

2055-38

Joint ICTP/IAEA School on Physics and Technology of Fast Reactors Systems

9 - 20 November 2009

Introduction to structural materials and their behaviour in a fast reactor fuel assembly

2 Radiation Damage

Principles of Design of Radiation Resistant Materials for Fast Reactor Fuel Assembly

> M. Vijayalakshmi Indira Gandhi Center for Atomic Research Kalpakkam India

Introduction to structural materials and their behaviour in a fast reactor fuel assembly

2. Radiation Damage

Principles of Design of Radiation Resistant Materials for Fast Reactor Fuel Assembly

MODULE 2: RADIATION DAMAGE - SCOPE

VOID SWELLING: NUCLEATION & GROWTH OF VOIDS

DO ALL SINKS REACT WITH DEFECTS THE SAME WAY? NATURE OF SINKS IN VOID GROWTH;

TYPE OF SINKS: NEUTRAL, BIASED & VARIABLE BIAS

NEUTRAL

absorption α D $_{i,\nu}$ & (C $_{i/\nu}$ xal – C $_{i/\nu}$ $^{sink\ surface}$) rate

BIASED SINKS - DISLOCATIONS

2% more bias For I's than V's.

I's drift towards Core driven by Stress gradient

I's enhance climb; So unsaturable sink

TYPE OF SINKS VARIABLE BIAS SINKS: COHERENT PRECIPITATES & IMPURITY ATOMS

CAPTURES I OR V'S ; RETAINS ITS IDENTITY TILL IT ANNIHILATES WITH THE OPPOSITE !!!!

INCREASES RATE OF V + I \rightarrow **EVALUATE:** RECOMBINATION PROBABILITY

VOID SWELLING: solution to growth rate equations

$$\rho_V = \int \rho_V \otimes dR$$

Total Number Density of voids

Number of voids / cm² of radii R & R+dR

 $R_{av} = (1/\rho_V) \int R \rho_V \otimes dR$

Volumetric swelling rate

 $dV/dt = 4\Pi R^2 (dR/dt)$

 $\Delta V / V = (4/3) \prod R_{av}^{3} \rho_{V}$

VOID SWELLING

DOSE; TEMPERATURE; COLD WORK & DOSE RATE.

Void swelling – dose dependence

- LOW DOSES -→ LOW AMOUNT
 PRODUCTION OF POINT
 DEFECTS ; NOT ENOUGH TO
 FORM MORE VOIDS & ALLOW
 THE AMBRYOS TO GROW.
- HIGH DOSES --→ LOSSES TERM TO (RECOMBINATION + SINKS)
 IS OFFSET BY PRODUCTION

JOB OF MATERIALS SCIENTISTS --→ IDENTIFY A MATERIAL WITH AS HIGH THRESHOLD AS POSSIBLE

VOID SWELLING: TEMPERATURE DEPENDENCE

STRONG DEPENDENCE ON TEMPERATURE

VACANCY DIFFUSION COEFFICIENT - D_v

• EQUILIBRIUM THERMAL VANCANCY CONCENTRATION – C_v^0

LOW TEMPERATURE

- LOW (D_v)MOBILITY OF VACANCY CONCENTRATION
- BUILD UP OF FREE VACANCIES & INTERSTITIALS
- HIGHER RECOMBINATIONS
- NO EXCESS CONCETRATION OF VACANCIES
- LESS VOIDS

HIGH TEMPERATURE

- DEFECT CONCENTRATION ~ THERMAL EQUILIBRIUM CONCENTRATION
- LESS SUPERSATURATION (S = C_V / C_V^0)
- LESS DRIVING FORCE FOR VOID FORMATION
- EMISSION OF VACANCIES FROM VOIDS;
- LESS NO OF VOIDS

Regularity of swelling

ChS-68 of fuel pin cladding material of the first modernization core of BN-600.

TEMPERATURE EFFECT

Fig. 8.17. Construction of the total void swelling rate \hat{R} from its components $\hat{R}_0 F$ and \hat{R}_{th}

- AS 'T' INCREASES, VACANCIES BECOME MORE AND MORE MOBILE; NET ARRIVAL OF VACANCIES TO VOIDS INCREASE; VOIDS GROW.
- AT HIGH ENOUGH TEMPERATURES, C_v⁰ INCREASES, S REDUCES, THERMAL EMISSION OF VACANCIES FROM VOID SURFACE INCREASES. VOID SHRINKS.
- ✤ BALANCE IS VOID GROWTH.

VOID SWELLING: EFFECT OF DOSE RATE

DOSE RATE DIFFERENCE USING DIFFERENT INCIDENT PROJECTILES

>Electrons	≻Light ions	≻Heavy ions	
 ≻High dose rate (10-3 dpa/s) >no cascades 	 >moderate dose rate (10-4 dpa/s) >Good depth of penetration >Flat damage profile over tens of µm 	 Very limited depth of penetration Strongly peaked damage profile 	
≻Insitu analysis (TEM)		➢High dose rate	
	Smaller, widely separated cascades	➤Cascade production	

Time to build up dose: Reactor vs other irradiation sources

- 10-6 to 10-7 dpa/s in a reactor
- Time for 10 dpa 4 to 5 months against one day in heavy ion accelerator
- few hrs in HIGH VOLTAGE electron microscope

Void Swelling : - Dose Rate

on Irradiation Dose rate

$$\frac{T_1}{T_2} = A \ln \left(\frac{\Phi_2}{\Phi_1} \right)$$

WHY ? OF DOSE RATE BEHAVIOUR

- HIGHER DOSE RATE INCREASES RATE OF PRODUCTION OF CONCENTRATION OF POINT DEFECTS ;
- RECOMBINATION RATE α PRODUCTION RATE \rightarrow DOSE RATE;
- SUPERSATURATION REDUCES & HIGHER TEMPERATURE IS REQUIRED TO INTRODUCE THE DIFFERENCE IN THE PRODUCTION / LOSS TERM, TO ACHIEVE REQUIRED SUPERSATURATION
- T_{max} SHIFTS TO HIGHER TEMP.

EFFECT OF DISLOCATIONS

Void growth rate in a lattice with biased sinks, like dislocations

$$dR_{o}/dt = [(K_{o}(Z_{i}-Z_{v})\rho_{d}\Omega)] / [R(Z_{v}\rho_{d}) + 4\pi R \rho_{v} + 4\pi R_{cp} \rho_{cp})]$$

Bias due to dislocations

Vacancies absorption at dislocations

If $Z_i = Z_v$, voids do not grow.

EFFECT OF DISLOCATIONS

Q: RATIO OF SINK STRENGTH

Let Q = dislocation sink strength / void sink strength

Void Swelling : Temperature & Dislocation Density

WNINM Structural approach – dislocation factor

Effect of cold work level on EI847 swelling

Progress in c.w. level of austenitic steel

3	=	15	%	
3	=	18	± 2	%
3	=	20	± 3	%
3	=	20	-25	%

What is the limiting dose at which the favourable effect of C.W. increase disappears?

METHODS TO STUDY VOID SWELLING

- MODELLING : MONTE-CARLO METHODS, MOLECULAR DYNAMICS, CONTINUUM MECHANICS, RATE THEORY, DISLOCATION DYNAMICS
- **EXPERIMENTAL METHODS:** DENSITY MEASURE-MENTS, STEP-HEIGHT, POSITRON ANNIHILATION, RESISTIVITY, TEM UNDER NEUTRON, ION IRRADIATION CONDITIONS.

METHODS TO STUDY VOID SWELLING

Hot cells at for PIE of FBTR Fuel & Structural Materials

IN-SERVICE PERFORMANCE – WRAPPER OF FBTR

VOIDS in 20 % CW 316 SS AFTER 40 dpa

Ni3Si – G Phase formed ONLY during irradiation – due to RIS

ATOMS ARE REMOVED FROM BASAL PLANES & DEPOSITED IN THE (11-0) PLANES

IRRADIATION HARDENING MECHANICAL BEHAVIOUR OF MATERIALS (FORGET IRRADIATION FOR A MOMENT)

Engineering strain, e

IRRADIATION HARDENING

IRRADIATION HARDENING

$$\Delta \sigma_{\rm s}$$
 irrad. = $(\phi t)^{1/2}$

Shear punch test plot for various dpa

IRRADIATION CREEP

- WHAT IS CREEP ?
- WHAT ARE CREEP MECHANISMS ?
- WHAT IS IRRAD. CREEP ?
- SIPN & SIPA IRRAD. CREEP MECHANISMS
- IDENTIFICATION OF IRRAD. CREEP

Typical Creep-curve: THERMAL ONLY

CREEP MECHANISMS

GRAIN BOUNDARY CREEP MECHANISMS

HARDENING MECHANISMS

Fig. 14.4. Schematic showing the pile-up of dislocations behind an obstacle on the glide plane of the dislocations

Fig. 14.7. Arrangement of a network of Frank-Read sources that produce dislocations that climb to annihilation (after [5])

(b)

IRRADIATION CREEP

- AUGMENTATION OF THERMAL CREEP BY IRRADIATION OR
- INTRODUCING CREEP AT T's WHERE THERMAL CREEP IS KNOWN 'NOT TO OCCUR'
- CREEP RATE CHANGED WITH DOSE, DOSE RATE – SIGN OF IRRAD. CREEP

IRRADIATION CREEP IN EBR-II

Fig. 2. Diameter changes induced at capsule center in four selected creep capsules constructed from 20% cold-worked AISI 316 stainless steel and irradiated in EBR-II. The hoop stress levels ranged from 0 to 343 MPa (0-50 ksi).

IRRADIATION CREEP MECHANISMS: SIPA & SIPN

- V 's & I's ABSORBED PREFERENTIALLY
- I's TO \bot s WITH EXTRA HALF PLANE $\bot\,\sigma$

• V's TO OTHER \perp s

LOOPS NUCLEATE PREFERENTIALLY

σ

• (INT.LOOPS)_{PLANES $\perp \sigma_{tensile}$ >>> same in planes II $\sigma_{tensile}$}

• (VAC.LOOPS)_{PLANES $\perp \sigma$ tensile<<<< same in planes II $\sigma_{tensile}$}

Swelling assisted creep

- Swelling enhances creep rate at smaller dose levels
- Creep disappears beyond certain dose
- After this dose, swelling continues, creep disappears

Swelling assisted creep: Mechanisms

- when voids form, V + I are absorbed in large numbers by the voids.
- Less I flow to dislocations -→ creep reduces
- Swelling saturates due to low excess vacancy absorption

Irradiation embrittlement

 $T_{c} = C^{-1} [ln Bk_{s} d^{1/2} / (\beta \gamma \mu - k_{y} k_{s})]$

RADIATION DAMAGE

