OXIDATION STATE					
	III	IV	V	VI		
U		X				
Np		X				
Pu	X			X		
Am	X					
Cm	X					

PUREX U-Pu Extraction operation

PUREX with pulsed comumns : principle

From PUREX to COEX[™]: co-extraction principle (U-Pu-Np)

Trieste 17-18/11/2009

Solvent extraction

• Counter-current separation process

Industrial contactors

Cel- Pulsed columns

Centrifugal contactors

CEA / Nuclear Energy Division

• Extraction efficiency

- Distribution ratios of separated elements
 - High distribution ratios at the extraction step

$$D_{M} \times \frac{O}{A} >> 1 \Rightarrow E(\%) > 50\%$$

• Small distribution ratios at the stripping step $D_M \times \frac{O}{A} << 1 \Rightarrow E(\%) < \frac{50\%}{D_{M_1}}$

• High selectivity:
$$FS_{M_1/M_2} = \frac{m_1}{D_{M_2}} >> 1$$

- Fast kinetics of mass transfer
 - Both at extraction and stripping steps
 - Implementation in short time contactors
- Ligand stability
 - Both vs acidic hydrolysis and radiolysis

Distribution ratio

Ζ 89 90 92 91 93 95 96 97 98 99 100 101 102 103 94 **SYMBOL** Pa Pu Ac Th U Np Am Cm Bk Cf Es Fm Md No Lr

OXIDATION STATES

CHEMICAL BEHAVIOR:

Light actinides (Th to Pu): specific redox (PUREX basis)

⇒ Np recovery is achievable by PUREX

Heavier actinides (from Am) behave like lanthanides

⇒ An(III) recovery requires new separation processes

Np Extraction demonstration hot run

- A true challenge : a sophisticated partitioning chemistry under highly radioactive conditions
- ⇒ Fundamental research : a wide co-operative framework
 - exploration : new extracting systems
 - fundamentals : in-depth study of mechanisms at work

⇒ Applied research :

- process design
- lab experiments on actual spent fuel material
- « demonstration » experiments :

integration, representativeness, long-lasting performance

Scale : 1/100 à 1/1000

A few hundreds

of new molecules

Scale : 1/10000

Actinides Partitioning : the research path used

Am³⁺ and Cm³⁺ recovery : a 2-step strategy

1991-2006 : Partitioning results

œ

 \Rightarrow <u>The results</u> :

- ⇒ Neptunium: recovery up to 99%, with modified PUREX
- ⇒ Americium and Curium: recovery up to 99.9%, with DIAMEX-SANEX

Tested at CEA Atalante Marcoule hot labs on 15 kgs of EDF UOx spent fuel

⇒ Proven processes and technologies which can be applied

to other partitioning schemes

⇒ Further steps will be required prior to any industrial implementation

```
CEA / Nuclear Energy Division
```

DIAMEX demonstrative hot run, November 2005

SANEX demonstrative hot run, December 2005

CEA / Nuclear Energy Division

Fuel cycle, the MA heterogeneous recycling option

- U, Pu, <u>Np</u> by COEX™
- Am (and Cm) separation : simplified DIAMEX-SANEX,...
- Am (and Cm) recycled on dedicated « targets-blankets »

Co-extraction An (III) and Ln (III) with TODGA, using HNO₃ 4N

- Selective back-extraction of An (III)
 - With polyamino-carboxylic hydrophile complexing agent

- Advantages : simple scheme, TODGA synthesis low cost
- Drawbacks : high sensitivity of the Am-Cm back extraction step

to pH and temperature

Fuel cycle, the MA heterogeneous recycling option

- U, Pu, <u>Np</u> by COEX[™]
- Am (and Cm) separation : (DIAMEX-SANEX), (SANEX-TODGA)...
- Am (and Cm) recycled on dedicated « targets-blankets »

Actinide recycling : what fuel cycle option ?

GANEX demonstrative hot runs, 2008

CEA / Nuclear Energy Division

Heterogeneous multi-recycling

• Core : UPuO₂

 "CCAM": U<u>AM</u>O₂ (<u>AM</u>=Np/Am/Cm) (minor actinide-loaded blankets)

Recycling process : consolidation towards industrialization

CEA / Nuclear Energy Division

Modelling

- For what?
 - Reliable Calculation Codes
 - Draft flowsheets in industrial scale
 - Minimise number of experimental tests, steps and measuremer
 - Carry out operating analysis and transitory calculations
- How?
 - Phenomenological representation
 - Main equilibria during MA selective stripping

DIAMEX-SANEX:

- Extraction: M^{3+} + n (HDEHP) \Leftrightarrow [M, 3DEHP, HDEHP] + 3 H⁺
- Complexation: M³⁺ + HEDTA ⇔ (M,HEDTA) + 3 H⁺

SANEX-TODGA:

- Extraction: $M^{3+} + 3 NO_3^{-} + 3 TODGA \Leftrightarrow [M(NO_3)_3, 3 TODGA]$
- Complexation: M^{3+} + HEDTA \Leftrightarrow (M,HEDTA) + 3 H⁺

aqueous phase, Thermodynamics

Piloting process and in-situ analysis

Piloting process

- Identifying sensitive parameters via sensitivity analysis and transient calculations
 - pH, flowrate, temperature...
- Determine relevant points to be followed to detect serious malfunctioning
 - [cation]

In-situ measurements

- Am and Nd
 - Spectrophotometry adapted to « high activity »
- Solvent
 - Assessment of miniaturized mass spectrometers

Apparatus: adaptation

- To each step specificity
 - Solid Presence
 - Slow kinetics
- Implementing conditions
 - Example: comparison between DMDODHEMA
 - Lower interfacial Tension
 - Higher Viscosity
 - Phase density difference, ajustable via extractant concentration
 - Hydrodynamics tests to perform in pulsed columns (small diameter)
 - DMDOHEMA/HDEHP/TPH
 - TODGA/TBP/TPH

Extractant Synthesis

- New extractants: DMDOHEMA, TODGA, DEHiBA...
 - Identify malonamides capable of being synthetized at large scale (tons)
 - Cost assessment
 - Required purity

from kg to ton...

- **Objective : assessment of long term solvent behaviour**
- Clean up efficiency destined to remove acidic degradation products issued from hydrolysis/radiolysis

Continuous long term runs

Simulating 1-2 years of industrial operation

No significant impact on Hydraulic and Recovery performances

> Solvent studied: • DMDOHEMA/TPH • DMDOHEMA/HDEHP/TPH

Yet to be tested: ⇒ TODGA ⇒ DIAMEX-SANEX

MARCOULE *γ*-Irradiation loop

Need of solvent purification step

- Recover pure diluent
- Extractant concentration
- Decontamination/some degradation products
- S Thermosensitive molecules
- Assessment
 - Evaporation under vacuum
 - Flash distillation
 - Supercritical carbon dioxide extraction

Innovative process : results to be obtained for 2012

