

2055-37

Joint ICTP/IAEA School on Physics and Technology of Fast Reactors Systems

9 - 20 November 2009

Radiation damage of structural materials for fast reactor fuel assembly

M. Vijayalakshmi Indira Gandhi Center for Atomic Research Kalpakkam India

RADIATION DAMAGE OF STRUCTURAL MATERIALS FOR FAST REACTOR FUEL ASSEMBLY

M.VIJAYALAKSHMI, IGCAR, DAE, INDIA vijayalakshmi.muraleedharan@gmail.com

1. Introduction to structural materials and their behaviour in a fast reactor fuel assembly

- 2. Radiation Damage
- 3. Principles of Design of Radiation Resistant Materials for Fast Reactor Fuel Assembly

About Indira Gandhi Centre for Atomic Research, KALPAKKAM, INDIA

SOUTHERN PART OF INDIA;

SECOND LARGEST ORGANISATION IN DEPARTMENT O F ATOMIC ENERGY;

SINCE 70's, DEVELOPING FAST REACTOR TECHNOLOGY;

COMMISSIONED FAST BREEDER TEST REACTOR IN 1985;

COMMERCIAL PROTOTYPE FAST BREEDER REACTOR IS TO BE COMMISSIONED;

EXPERTISE BUILT IN : REACTOR PHYSICS, DESIGN, CONSTRUCTION, COMMISSIONING, OPERATION & MAINTENANCE,

> SAFETY, POST-IRRADIATION EXAMINATION, IN-SERVICE MONITORING, ROBOTICS, REPROCESSING & WASTE MANAGEMENT;

MATERIALS SCIENCE, RADIATION DAMAGE, METALLURGY & MATERIALS TECHNOLOGY

SCOPE OF MODULE 1

- TARGETS FOR MATERIALS SCIENTISTS
- CLASSIFICATION & ENGINEERING PROBLEMS
- INTERACTION OF NEUTRONS WITH LATTICE ATOMS
- POINT DEFECTS & THEIR CLUSTERS

TARGETS FOR MATERIALS SCIENTISTS FOR NUCLEAR REACTORS

HIGH BURN-UP MATERIALS; LONG LIFE – 100 YEARS; HIGH TEMPERATURE CAPABILITIES

WHY INCREASE BURN-UP?

INCREASE BURN-UP-- \rightarrow INCREASES RESIDENCE TIME IN CORE -- \rightarrow REDUCES COST

SCOPE OF MODULE 1

- TARGETS FOR MATERIALS SCIENTISTS
- CLASSIFICATION & ENGINEERING PROBLEMS
- INTERACTION OF NEUTRONS WITH LATTICE ATOMS
- POINT DEFECTS & THEIR CLUSTERS

CLASSIFICATION OF STRUCTURAL MATERIAL IN FAST REACTOR FUEL ASSEMBLY

MATERIALS SELECTION CRITERIA: FAST REACTOR CORE COMPONENT MATERIALS

Criterion	Clad Tube	Wrapper Tube
Irradiation effects	Void swelling	Void swelling
	Irradiation creep	Irradiation creep
	Irradiation embrittlement	Irradiation embrittlement
Mechanical properties	Tensile strength	Tensile strength
	Tensile ductility	Tensile ductility
	Creep strength	
	Creep ductility	
Corrosion	Compatibility with	Compatibility with
	sodium	sodium
	Compatibility with fuel	
	Compatibility with FP	
Corrosion	Resistance under normal Na chemistry, Na-H2O reaction, fretting, wear	
	Good workability	
Inte	rnational irradiation experie	nce
as drive	er or experimental fuel subas	sembly
	Availability & Cost	

MACROSCOPIC EFFECT OF RADIATION ON STRUCTURAL MATERIALS

RADIATION DAMAGE IN CORE COMPONENT MATERIALS VOID SWELLING **DISTORTION IN SHAPE** 0.6 $\phi = 2 \times 10^{14} \text{ n cm}^{-2} \cdot \text{s}$ **RETAINING SAME VOLUME** 0.4 $\phi = 4 \times 10^{13}$ n cm⁻² · s Strain (%) 0.3 IRRADIATION IRRADIATION 0.2 GROWTH **CREEP MATERIALS** 0.1 Out of pile DEGRADATION 4000 IN 1000 2000 3000 Time (h) REACTORS 50 |-2-30×10²¹n/cm $1 \cdot 30 \times 10^{20}$ un 100/ 5-90 x 10 40 3.60 × n 1.19 Stress p.s.i.x10³ 8 8 IRRADIATION > BASE MATERIAL EMBRITTLEMENT HARDENING . WELD MATERIAL Unirradi Σ 20 8 IMPACT 10 20 40 50 100 200 30 -100 -50 150 250 1N zo i -150 0 TEST TEMPERATURE, C Extension.%

ENGINEERING PROBLEMS ----→ ATOMISTIC DEFECTS PRODUCED DURING IRRADIATION

SCOPE OF MODULE 1

- TARGETS FOR MATERIALS SCIENTISTS
- CLASSIFICATION & ENGINEERING PROBLEMS
- INTERACTION OF NEUTRONS WITH LATTICE
 ATOMS
- POINT DEFECTS & THEIR CLUSTERS

RADIATION DAMAGE : TYPES

Radiation Damage : CASCADE FORMATION

 $E = E_0 4\{(m_1 x m_2) / [m_1 + m_2]^2 \}$

ANIMATION

NUMBER OF DISPLACED ATOMS DEPEND ON T – PKA ENERGY

$$v(T) = \begin{cases} 0 & \text{for } T < E_{d} \\ 1 & \text{for } E_{d} < T < 2E_{d} \\ \frac{T}{2E_{d}} & \text{for } 2E_{d} < T < E_{c} \\ \frac{E_{c}}{2E_{d}} & \text{for } T \ge E_{c} \end{cases}$$

÷

TIME SCALES OF DAMAGE EVENTS

Time (s)	Event	Result
10 ⁻¹⁸	Energy transfer from incident pcle	Primary Knock On generated
10 ⁻¹³	Displacement of lattice atoms by PKO	Displacement cascade
10 ⁻¹¹	Energy dissipation, spontaneous recombination & clustering	Stable Frenkel pairs & defect clusters
10 ⁻⁸	Defect reactions by thermal migration	Single interstitial atom & vacancy recombination, clustering, trapping & defect emission

Four stages of damage & the final structure

Collisional

Thermal Spike

Quenching

Annealing.

=

TRY ANSWERING

- CONSIDER LATTICE OF ALUMIUNIUM AND TUNGSTEN. WHICH LATTICE WILL HAVE MORE DISPLACEMENTS, GIVEN THE SAME IRRADIATION CONDITIONS.
- TAKE AN ALUMINIUM LATTICE. IMPINGE ON IT A NEUTRON AND A NICKEL ION OF SAME ENERGY.
 WHICH OF THE TWO PRODUCE MORE DAMAGE

0-D defects: point defects – VACANCIES & INTERSTITILAS

A vacant lattice site is a vacancy

Thermodynamics of point defects

 $F \sim G = U + pV - TS = H - TS$

 ∇ Smix = k ln ω

FOR n defects & N sites,

w = { [N (N-1) (N-2)....(N-n+1)] / n !}

 $C = n / N = exp (-\nabla G f / kT)$

Under thermal equilibrium, vacancies are necessarily present: why? They reduce the total free energy of the system.

```
Cv = exp (-Efv / kT) X exp (Sfv / k)
```

SOME IMPORTANT BEHAVIOUR OF POINT DEFECTS

- FORMATION ENERGY OF VACANCIES < 0.6 1 eV
- SAME FOR INTERSTITIALS \sim 3-4 eV
- Migration energy for vacancies ~ 0.6 to 1 eV
- Same for interstitials ~ 0.06 eV

DIFFICULT TO FORM INTERSTITIALS THAN VACANCIES;

EASY TO MOVE INTERSTITIALS THAN VACANCIES

Point Defect evolution under irradiation:

Point Defect Balance Equations under irradiation: INCREASES WITH RATE OF PRODUCTION;

DECREASES WITH RECOMBINATION REACTIONS;MOBILITYDECREASES WITH LOSS TO SINKSDEPENDENT

• V + I -→ ■

• $V + s \rightarrow s \text{ or } | + s \rightarrow s$

- dCv / dt = Ko Kiv Ci Cv Kvs Cv Cs
- dCi / dt = Ko Kiv Ci Cv Kis Ci Cs,

POINT DEFECTS: segregation & phase instability

PHASE TRANSFORMATION DUE TO DEFECTS

> Free energy – crystal + defects

> > RADIATION INDUCED SEGREGATION

Free energy – parent crystal

Free energy – amorphous

SCOPE OF MODULE 1

- TARGETS FOR MATERIALS SCIENTISTS
- CLASSIFICATION & ENGINEERING PROBLEMS
- INTERACTION OF NEUTRONS WITH LATTICE ATOMS
- CLUSTERING OF POINT DEFECTS

CLUSTERING OF POINT DEFECTS: 2 and 3 D defect clusters

CLUSTERING OF POINT DEFECTS

VOIDS

+

VACANCY LOOPS

VOID GROWTH

RECAP

- REACTOR : CORE, OUT-OF-CORE & BALANCE OF PLANT
- CORE COMPONENT MATERIALS WRAPPER & CLAD MAX. DOSE, TEMP.
- IRRADIATION BY n's CAUSE CASCADE

GROWTH RATE OF VOIDS – FUNDAMENTAL TO VOID SWELLING

VOID SWELLING ---(∇ V/V) = [(4/3) π R³] X N_f (R)

NUCLEATION (SUPERSATURATION OF VACANCIES) + GROWTH (Arrival rate of net vacancies on void surface)

NUCLEATION OF EMBRYONIC VOIDS

NUCLEATION OF VOIDS : CERTAIN FEATURES

- DIRECTLY PROPORTIONAL TO HEIGHT OF ACTIVATION ENERGY;
- IRRADIATION INTRODUCES INTERSTITIALS & INCREASES THE
 ACTIVATION AND REDUCES NUCLEATION RATE
- CRITICAL VOID RADIUS ALSO DEPENDS ON ACTIVATION ENERGY;
- HIGHER SUPERSATURATION REDUCES CRITICAL VOID RADIUS.

GROWTH RATE OF EMBRYONIC VOIDS: RATE THEORIES

 $A_{net} = A_v = A_v = A_i = 4 \pi R D_v (C_v - C_v = 0) - 4 \pi R D_i (C_i - C_i = 0)$

 $dR/dt = (\Omega/R) [D_v (C_v - C_v^{Void}) - D_i C_i]$

RATE THEORY

SET UP POINT DEFECT BALANCE EQUATIONS;

GROWTH RATE EQUATIONS &

SOLVE TO ARRIVE AT THE

VOID GROWTH RATE- \rightarrow **R**

VOID SWELLING ---

 $(\nabla V/V) = [(4/3) \pi R^3] X N_f(R)$

SUMMARY OF MODULE 1

MATERIALS WITH HIGH BURN-UP, LONG LIFE AND HIGH TEMPERATURE CAPABILITY FOR LOWER COST, BETTER THERMAL EFFICIENCY;

CATEGORISE THE DIFFERENT CIRCUITS IN A REACTOR AS CORE, OUT-OF-CORE & BALANCE OF PLANT; FOCUS ON CORE.

VOID SWELLING, IRRADIATION GROWTH, IRRADIATION HARDENING, IRRADIATION CREEP, IRRADIATION EMBRITTLEMENT – FIVE EFFECTS IN CORE;

ALL THE ABOVE EFFECTS ---- \rightarrow RADIATION DAMAGE DUE TO NEUTRONS

SUMMARY.... (contd...)

CASCADE FORMATION: COLLISIONS, THERMAL SPIKE, QUENCHING & ANNEALING

POINT DEFECTS & THEIR CLUSTERS; CHARACTERISTICS OF VACANCIES AND INTERSTITIALS

POINT DEFECTS CLUSTER INTO HIGHER DIMENSIONAL CLUSTERS-LOOPS AND VOIDS

SWELLING : NUCLEATION & GROWTH OF VOIDS

RATE THEORY : SETTING UP OF POINT DEFECTS BALANCE EQUATIONS, GROWTH RATE EQUATIONS & SOLVE FOR R.

ENJOY FINDING OUT, WHY?

It is difficult to create interstitial than vacancy.

Displacement cascade does not form during electron irradiation.

It is easy to form vacancy in Nickel than the intermetallic, Nickel Aluminide.

Vacancies are thermodynamically stable defects, while interstitials are not.

MODULE 2: RADIATION DAMAGE

HOPE U NJOYED & LEARNT MORE