

Ab initio electronic structure calculations on the Grid

M. Sterzel – ACC "Cyfronet" AGH

COST Training School on Molecular and Material Science Grid Applications

Trieste, 15-18 September 2008

www.eu-egee.org

EGEE and gLite are registered trademarks

Outlook

1

• Aim of this talk

- To demonstrate benefits of Grid computing in chemistry

• Parts of the talk topics

- Work on the Grid vs. cluster
- Chemical Software packages available on the Grid
 - Parallel execution
- Typical Chemical Computations on the Grid
 - Geometry optimizations
 - Numerical Frequencies
 - Chemical reactions
- Final Remarks

Authorization

On a cluster - password

okrucyusz:~ sterzel\$ ssh ymsterze@ui Last login: Wed Mar 5 18:40:24 2008 from ha2rtr.agh.edu.pl [ymsterze@ui ymsterze]\$

- On the grid certificate (Grid identity card)
 - User has to be a member of Virtual Organization (at least one)
 - Virtual Organization determines the resources user can use
 - To access grid resources user needs to obtain proxy:

[ymsterze@ui ymsterze]\$ voms-proxy-init -voms gaussian Your identity: /C=PL/O=GRID/O=Cyfronet/CN=Mariusz Sterzel Enter GRID pass phrase: Creating temporary proxy Done Contacting voms.cyf-kr.edu.pl:15001[/C=PL/O=GRID/O=Cyfronet/ CN=voms.cyf-kr.edu.pl] "gaussian" Done Creating proxy Done Your proxy is valid until Thu Mar 6 07:20:50 2008

Job file

• Grid JDL file

Executable :	= "/bin/bash";	
Arguments :	= \$VO_GAUSSIAN_SW_DIR/g03	/gaussian.x water.com";
JobType :	= "MPICH";	PBS file
NodeNumber :	= 4;	T DO INC
StdOutput = StdError = InputSandbox = OutputSandbox	<pre>= "water.out"; = "water.err"; = {"water.com"}; = {"water.out", "water.log", "water.err" };</pre>	<pre>#!/bin/bash #PBS -1 ncpus=4 #PBS -q long #PBS -0 water.out #PBS -e water.err #PBS -N my_job_name #PBS -M my@email #PBS -m e</pre>
		export g03root=/somewhere

. \$g03root/g03/bsd/g03.profile

\$g03root/g03 water.com

Job management

- PBS
 - qsub submit job to a queue
 - qdel delete job from a queue
 - qstat show job status in a queue

EGEE Grid

- glite-wms-job-submit submit job to the Grid
- glite-wms-job-delete remove job from the Grid
- glite-wms-job-status show status of the job on the Grid
- glite-wms-job-output retrieve job files from the Grid

... just a few new commands...

- Freely available packages on EGEE Grid:
 - GAMESS
 - DALTON
 - CPMD
 - Newton X
 - DL_POLY
 - NAMD
 - RWAVEP

- GROMACS
- Autodock
- Tinker
- Solvate
- PIC-DMSC
 - MCGBgrid
 - QMC

- ABCtraj
- VENUS
- CRBS
- LM
- COLUMBUS
- DINX
- Abinit
- Commercial packages on EGEE Grid:
 - Gaussian
 - Turbomole
 - Wien2k

- Why Gausian?
 - Large number of computational methods implemented
 - One of the first ab initio codes
 - The most popular among communities
 - User friendly
 - Available for many platforms along with GUI
- Gaussian VO
 - Invented and operated by ACC CYFRONET
 - All license issues confirmed with Gaussian Inc,
 - Open for every EGEE user
 - Any computing centre with site Gaussian license may support it (4 supporting centres, another 3 in the line)
 - 30+ users since the start in September 2006
 - VO manager Mariusz Sterzel (m.sterzel@cyfronet.pl)
 - Enabled for parallel execution up to 8 processors

Advantages:

- Probably the fastest B3LYP implementation
- Analytical gradients for excited states at DFT and CC2 levels
- Variety of fitting approaches speeding up calculations
- Very well scalability during parallel execution
- Extremely fast and very well parallelised (ri)CC2 and (ri)MP2

Disadvantages:

- Limited number of DFT functionals (only "good" ones available)
- Lack of parallel version of analytical second derivatives
- Lack of parallel version of TDDFT
- Only NMR chemical shifts implemented, no spin-spin couplings

As a user:

- Register at:
 - https://voms.cyf-kr.edu.pl:8443/voms/gaussian
- Wait for VOMRS admin acceptance
- voms-proxy-init --vo gaussian and you are ready to use the program...

As a participating centre:

- Just sent an e-mail concerning participation to VO manager
- After confirmation of the license status at your centre with Gaussian Inc, detailed information concerning set-up will be sent back to you

More details at:

http://egee.grid.cyfronet.pl/Applications/gaussian-vo/

Past:

- Serial jobs only
- Job of MPICH type always enforced execution of mpirun

Present

- mpirun no longer enforced
- Instead a wrapper script can be executed which will automatically set up environment for required MPI flavour
- No possibility to request desired # of processors on a WN

... Unfortunately not all sites are set up...

- "Old codes" mostly written in FORTRAN
- Serial parallel execution added later (with exceptions)
- Different parallelization models used
- Low scalability in many cases
- Only selected computational methods parallelized

... all that makes parallel grid ports of chemical software even more complicated

Selected cases

- Gaussian
 - Parallelization via OpenMP or Linda
 - OpenMP SMP machines or multiprocessor/core clusters up to # of processors/cores on WN
 - Linda allows the parallel execution between nodes. Requires equal # of processors for each WN
 - For Linda additional expenses required (commercial package), available only for specific platforms
- Turbomole
 - Uses MPI currently HPMPI
 - No specific requirements
- GAMESS
 - Uses sockets but MPI execution possible (slower)
- ADF
 - Uses MPI (MPICH, OpenMPI, HPMPI, ...)
 - One of the best parallelized QC codes // to my knowledge ;-)

- Gaussian
 - Parallel execution via OpenMP on a single WN up to # of processors/cores available on that worker node
 - Necessarily queue system set-up requires a Site admin help
 - Torque set-up:
 - Modification of /var/spool/pbs/torque.cfg
 to: SUBMITFILTER /var/spool/pbs/submit_filter.pl
 - Other settings -- typical
 - Job has to be of MPICH type
 - # of processors controlled via NodeNumber variable
 - Gaussian %Nproc route is automatically set-up by script executing Gaussian
 - Execution with 8 processors per job possible.

Sample script

Enabling Grids for E-sciencE

Executable	=	"/bin/sh";
Arguments	=	<pre>"\$GAUSSIAN_SW_DIR/gaussian.run myfile.com";</pre>
JobType	=	"MPICH";
NodeNumber	=	8;
InputSandbox	=	{"myfile.com"};
StdOut	=	"myfile.out";
StdErr	=	"myfile.err";
OutputSandbox	=	{"myfile.log", "myfile.chk",
		<pre>"myfile.out", "myfile.err"};</pre>
Requirements	=	other.GlueCEUniqueID=="ce.cyf-kr.edu.pl"

- Turbomole
 - No special set up except shared directory needed, # of processors automatically discovered by Turbomole scripts

• NAMD

 Similar to Turbomole. If the NAMD executing script was set-up properly during installation the necessarily "node file" is created every time program is executed

• GAMESS

- Depends on Grid port
- In case of MPI no additional input needed
- DDI case may require WN reconfiguration especially if large DDI memory is requested by a job

Scheduling time

- MPI jobs
 - 4 proc./job -- usually less than hour
 - 8 proc./job -- waiting time even 3-4 hour
- OpenMP jobs
 - Job waiting time much longer, heavily depends on site overload
 - 4 proc./job -- from less than hour up to 6 hours
 - 8 proc./job -- in some cases job waiting time exceeds 12 hours

Parallel job execution can be inefficient in case of short (less than 24 h) jobs

- Tasks to which Grid can be applied directly:
 - Conformational analysis
 - Numerical frequency computations
 - Zero Point Vibrational Averaging
 - Property computations for series of geometries from Molecular Dynamics simulation
 - Determination of chemical reaction paths
 - Determination of potential energy surfaces (PES)
 - ... all kind of "brute force" tasks, or tasks which operate on huge data sets

Other tasks

 Computations need to to be planned in order to maximize benefits from the grid computing

An example

Geometry optimization:

- Steep potential
 - Few steps needed

- Flat potential
 - Many steps needed
 - Energy and gradient convergence have to be increased to high values

PCP complex

Enabling Grids for E-sciencE

Enabling Grids for E-sciencE

EGEE-III INFSO-RI-031688

eeee)

Enabling Grids for E-sciencE

- Computations of the whole molecule are not possible
- System needs to be modeled
 - For this we need:
 - Chlorophyll A and peridinin ground and excited states geometries and normal modes
 - The geometry of whole complex
 - A little programming (tetramer model, energy transfer model)

- Computations of the whole molecule are not possible
- System needs to be modeled
 - For this we need:
 - Chlorophyll A and peridinin ground and excited states geometries and normal modes
 - The geometry of whole complex
 - A little programming (tetramer model, energy transfer model)

... a lot of luck

First step – Peridinin

Enabling Grids for E-sciencE

First step – Peridinin

Enabling Grids for E-sciencE

- A long peridinin chain makes usual gradient based optimization inefficient
- Instead we propose following scheme:
 - MD for peridinin (force field level)
 - Geometry preoptimization for series of MD snapshots (semi empirical or ~ RHF/STO-3G level)
 - "Final" geometry optimization for few lowest energy MD snapshots (CASSCF/PT2 level)
 - Verification of the minima by frequency calculations
 - Excited state geometry optimization with ground state as a starting point
 - Again, minima verification via vibrational analysis
 - Verification of obtained data by comparison with experiment

... a process that results interconversion of molecules

H—CN → CN—H

Points of interest:

- Structure of substrates and products
- Structure of active complex at TS
- Reaction path

Points of interest:

- Structure of substrates and products
- Structure of active complex at TS
- Reaction path(s)

Enabling Grids for E-sciencE

Main problem – TS determination

Enabling Grids for E-sciencE

Main problem – TS determination

Enabling Grids for E-sciencE

Main problem – TS determination

Enabling Grids for E-sciencE

Main problem – TS determination

'reaction coordinate'

Enabling Grids for E-sciencE

Main problem – TS determination

'reaction coordinate'

TS verification – vibrational analysis – one imaginary frequency!

N₂O braking on oxide surfaces – possible mechanisms

• Electron transfer

1. $N_2 O + X$

N₂O braking on oxide surfaces – possible mechanisms

• An Oxygen transfer

Enabling Grids for E-sciencE

Enabling Grids for E-sciencE

Reaction paths:

45

Computational details:

- Gaussian 03 D.01
- BP86 functional
- Basis set of double- ζ quality

Timings:

- CPU time for SP calculation approx 7 hours
- 15 paths 10-50 energy points on each path
- In total about 250 energy points calculated

Conformational searchers

• To determine lowest energy structure

Conformational searches

Enabling Grids for E-sciencE

Harmonic frequencies

Enabling Grids for E-sciencE

Numerical frequency computations for lycopene

- 96 atoms, 2-3-96+1=577 independent computation steps
- Software: GAMESS version June 2005
- VOCE VO resources used
- Methodology: B3LYP, cc-pVDZ basis set
- Computations done on approx. 100 processors (ia64 and i386)
- CPU time for single computation:
 - Intel Xeon 2.8Gh 14h 39'
 - Intel Itanium 2 1.3Gh 12h 8'
- Total time:
 - single CPU 330 days (estimated)
 - EGEE Grid 3 days

- Access to the Grid is easy, does not differ to much from queue system usage
- EGEE Grid offers variety of software packages for chemical computations. A parallel execution can be made as simple for the user as a serial execution is now
- It is always possible to find solution for parallel execution even if computational platform does not directly support certain parallelization model
- With a little of planning every computational chemistry task may benefit from the Grid platform