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A: Nobody ever promised you a rose garden.

Lecture 2: The Landau Theory of Fermi Liq-

uids

Now, as an illustration, we will derive the effective field theory of the low

energy excitations in a conductor. As far as I know, this subject is not

presented in this way anywhere in the literature. However, it is clear that

the essential idea is entirely familiar to those in the field. It is implicit in the

writings of Anderson, and recently has been made more explicit by Benfatto

and Gallavotti, and Shankar.

Before starting, let me describe one chain of thought which led me to this.

Introductions to superconductivity often point out the following remarkable

fact. In ordinary metallic superconductors, the size of a Cooper pair may be

as large as 104 Å. The orbital thus overlaps 1010 or more other electrons, with

the characteristic electronic interaction energies being as large as an electron

volt or more. The BCS theory neglects all but the binding interaction be-

tween the paired electrons, which is of order 10−3 eV. Yet this leads to results

which are not only qualitatively correct but also quantitatively: calculations

in BCS theory are supposed to be accurate to order (m/M)1/2, where m is

the electron mass and M the nuclear mass. Further, while the BCS theory is

for weak electron-phonon coupling, it has a strong-coupling generalization,

Eliashberg theory, which for arbitrary coupling remains valid to accuracy

(m/M)1/2. This is again remarkable, because solvable field theories in 3 + 1

dimensions are few and far between.

The BCS and Eliashberg theories are derived within the Landau theory

of Fermi liquids, which treats a conductor as a gas of nearly free electrons.

The justification for this appeals to the notion of ‘quasiparticles,’ which are

dressed electrons, the neglected interactions being absorbed in the dressing.

The term quasiparticle is not in common use in particle theory, nor is the
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notion that a strongly interacting theory can be turned into a nearly free

one just by such dressing. What we will see is that in fact this theory is a

beautiful example of an effective field theory. The neglected interactions can

be regarded as having been integrated out, in the usual effective field theory

sense. This is possible because of the special kinematics of the Fermi surface.

Further, the resulting theory is solvable because there are almost no relevant

or marginal interactions, in a sense that will be made clear.

We begin by identifying the characteristic scale. The electronic properties

of solids are determined by e, h̄ and m, out of which we can construct the

energy e4m/h̄2 = 27 eV. Typical electronic energies, such as the width of the

conduction electron band, are actually slightly smaller than this, say E0 ∼ 1

to 10 eV. The other possible constants, M and c, are so much greater than

the electron mass and velocity that we can treat them as infinite. Later we

will introduce 1/M effects (lattice vibrations). We will see that the fact that

solids are near the M = ∞ limit is a great simplification. Spin-orbit coupling

and other 1/c effects also are important in some situations, but not for our

discussion.

In a conductor, we can excite a current with an arbitrarily weak electric

field, so the spectrum of charged excitations evidently goes down to zero

energy. This is the hierarchy of scales that makes effective field theory a useful

tool; we want the effective theory describing the excitations with E << E0.

Now, at E0 there are electrons with strong Coulomb interactions. We are

not going to try to solve this theory. Rather, we are in a situation similar

to the current algebra example, where we will write down the most general

effective theory with given fields and symmetries. At this point we need to

make a guess—what are the light charged fields? Let us suppose that they

are spin- 1
2

fermions, like the underlying electrons.4 It must be emphasized

that this is only a guess. It can be justified in the artificial limit of a very

dilute or weakly interacting system, but with strong interactions it is possible

4I will therefore call them electrons.
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Figure 1: Fermi sea (shaded) with two low-lying excitations, an electron at
p1 and a hole at p2.

that something very different might emerge. All we can do here is to check

the guess for consistency (naturalness), and compare it with experiment.

Begin by examining the free action

∫
dt d3p

{
iψ†σ(p)∂tψσ(p)− (ε(p)− εF)ψ†σ(p)ψσ(p)

}
. (12)

Here σ is a spin index and εF is the Fermi energy. The single-electron energy

ε(p) would be p2/2m for a free electron, but in the spirit of writing down the

most general possible action we make no assumption about its form.5 The

ground state of this theory is the Fermi sea, with all states ε(p) < εF filled

and all states ε(p) > εF empty. The Fermi surface is defined by ε(p) = εF.

Low lying excitations are obtained by adding an electron just above the Fermi

surface, or removing one (producing a hole) just below, as shown in figure 1.

Now we need to ask how the fields behave as we scale all energies by a

factor s < 1. In the relativistic case, the momentum scaled with the energy,

5A possible p-dependent coefficient in the time-derivative term has been absorbed into
the normalization of ψσ(p).
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but here things are very different. As figure 1 makes clear, as the energy

scales to zero we must scale the momenta toward the Fermi surface. To do

this, write the electron momentum as

p = k + l, (13)

where k is vector on the Fermi surface and l is a vector orthogonal to the

Fermi surface. Then when E → sE, the momenta scale k → k and l → sl.

Expand the single particle energy

ε(p)− εF = lvF(k) +O(l2), (14)

where the Fermi velocity vF = ∂pε. Scaling

dt→ s−1dt, dk→ dk, dl→ sdl, ∂t → s∂t, l → sl, (15)

each term in the action

∫
dt d2k dl

{
iψ†σ(p)∂tψσ(p)− lvF(k)ψ†σ(p)ψσ(p)

}
(16)

scales as s1 times the scaling of ψ†ψ. The fluctuations of ψ thus scale as

s−1/2.

Now we play the effective field theory game, writing down all terms al-

lowed by symmetry and seeing how they scale. If we find a relevant term we

lose: the theory is unnatural. The symmetries are

1. Electron number.

2. The discrete lattice symmetries. Actually, in the action (12), we have

treated translation invariance as a continuous symmetry, so that mo-

mentum is exactly conserved. Because the electrons are moving in a

periodic potential, they can exchange discrete amounts of momentum

with the lattice. Including these terms, the free action can be rediag-

onalized, with the result that the integral over momentum becomes a
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sum over bands and an integral over a fundamental region (Brillouin

zone) for each band. This does not affect the analysis in any essential

way, so for simplicity we will treat momentum as exactly conserved. In

addition, the action is constrained by any discrete point symmetries of

the crystal.

3. Spin SU(2). In the c→∞ limit, physics is invariant under independent

rotations of space and spin, so spin SU(2) acts as an internal symmetry.

Starting with terms quadratic in the fields, we have first

∫
dt d2k dlμ(k)ψ†σ(p)ψσ(p). (17)

Combining the scaling of the various factors, this goes as s−1+1−2/2 = s−1.

This resembles a mass term, and it is relevant. Notice, though, that it can

be absorbed into the definition of ε(p). We should expand around the Fermi

surface appropriate to the full ε(p). Thus, the existence of a Fermi surface

is natural, but it is unnatural to assume it to have any very precise shape

beyond the constraints of symmetry. Adding one time derivative or one factor

of l makes the operator marginal, scaling as s0; these are the terms already

included in the action (16). Adding additional time derivatives or factors of

l makes an irrelevant operator.

Turning to quartic interactions, the first is

∫
dt d2k1 dl1 d

2k2 dl2 d
2k3 dl3 d

2k4 dl4 V (k1,k2,k3,k4) (18)

ψ†σ(p1)ψσ(p3)ψ
†
σ′(p2)ψσ′(p4)δ

3(p1 + p2 − p3 − p4).

This scales as s−1+4−4/2 = s, times the scaling of the delta-function. Let us

first be glib, and argue that

δ3(p1 + p2 − p3 − p4) = δ3(k1 + k2 − k3 − k4 + l1 + l2 − l3 − l4)

∼ δ3(k1 + k2 − k3 − k4). (19)
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That is, we ignore the l compared to the k, since the former are scaling to

zero. The argument of the delta-function then does not depend on s, so the

delta-function goes as s0 and the overall scaling is s1. Pending a more careful

treatment later, the operator (18) is irrelevant. It is then easy to see that

any further interactions are even more irrelevant.

To summarize, with our assumption about the nature of the charge carri-

ers the most general effective theory has only irrelevant interactions, becom-

ing more and more free as E → 0. The assumption of a nearly free electron

gas is thus internally consistent, and in fact is a good description of most

conductors. It should be emphasized that this is just a reformulation of a

simple and standard solid state argument, to the effect that the kinematics of

the Fermi surface plus the Pauli exclusion principle exclude all but a fraction

E/E0 of possible final states in any scattering process.

There are two complications to discuss before the analysis is complete.

The first is phonons. Because a crystal spontaneously breaks spacetime sym-

metries, the low energy theory must include the correponding Goldstone

excitations. We therefore introduce a phonon field D(r), which is equal to

M1/2 times the local displacement of the ions from their equilibrium posi-

tions.6 The free action for this field is

1

2

∫
dt d3q

{
∂tDi(q)∂tDi(−q)−M−1Δij(q)Di(q)Dj(−q)

}
. (20)

In the time derivative term, the M in the kinetic energy of the ions cancels

against the factors of M−1/2 from the definition of D; again we have made

a finite rescaling to eliminate a q-dependent coefficient. The restoring force,

on the other hand, is to first approximation independent of M and so the

M−1 comes from the definition of D.

6 Notice that a crystal actually breaks nine spacetime symmetries: three translational,
three rotational and three Galilean. For internal symmetries, Goldstone’s theorem gives a
one-to-one correspondence between broken symmetries and Goldstone bosons. This need
not be true for spacetime symmetries, and three Goldstone fields are sufficient to saturate
all the broken symmetry Ward identities.
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Figure 2: An electron of momentum p1 absorbs a phonon of large momentum
q but remains near the Fermi surface.

Now examine the scaling of the phonon field. We determine the scaling

from the kinetic term; except at very low frequenies (to be discussed) this

term dominates because of the M−1 in the restoring force. How does q scale?

Figure 2 shows a typical phonon-electron interaction, such as is responsible

for BCS superconductivity. As the electron momenta scale towards the Fermi

surface, q approaches a nonzero limit, so q ∝ s0. The integration and time

derivatives in the kinetic term (20) then scale as s1, so the phonon field scales

as s−1/2.

The restoring force is relevant, scaling as s−2, so in spite of its small

coefficient it will dominate at energies below

E1 = (m/M)1/2E0. (21)

This is the Debye energy, the characteristic energy scale of the phonons. The

restoring force is like a mass term, making the phonons decouple below E1.

Of course, Goldstone’s theorem guarantees that the eigenvalues of Δij(q)

vanish as q → 0, so there are still some phonons present at arbitrarily low
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energy. But their effects are doubly suppressed, by the phonon phase space

and because, as Goldstone bosons, their interactions are proportional to q.

The long-wavelength phonons can therefore be neglected for most purposes.

Now consider interactions, starting with∫
dt d3q d2k1 dl1 d

2k2 dl2M
−1/2gi(q,k1,k2) (22)

Di(q)ψ†σ(p1)ψσ(p2)δ
3(p1 − p2 − q),

where an electron emits or absorbs a phonon. The electron-ion force is to first

approximation independent of M , so the explicit M−1/2 is from the definition

of D. This scales as s−1+2−3/2 = s−1/2 if we treat the delta-function as before,

so it is relevant. When the phonons decouple at E1, the coupling has grown by

(E1/E0)
−1/2 = (m/M)−1/4. However, combined with the small dimensionless

coefficient (m/M)1/2 of the interaction (22), this leaves an overall suppression

of (m/M)1/4.

There are two ways to proceed to lower energies. The first is simply to

note that the restoring force dominates the kinetic term below E1, and so

should be used to determine the scaling. Then D scales as s+1/2 and so does

the interaction (22); it is irrelevant below E1. Alternately, we can integrate

the phonon out. The leading interaction induced in this way is again the

four-Fermi term (18), which by the earlier analysis is irrelevant. Further

interactions are even more suppressed, so the inclusion of phonons has not

changed the free electron picture: we find an electron-phonon interaction

which reaches a maximum of order (m/M)1/4 at the Debye energy and then

falls.

If this were the whole story, it would be rather boring. It is difficult to

see how we can ever get an interesting collective effect like superconductivity

in the low energy theory if all interactions are getting weaker and weaker.

However, there is an important subtlety in the kinematics, so that our treat-

ment (19) of the delta-function is not always valid. This simplest way to see

this is pictorial (figure 3). Consider a process where electrons of momenta
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Figure 3: a) For two generic points near a two-dimensional Fermi surface, the
tangents δki are linearly independent. b) For diametrically opposite points
on a parity-symmetric Fermi surface, the tangents are parallel.

p1,2 scatter into momenta p3,4. Expand

p3 = p1 + δk3 + δl3, p4 = p2 + δk4 + δl4. (23)

The momentum delta-function in ds space dimensions is then

δds(δk3 + δk4 + δl3 + δl4). (24)

Now, for generic momenta, shown in figure 3a, δk3 and δk4 are linearly inde-

pendent and our neglect of δl3 and δl4 is justified. An electron of momentum

p1 absorbs a phonon of large momentum q but remains near the Fermi sur-

face. Incidentally, while the picture is two-dimensional, it is easy to see that

this argument applies equally for all ds ≥ 2: the possible variations δk3, δk4

span the full ds-space. However, if p1 = −p2, so that the total momentum is

zero, then δds(δk3 + δk4) is degenerate, since one component of the argument

vanishes automatically. In this case, one component of the delta-function
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does constrain the l, and so scales inversely to l, as s−1. The four-Fermi

interaction then scales as s0; it is marginal.7

The rule which emerges is that in any process, if the external momenta

are such that the total momentum P of two the lines in a four-Fermi ver-

tex is constrained to be zero, that vertex is marginal.8 All other fermionic

interactions remain irrelevant. To treat the phonons, the most efficient ap-

proach seems to be to consider the effective four-Fermi interaction induced

by phonon exchange, and then the same rule applies. We apportion the

enhancement as a factor of s−1/2 in each vertex, so the phonon-electron in-

teraction scales as s−1 above E1. At E1, it is then of order (m/M)1/2−1/2,

unsuppressed in the M →∞ limit.

The existence of a marginal interaction only at special points in momen-

tum space leaves the free-Fermi picture largely intact, but there are important

changes. Consider the matrix element of some current between electrons of

momenta p and p′. The tree level graph is shown in figure 4a, and a one-loop

correction in figure 4b. If p and p′ are both near the Fermi surface but their

difference is not small, then the interaction in figure 4b is irrelevant and the

loop correction small. In an expectation value, however, where p = p′, the

interaction is marginal and the loop graph is unsuppressed near the Fermi

surface. Similarly, both interactions in the two-loop graph of figure 4c are

marginal, and so on with any number of bubbles in the chain. The graphs

with no irrelevant interactions thus form a geometric series. This is the Lan-

dau theory of Fermi liquids: expectation values of currents are modified from

their free-field values by the interaction.

The same consideration applies to the electron-phonon vertex. Imagine

7Notice that we implicitly assume a discrete symmetry, namely parity invariance of the
Fermi surface. Incidentally, one must be a bit careful. One would seem to find the same
enhancement for p1 = +p2. In that case, however, the delta-function is degenerate only
at one point on the Fermi surface, so that second order terms in δk are nonzero and the
enhancement is only by s−1/2.

8If P is not exactly zero, the interaction is marginal for E > vFP and irrelevant for
E < vFP .
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Figure 4: a) Tree-level matrix element of current. b) One-loop correction
which is marginal at p = p′. c) Two-loop correction which is marginal at
p = p′.

coupling in a phonon where the current appears in figure 4. As in the dis-

cussion of figure 2, the typical phonon momentum q is not small, so the

interactions are irrelevant and only the tree level graph 4a contributes. This

is Migdal’s theorem.

Another way to think about the situation is that the interaction is always

irrelevant and decreases with E, but for special kinematics an infrared diver-

gence comes in to precisely offset this. We should emphasize the dependence

on dimension. The analysis thus far is valid for all ds ≥ 2. For one spatial

dimension, however, there is no k, only l. The delta-function then always

scales as s−1, and the four-Fermi interaction is always marginal. In this case,

there is no simplification of the theory—no irrelevant graphs and no Migdal’s

theorem—and there is more possibility of interesting dynamics.

As was discussed in lecture 1, when we have an interaction which is clas-

sically marginal it is important to look at the quantum corrections. Fig-

ure 5 shows the four-Fermi vertex and the one-loop correction. The Feyn-

man rules are easily worked out. It is convenient to focus on the case that

V (k1,k2,k3,k4) is a constant, which is an approximation often made in prac-
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Figure 5: Scattering of electrons (p, E) and (−p, E) to (p′′, E) and (−p′′, E).
a) Tree level. b) One loop.

tice. Then the one loop four-Fermi amplitude of figure 5b is

V 2
∫
dE′ d2k′ dl′

(2π)4

1[
(1 + iε)(E + E ′)− vF(k′)l′

][
(1 + iε)(E − E ′)− vF(k′)l′

] .
(25)

We are only interested in the large logarithm, and so do not need to know

the details of how the upper cutoff at E0 is implemented. Evaluating the

integral to this accuracy gives

V (E) = V − V 2N
{
ln(E0/E) +O(1)

}
+O(V 3), (26)

where

N =
∫

d2k′

(2π)3

1

vF(k′)
(27)

is the density of states at the Fermi energy. Inserting into the renormalization

group (10) for V , one determines b = N :

E∂EV (E) = NV 2(E) +O(V 3), (28)

with solution

V (E) =
V

1 +NV ln(E0/E)
. (29)

22



A repulsive interaction (V > 0) thus grows weaker at low energy, while an

attractive interaction (V < 0) grows stronger.

Now we are in a position to learn something interesting. We start at E0

with a four-Fermi coupling VC and the phonon-electron coupling g, where

we again for simplicity ignore the k dependences. The subscript C is for

Coulomb, since this is some sort of screened Coulomb interaction. Defining

μ = NVC and μ∗ = NVC(E1), the coupling is renormalized as in eq. (29),

μ∗ =
μ

1 + μ
2

ln(M/m)
. (30)

The coupling g is not renormalized, by Migdal’s theorem. At E1, scaling has

brought the dimensionless magnitude of g to order 1. Integrating out the

phonons produces a new O(1) contribution Vp to the four-Fermi interaction.

It is conventional to define NVp = −λ, so the total four-Fermi interaction

just below E1 is

NV (E−1 ) = μ∗ − λ. (31)

What happens next depends on the sign of μ∗−λ. If it is positive, then V (E)

below E1 just grows weaker and weaker—not very exciting. If, however, it is

negative, then the coupling grows and becomes strong at a scale

Ec = E1e
−1/(λ−μ∗) = E0

(
m

M

)1/2

e−1/(λ−μ∗). (32)

What happens at strong coupling? It seems to be a fairly general rule of

nature that gapless fermions with a strongly attractive interaction are unsta-

ble, so that a fermion bilinear condenses, breaks symmetries, and produces a

gap. In QCD this breaks the chiral symmetry. Here, the attractive channel

involves two electrons, so the condensate breaks the electromagnetic U(1)

and produces superconductivity: this is the BCS theory. Because of the sim-

plicity of Fermi liquid theory, it is not necessary to guess about the conden-

sation. Calculating the quantum effective potential for the electron-electron

condensate, interactions where a pair of electrons vanish into the vacuum are
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marginal because the pair has zero momentum. The one-loop graph is thus

marginal, but all higher graphs are irrelevant. In other words, the effective

potential sums up the ‘cactus’ graphs, the same as in large-N O(N) models

and mean field theory. The gap and the critical temperature are indeed of

the form (32), with calculable numerical coefficients.

So BCS superconductivity is another example of ‘a marginal coupling

grows strong and something interesting happens.’ The simple renormaliza-

tion group analysis gives a great deal of information. It does not get the

O(1) coefficient in the critical temperature, but it gets something else which

is often omitted in simple treatments of BCS: the renormalized Coulomb re-

pulsion. This correction is significant for at least two reasons. The first is

the likelihood of superconductivity, which depends on μ∗−λ being negative.

The initial four-Fermi interaction, being a screened Coulomb interaction, is

most likely to be repulsive, positive. The phonon contribution Vp is attrac-

tive, negative, because it arises from second order perturbation theory (hence

the sign in the definition of λ). Now, μ∗ and λ are both of order 1; since

the only small parameter is m/M , this just means that they do not go as a

power of M in the M →∞ limit. In fact, they are both generally within an

order of magnitude of unity, and there is a simple model of solids in which

they are equal.9 This model, however, does not take into account the renor-

malization (30). The renormalization is substantial because the logarithm

is approximately 10, and one sees that μ∗ cannot exceed 0.2 no matter how

large μ is. Thus, superconductivity is more common than it would otherwise

be.

The renormalization of the Coulomb correction is also important to the

isotope effect, the variation of the critical temperature with ion mass M .

9 See chapter 26 of Ashcroft and Mermin. It might seem surprising that the phonon
interaction, which vanishes when M → ∞, can compete with the Coulomb interaction,
which does not. The point is that this is only true at energies below the Debye scale,
which also vanishes as M → ∞. At these low energies, the M−1 from the interaction
cancels against an M−1 in the denominator of the phonon propagator.

24



As M is varied, there is an overall M−1/2 in the critical scale (32), coming

from the change in the Debye scale. There is also an implicit dependence on

M in μ∗. When the Debye scale is lowered, the Coulomb interaction suffers

more renormalization and so is reduced; this goes in the opposite direction,

favoring superconductivity. The exponent

α = −M∂MEc =
1

2

{
1−

μ∗2

(λ− μ∗)2

}
(33)

is the naive 1
2

when μ∗ is much less than λ, but as μ∗/λ increases α can be

substantially smaller, as is found in some materials.

When the coupling λ−μ∗ is large, the renormalization group analysis does

not give a large ratio between E1 and Ec. It is then not possible simply to

integrate the phonons out; the full phonon propagator must be retained. This

leads to the Eliashberg theory, which is still solvable in the sense that it can be

reduced to an integral equation. Because of Migdal’s theorem, the Schwinger-

Dyson equation for the two-point function closes. This resolves the last of

the puzzles with which this lecture began. The Eliashberg theory involves

several phenomenological functions, which are precisely those appearing in

the effective action.

Now, what about high Tc? Figure 6 shows a graph of resistivity versus

temperature for a typical high-Tc material. One sees the expected drop to

zero at low temperature, but there is also something very puzzling: the

resistivity is linear to good accuracy above Tc,

ρ(T ) ∼ A +BT. (34)

By comparison, the resistivity above Tc in an ordinary metallic superconduc-

tor goes as

ρ(T ) ∼ A+ CT 5. (35)

How does this relate to what we have learned? We know that conductors are

very simple, nearly free, and that any physical effect will have some definite
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Figure 6: Resistivity versus temperature in a typical high-Tc material: zero
below Tc, and linear above.

energy dependence governed by the lowest dimension operator that could

be responsible. For example the T 0 resistivity is from impurity scattering.10

The T 5 resistivity is from phonon scattering; the high power of temperature

is because we are below the Debye temperature, so only the long-wavelength

phonons remain, their contribution suppressed by phase space and the q

in the vertex. What can give T 1? Nothing. Write down the most general

possible effective Lagrangian and there is no operator or process that would

this power of the temperature. This is one of several related anomalies in

these materials. To steal a phrase from Mike Turner, figure 6 shows the

conductor from Hell.

To be precise, there is nothing of this magnitude in the generic Fermi

liquid theory, but in special cases the infrared divergences are enhanced and

new effects are possible. For example, consider free electrons on a square

lattice of side a, with amplitude t per unit time to hop to one of the nearest

10Incidentally, there is perhaps some indication that A is anomalously small, even zero,
in the best-prepared high-Tc materials.
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Figure 7: Diamond-shaped Fermi surface for the half-filled squared lattice.
The dashed lines at |Px,y| = π/a bound the Brillouin zone and are periodically
identified.

neighbor sites. This models the CuO planes of the high-Tc materials. Going

to momentum space, the one-electron energy works out to

ε(p) = −t(cos pxa+ cos pya). (36)

For half-filling, εF = 0, the Fermi sea is as shown in figure 7. There are

two special features. The first is the presence of van Hove singularities, the

corners of the diamond where ∂pε = vF vanishes. At a van Hove singularity

the density of states N diverges logarithmically, enhancing the interactions.

The second special feature is nesting, which means that the opposite edges

of the Fermi surface differ by a fixed translation (π/a, π/a). Because of

nesting, the interaction between an electron-hole pair with total momen-

tum (px, py) = (π/a, π/a) becomes marginal just as for an electron pair of

zero momentum. For positive V this is attractive and favors condensation,
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producing either a position-dependent charge density ψ†σψσ (a charge den-

sity wave), or a position-dependent spin density ψ†σ σσσ′ψσ′ (antiferromag-

netism). So here are two more phenomena that can arise from the growth of

a marginal coupling. It has been proposed that a Fermi surface which has

van Hove singularities, or which is nested, or which sits near the antiferro-

magnetic transition, would have sufficiently enhanced infrared fluctations to

account for the anomalous behavior of the high-Tc materials.

Is this plausible? Recall our earlier observation that the shape of the

Fermi surface is a relevant parameter—a shift in the Fermi surface acts like

a mass, cutting off the enhanced infrared fluctuations. For these to persist

down to low energy the Fermi surface must be highly fine-tuned.11 This might

occur in a few very particular substances, but can it be happening here?

The linear resistivity is present in many different high-Tc materials (though

not all), and it is stable against changes in the doping (filling fraction) of

order 5 to 10 percent. The width of the electron band (E0 ∼ 4t) is roughly

2 eV, so this represents a shift in the Fermi surface of order 0.1 eV. On

the other hand, the anomalous behavior persists below 100 K (0.01 eV). In

one substance, Bi2201, which is in the high-Tc class although its transition

temperature is rather low, the resistivity is beautifully linear from 700 K

down to 7 K (< 0.001 eV), and is stable against changes in doping. So most

of the high-Tc materials must be fine-tuned to accuracy 10−2 and Bi2201

must be fine-tuned to accuracy 10−3. This is not obviously bad, since there

are thousands of substances from which to choose. But if fine tuning is the

answer, one would expect it to be spoiled by a small change in the doping,

which will shift all the relevant parameters, and this is not the case. In

Bi2201, in particular, a fine tuning to accuracy better than 10−3 would have

to survive shifts of order 10−1E0 in the relevant parameters. This seems

11Notice that the van Hove singularity is less unnatural than nesting, since the former
requires only a single parameter to be tuned (the level, which must pass through the point
where vF = 0), while a very large (in principle infinite) number must be tuned for nesting.
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inconceivable unless there are no relevant parameters at all. The special

Fermi surface cannot account for the anomalous behavior. We must find a

low-energy effective theory which is natural, in the same sense as used in

particle physics: there are no relevant terms allowed by the symmetries.

We should mention one other possibility. At temperatures above their

frequency, phonons do give a linear resistivity. In the high-Tc materials, the

phonon spectrum runs up to 0.05 eV, with only 5 to 10 per cent of the density

of states below 0.01 eV. To account for the resistivity, even excluding 2201,

one would have to suppose that this small fraction accounts for almost all

the resistivity, which is implausible. And only the very longest-wavelength

phonons, which give the T 5 behavior, survive down to the 0.001 eV of 2201.

It appears that the low energy excitations are not described by the effec-

tive field theory that we have described, but by something different. Perhaps

we should not be surprised by this, since we began with a guess about the

spectrum. Rather, it is surprising that the guess is correct in so many cases.12

From studies of strongly interacting electron systems one can motivate sev-

eral other guesses.13 Typically the low energy theory includes fermions and

also gauge fields (which seem like a good thing from the point of view of nat-

uralness) and/or scalars (which do not). For example, anyon theories can be

regarded as fermions interacting with a gauge field which has a T -violating

Chern-Simons action. Another possibility is fermions with a T -preserving

Maxwell action. The normal-state properties of the anyon theory do not

seem to have been studied extensively. The T -preserving theory has been

argued to give the right behavior, but it is strongly coupled and not well un-

derstood. Anderson has proposed what is apparently the Fermi-liquid theory

but with the four-Fermi interaction singular in momentum space. The effect

of the singularity is to enhance the infrared behavior so that the system be-

haves as though it were one-dimensional (which, as we have noted, is always

12 Though there are some other examples of apparent non-Fermi liquid behavior.
13 The book by Fradkin gives a review of recent ideas.
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marginal). It is difficult to understand the origin of this interaction; in par-

ticular, it is long-ranged in position space but is not mediated by any field

in the low energy theory, which seems to violate locality. Finally, there is

a semi-phenomenological idea known as the ‘marginal Fermi liquid,’ which I

have not been able to translate into effective field theory language.

Notice that we have not discussed the mechanism for superconductivity

itself; the normal state is puzzling enough. If one can figure out what the low

energy theory is, the mechanism of condensation will presumably be evident.

In terms of sheer numbers, there seems to be a move away from exotic

field ideas and back to more conventional ones in this subject. This is largely

because none of the new theories has made the sort of clear-cut and testable

predictions that the BCS theory does. From my discussions with various

people and reading of the literature, however, it seems that attempts to

explain the normal state properties in a conventional way always require

the extreme fine-tunings described above. This seems to be a subject where

particle theorists can contribute: the basic issue is one of field theory, where

many of the unfamiliar details of solid-state physics are irrelevant (in the

technical and colloquial senses).

Q: So ‘quasiparticle’ means the quantum of an effective field?

A: More-or-less. As used in condensed matter physics, the term has one

additional implication that will not always hold in effective field theory: that

the decay rate of the quasiparticle vanishes faster than the energy E as E goes

to zero. There may be systems for which this is not true (a nonrelativistic

system at a nontrivial fixed point being the obvious case), but where one still

expects the low energy fluctuations to be represented by some field theory.

Exercise: Consider the term

∫
dt d3p1d

3p2 U(p1,p2)ψ
†
σ(p1)ψσ(p2). (37)

This is impurity scattering: notice the lack of momentum conservation. Show

that this is marginal, and that its beta-function vanishes.
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Exercise: Now consider an impurity of spin s, which can exchange spin

with the electron:

∫
dt d3p1d

3p2 J(p1,p2)ψ
†
σ(p1) σσσ′ψσ′(p2) · S, (38)

where S are the spin-s matrices for the impurity. Show that this is marginal

and that the beta-function is negative, taking J to be a constant for simplic-

ity. This is the Kondo problem. The nonvanishing beta-function means that

the coupling grows with decreasing energy (for J positive). This is vividly

seen in measurements of resistivity as a function of temperature, which in-

creases as T decreases rather than showing the simple constant behavior of

potential scattering. When the coupling gets strong, a number of behaviors

are possible, depending on the value of s, sign of J , and various general-

izations. In particular, in some cases one finds fixed points with critical

behavior given by rather nontrivial conformal field theories: more examples

of the interesting things that can happen when a marginal coupling gets

strong!

Exercise: Show that if the Fermi surface is right at a van Hove singular-

ity, then under scaling of the energy to zero and of the momenta toward the

singular point, the four-Fermi interaction is marginal in two space dimensions.

In other words, if all electron momenta in a graph lie near the singularity,

the graph is marginal: one does not have the usual simplifications of Landau

theory.
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