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Basic question: what is the ground state of a nonzero density of
interacting fermions? (∃ sign problem)

Lore: if it’s a metal, it’s a fermi liquid [Landau, 50s]. E(k)

k
F

EF

k

Recall:

if we had free fermions, we would fill single-particle

energy levels E(k) until we ran out of fermions: →
Low-energy excitations:

remove or add electrons near the fermi surface EF , kF .

Idea [Landau]: The low-energy excitations of the
interacting theory are still weakly-interacting fermionic, charged
‘quasiparticles’
Elementary excitations are free fermions with some dressing:

in medium−→



The standard description of metals

The metallic states of a finite density of fermions that we
understand well are described by Landau’s Fermi liquid theory.
Landau quasiparticles → poles in single-fermion Green function GR

at k⊥ ≡ |�k | − kF = 0, ω = ω�(k⊥) ∼ 0: GR ∼ Z

ω − vF k⊥ + iΓ
Measurable by ARPES (angle-resolved photoemission):
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Intensity ∝
spectral density :

A(ω, k) ≡ ImGR(ω, k)
k⊥→0→ Zδ(ω − vF k⊥)

Landau quasiparticles are long-lived: width is Γ ∼ ω2
�.

residue Z (overlap with external e−) is finite on Fermi surface.
Reliable calculation of thermodynamics and transport relies on this.



Ubiquity of Landau fermi liquid

Physical origin of lore:
1. Landau FL successfully describes 3He, all metals
studied before ∼ 1980s, ...

2. RG: Landau FL is stable under almost all perturbations.

[Shankar, Polchinski, Benfatto-Gallivotti 92]

UV

H(free fermion) z
IR

superfluid



Effective Field Theory
and the Fermi Surface

Polchinski, hep-th/9210046

also
Benfatto-Gallivotti;
Shankar, RMP 66 (1994) 129



Outline

1. Holographic duality with a view toward condensed matter

2. Gravity duals of non-relativistic CFTs

3. Effective field theory and the Fermi surface
[Polchinski, hep-th/9210046]

4. Non-Fermi liquids from non-holography

[D. Mross, JM, H. Liu, T. Senthil, 1003.0894]

5. Non-Fermi liquids from holography

[Hong Liu, JM, David Vegh, 0903.2477
Tom Faulkner, HL, JM, DV, 0907.2694
TF, Gary Horowitz, JM, Matt Roberts, DV, 0911.3402
TF, Nabil Iqbal, HL, JM, DV, 1003.1728 and to appear]



First, a few more words about how kinematics protects the Fermi
Liquid theory.



Non-Fermi liquids exist, but are mysterious
e.g.: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)
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=⇒
among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width Γ(ω�) ∼ ω�, vanishing residue Z
k⊥→0→ 0.

Working defintion of NFL:

Still a sharp Fermi surface (nonanalyticity of A(ω ∼ 0, k ∼ kF ) )

but no long-lived quasiparticles.
[Anderson, Senthil] ‘critical fermi surface’

T

Most prominent
mystery of the strange metal phase:
e-e scattering: ρ ∼ T 2, e-phonon: ρ ∼ T 5,

no known robust effective theory: ρ ∼ T .



Superconductivity is a distraction

Look ‘behind’ superconducting dome by turning on magnetic field:

(Magnetoresistance is negligible: evidence that B doesn’t alter normal state.)

Strange metal persists to T ∼ 0!
This is the state we will be comparing to later on.



another source of NFL: how do fermi liquids die?

Some systems have both a Fermi liquid phase,
and a phase without a Fermi surface (Mott insulator).
e.g. spin- 1

2
Hubbard model near half-filling:

H =
∑
〈ij〉

t c
†
i cj + U

∑
i

n
↑
i n
↓
i

t: kinetic term U: on-site repulsion

Mott insulator Fermi liquid t/U

Mott critical point fig from [Senthil, 0803.4009]

t/U →∞: free electrons, FL.
t/U → 0: each electron picks a site and sits there (Mott insulator).



critical fermi surfaces

but:
Theorem [Luttinger]: The volume inside the fermi surface is

proportional to the number of electrons, which is conserved.

It can’t just shrink if the number of particles is fixed.

At a continuous transition: “critical fermi surface” [Brinkman-Rice, Senthil]:
Z → 0.
Z = jump in momentum space occupation number at the fermi
momentum n(k) =

∫
dω
π f (ω)ImG (ω, k)

f (ω) ≡ 1
eβω+1

, ω measured from μ.
n(k)

n(k)

n(k)

K

K

K

Kf

K
f

Kf

(a)

(b)

(c)

a) FL
b) mott insulator
c) critical fermi surface
∂

(�)
k n(k) =∞ for some �

Z is like an order parameter for the FL phase.



My understanding of the theoretical status of NFL

• Luttinger liquid (1+1-d) G (k, ω) ∼ (k − ω)2g �

• numerics on Hubbard model
• loophole in RG argument:
couple a Landau FL perturbatively to a bosonic mode
(magnetic photon, slave-boson gauge field, statistical gauge field,

ferromagnetism, SDW, Pomeranchuk order parameter...)

k k − q

q

k

[Holstein et al, Baym et al, .... Halperin-Lee-Read,

Polchinski, Altshuler-Ioffe-Millis, Nayak-Wilczek, Schafer-Schwenzer, Chubukov et al,

Fradkin-Kivelson-Oganesyan, Metzner et al, S-S Lee, Metlitski-Sachdev, Mross et al]

→ nonanalytic
behavior in GR(ω) ≡ 1

vF k⊥+Σ(ω,k) at FS:

Σ(ω) ∼
{
ω2/3 d = 2 + 1

ω logω d = 3 + 1
=⇒ Z

k⊥→0→ 0,
Γ(k⊥)

ω�(k⊥)

k⊥→0→ const



Fermi liquid killed by gapless boson

1. In these perturbative calculations, non-analytic terms ∝ control parameter

=⇒
perturbative answer is parametrically reliable ↔

effect is visible only at parametrically low temperatures.

2. Recently, the validity of the 1/N expansion has been questioned.

[Sung-Sik Lee 0905.4532, Metlitski-Sachdev 1001.1153]

large N

zb−2∼ 1

N

small
zb−2

unstable?
3
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N
−1

z
b

= 3

N = 2

A controlled perturbation expansion does exist in a slightly

different theory.

[David. Mross, JM, Hong Liu, Senthil, 1003.0894]

3. Not strange enough:

These NFLs are not strange metals in terms of transport.
FL killed by gapless bosons: small-angle scattering dominates =⇒

k k − q

q

k

(forward scattering does not degrade current)

‘transport lifetime’ �= ‘single-particle lifetime’
i.e. in models with Γ(ω�) ∼ ω�, ρ ∼ Tα>1.



Holographic non-Fermi liquids:
Strange metal from black holes

based on:

Hong Liu, JM, David Vegh, 0903.2477
Tom Faulkner, HL, JM, DV, 0907.2694

TF, Gary Horowitz, JM, Matthew Roberts, DV, 0911.3402
TF, Nabil Iqbal, HL, JM, DV, 1003.1728 and to appear

see also: Sung-Sik Lee, 0809.3402

Cubrovic, Zaanen, Schalm, 0904.1933



Can string theory be useful here?

It would be valuable to have a non-perturbative description of such
states in more than one dimension.

Gravity dual?

We’re not going to look for a gravity dual of the whole material.
Rather: lessons for principles of “non-Fermi liquid”.

Basic question for the holographic descripion:

How to make a finite density of fermions?



Outline

1. Strategy for holographic description

2. Fermion green functions, numerically

3. Analytic understanding of Fermi surface behavior

4. Charge transport

5. Stability of the groundstate

6. A framework for strange metal



Strategy to find a holographic Fermi surface

Consider any relativistic CFT with a gravity dual
a conserved U(1) symmetry proxy for fermion number → Aμ

and a charged fermion proxy for bare electrons → ψ.
Any d > 1 + 1, focus on d = 2 + 1.
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CFT at finite density: charged

black hole (BH) in AdS .
To find FS: [Sung-Sik Lee 0809.3402]

look for sharp features
in fermion Green functions
at finite momentum
and small frequency.

To compute GR : solve Dirac equation in charged BH geometry.



What we are doing, more precisely
Consider any relativistic CFTd with

• an Einstein gravity dual Ld+1 = R+
d(d − 1)

R2
− 2κ2

g2
F

F 2 + ...

• a conserved U(1) current (proxy for fermion number)

→ gauge field F = dA in the bulk.
An ensemble with finite chemical potential for that current is described by the

AdS Reissner-Nordstrom black hole:

ds2 =
r2

L2

(−fdt2 + d�x2
)
+ L2 dr2

r2f
, A = μ

(
1−

( r0

r

)d−2
)

dt

f (r) = 1 +
Q2

r2d−2
− M

rd
, f (r0) = 0, μ =

gF Q

cdL2rd−1
0

,

• a charged fermion operator OF (proxy for bare electrons)

→ spinor field ψ in the bulk Ld+1 	 ψ̄
(
DMΓM −m

)
ψ + interactions

with Dμψ = ∂μψ − iqAμψ ( Δ = d
2
±mL, q = q )

‘Bulk universality’: for two-point functions, the interaction terms don’t matter!

Results only depend on q,Δ.



Comments about the strategy

� There are many string theory vacua with these ingredients.
In specific examples of dual pairs
(e.g. M2-branes ⇔ M th on AdS4 × S7), interactions and {q,m} are
specified.
which sets {q,m} are possible and what correlations there are is not clear.

� This is a large complicated system (ρ ∼ N2), of which we are
probing a tiny part (ρΨ ∼ N0).

� It would be surprising if we could describe a Fermi liquid
(= a weakly coupled QFT).

� In general, both bosons and fermions of the dual field theory
are charged under the U(1) current: this is a Bose-Fermi
mixture.

Notes: frequencies ω below are measured from the chemical potential.

Results are in units of μ.



Computing GR

Translation invariance in �x , t =⇒ ODE in r .
Rotation invariance: ki = δ1i k
Near the boundary, solutions behave as (Γr = −σ3 ⊗ 1)

ψ
r→∞≈ aαrm

(
0
1

)
+ bαr−m

(
1
0

)

Matrix of Green’s functions, has two independent eigenvalues:

Gα(ω,�k) =
bα

aα
, α = 1, 2

To compute GR : solve Dirac equation in BH geometry,
impose infalling boundary conditions at horizon [Son-Starinets, Iqbal-Liu].
Like retarded response, falling into the BH is something that happens.



Dirac equation

Γaea
M

(
∂M +

1

4
ωabMΓab − iqAM

)
ψ −mψ = 0

Φα ≡ (−gg rr )−1/4Πk̂
αψ, ψ = e−iωt+iki x

i

ψω,k ,(
∂r + Mσ3

)
Φα =

(
(−1)αKσ1 + Wiσ2

)
Φα, α = 1, 2

with

M ≡ m
√

grr =
m

r
√

f
, K ≡ k

√
grr

gii

=
k

r2
√

f
, W ≡ u

√
grr

gii

=
u

r2
√

f
.

u ≡
√
−g tt

g ii

(
ω + μq

(
1−

( r0

r

)d−2
))

Eqn depends on q and μ only through μq ≡ μq

→ ω is measured from the effective chemical potential, μq.



Fermi surface!
At T = 0, we find (numerically):

�1.5�10�6
�1.�10�6

�5.�10�7 0 5.�10�7 1.�10�6 1.5�10�6

�5000

0

5000

10 000

Ω

Re G2, Im G2

‘MDC’: G (ω = −0.001, k) ‘EDC’:
G (ω, k = 0.9)

For q = 1,m = 0 : kF ≈ 0.918528499

But it’s not a Fermi liquid:

The peak moves
with dispersion relation ω ∼ kz

⊥ with

z = 2.09 for q = 1,Δ = 3/2.
z = 5.32 for q = 0.6,Δ = 3/2

and the residue vanishes.



Emergent quantum criticality

Whence these exponents?

Near-horizon geometry of black hole is AdS2 × R
d−1.

The conformal invariance of this metric is emergent.
(We broke the microscopic conformal invariance with finite density.)

boundary

d+1AdSd−1
xRAdS2

horizon
r−1<<1 r>>1
ω � μ ω 
 μ

AdS/CFT says that the low-energy physics is governed by the dual
IR CFT.
The bulk geometry is a picture of the RG flow from the CFTd to this NRCFT.



Analytic understanding of Fermi surface behavior: idea

T > 0: GR(ω) analytic near ω = 0 → can compute in series
expansion. [Policastro-Son-Starinets]

T = 0: Expanding the wave equation in ω is delicate.
The ω-term dominates near the horizon.

Method of matched asymptotic expansions:
Find solution (in ω-expansion) in two regions of BH geometry (IR and UV),

match their behavior in the region of overlap.

Familiar from the brane absorption calculations which led to AdS/CFT.

[Klebanov, Gubser, Maldacena, Strominger...]

boundary

d+1AdSd−1
xRAdS2

horizon
r−1<<1 r>>1

Here: this ‘matching’ can be interpreted in the QFT as RG
matching between UV and IR CFTs.



Matching regions

boundary

d+1AdSd−1
xRAdS2

horizon
r−1<<1 r>>1
ω � μ ω 
 μ

Inner: ζ ≡ ω
L2

2

r − 1
for ε < ζ <∞

Outer:
ωL2

2

ε
< r − 1

(L2 is the ‘AdS radius’ of the IR AdS2.)

and consider the limit

ω → 0, ζ = finite, ε→ 0,
ωR2

2

ε
→ 0 .

The boundary of AdS2 × R
2 (ζ → 0) attaches to the near-horizon of the outer

region. The ω-dependence in relation between r − 1 and ζ mixes the series

expansions.



Inner region (IR data)

Wave equations for charged fields in AdS2 are solvable.
Near the boundary:

ψ
σ→0≈ Gσνv+ + σ−νv−

νk ≡ R2

√
m2 + k2 − q2/2, δk =

1

2
+ νk

For a spinor in AdS2, k is a parity-violating mass term m̃ψ̄Γψ: m̃ ≡ k L2
r0

Ψ(ω, k) matches onto some IR CFT operator Ok of dimension
δk = 1

2 + νk , whose (retarded) two-point function is the

IR CFT Green function : Gk(ω) = c(k)ω2νk

c(k) ∈C, known.



Low-frequency expansion in outer region (UV data)

Basis of solutions at ω = 0:

ψ(0)±
α

r→1≈ v±(r − 1)∓ν

These two solutions match to the leading and subleading solutions in the

near-horizon region.

=⇒ ψα = ψ+
α + G(ω)ψ−α .

ψ±α = ψ(0)±
α +ωψ(1)±

α +ω2ψ(2)±
α + . . . , ψ(n)±

α

r→∞≈
(

b
(n)±
α r−m

a
(n)±
α rm

)
.

GR(ω, k) = K
b

(0)
+ + ωb

(1)
+ + O(ω2) + Gk(ω)

(
b

(0)
− + ωb

(1)
− + O(ω2)

)
a
(0)
+ + ωa

(1)
+ + O(ω2) + Gk(ω)

(
a
(0)
− + ωa

(1)
− + O(ω2)

)



Analytic understanding of Fermi surface behavior: results

GR(ω, k) =
b

(0)
+ + ωb

(1)
+ + O(ω2) + Gk(ω)

(
b

(0)
− + ωb

(1)
− + O(ω2)

)
a
(0)
+ + ωa

(1)
+ + O(ω2) + Gk(ω)

(
a
(0)
− + ωa

(1)
− + O(ω2)

)
The location of the Fermi surface (a

(0)
+ (k = kF ) = 0) is determined by

short-distance physics (analogous to band structure –

a, b ∈ R from normalizable sol’n of ω = 0 Dirac equation in full BH)

but the low-frequency scaling behavior near the FS is universal
(determined by near-horizon region: self-energy Σ = IR CFT G !).

G = c(k)ω2ν is the retarded GR of the op to which OF matches.
its scaling dimension is ν + 1

2 , with (for d = 2 + 1)

ν ≡ L2

√
m2 + k2 − q2/2



Inner region (IR data) in more detail
c(k)

GR(ω) =

︷ ︸︸ ︷
e−iπν Γ(−2ν) Γ (1 + ν − iqed)

Γ(2ν) Γ (1− ν − iqed)
· (m + i m̃)L2 − iqed − ν
(m + i m̃)L2 − iqed + ν

(2ω)2ν

The AdS2 Green’s functions look like DLCQ of 1+1d CFT.

Leftmoving bit depends on q, rightmoving bit depends on ω.

qv [Azeyanagi et al, Guica et al, de Boer et al]

(BH in)

d+1AdSd−1
xRAdS2

horizon boundary
r−1<<1 r>>1

T �= 0: near-horizon geometry is a BH in AdS2

ω2ν is the T → 0 limit of

T 2νg(ω/T ) = (2πT )2ν Γ(1
2 + ν − iω

2πT
+ iqed)

Γ
(

1
2 − ν − iω

2πT
+ iqed

)
DLCQ of 1+1d CFT at T > 0.



Consequences for Fermi surface

GR(ω, k) =
h1

k⊥ − 1
vF
ω − h2c(k)ω

2νkF

h1,2, vF real, UV data.
The AdS2 Green’s function

is the self-energy Σ = G = c(k)ω2ν !

Correctly fits numerics near FS:



ν <
1
2
: non-Fermi liquid

GR(ω, k) =
h1

k⊥ − 1
vF
ω − h2ω

2νkF

if νkF
<

1

2
, ω�(k) ∼ kz

⊥, z =
1

2νkF

> 1

Α�

Α�k��0

k��0

Γ(k)

ω�(k)

k⊥→0→ const, Z ∝ k

1−2νkF
2νkF

⊥

k⊥→0→ 0.

Not a stable quasiparticle.



ν >
1
2
: Fermi liquid

Suppose νkF
> 1

2 : −→ OkF
is irrelevant δk = 1

2 + νk > 1.

GR(ω, k) =
h1

k⊥ + 1
vF
ω + ckω

2νkF

ω�(k) ∼ vF k⊥

�1.0 �0.5 0.5 1.0

�0.003

�0.002

�0.001
�k��

2 Ν

vF k�

Γ(k)

ω�(k)
∝ k

2νkF
−1

⊥

k⊥→0→ 0 Z
k⊥→0→ h1vF .

A stable quasiparticle, but never Landau Fermi liquid.

(different thermo, transport.)



summary
Depending on the dimension of the operator (ν + 1

2) in the IR
CFT, we find Fermi liquid behavior (but not Landau)

or non-Fermi liquid behavior:

ν < 1
2 , ν = 1

2 , ν > 1
2



ν = 1
2
: Marginal Fermi liquid

GR ≈ h1

k⊥ + c̃1ω lnω + c1ω
, c̃1 ∈ R, c1 ∈C

Γ(k)

ω�(k)

k⊥→0→ const, Z ∼ 1

| lnω�|
k⊥→0→ 0.

A well-named phenomenological model of high-Tc cuprates near optimal doping

[Varma et al, 1989].



UV data: where are the Fermi sufaces?
Above we supposed a(kF )

(0)
+ = 0. This happens at

kF : k s.t. ∃ normalizable, incoming solution at ω = 0:
This black hole can acquire ‘inhomogenous fermionic hair’

Schrodinger potential V (τ)/k2 at ω = 0 for m < 0,m = 0,m > 0.
τ is the tortoise coordinate Right (τ = 0) is boundary; left is horizon.

k > qed : Potential is always positive
k < kosc ≡

√
(qed )2 −m2: near the horizon V (x) = α

τ2 , with

α < −1
4 (“oscillatory region”)

k ∈ (qed , kosc ): the potential develops a potential well, indicating
possible existence of a zero energy bound state.
Note: can exist on asymp. flat BH [Hartman-Song-Strominger 0912]



Finite temperature movies

At finite T , the pole doesn’t quite hit the real axis: thermal
broadening.
mink (Imωc) � T (up to 1% accuracy).

Branch cut from ω2ν approximated by a sequence of poles on neg
Im axis. Like a dipole array approximates a capacitor.



Charge transport by holographic
non-Fermi liquid metals

[Tom Faulkner, Nabil Iqbal, Hong Liu, JM, David Vegh, 1003.1728 and to appear]



Charge transport

T

Most prominent mystery →
of strange metal phase: σDC ∼ T−1

(j = σE)

e-e scattering: σ ∼ T−2, e-phonon scattering: σ ∼ T−5, nothing: σ ∼ T−1

We can compute the contribution
to the conductivity from
the Fermi surface. [Faulkner, Iqbal, Liu, JM, Vegh]
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���	�Note: this is not the dominant contribution. →

σDC = lim
ω→0

Im
1

ω
〈jx jx〉(ω,�0) = N2 T 2

μ2
+ N0

(
σFS

DC + ...
)



Charge transport by holographic non-Fermi liquids
slight complication: gauge field ax mixes with metric perturbations.
There’s a big charge density. Pulling on it with �E leads to momentum flow.

aa

key step: ImDαβ(Ω, k; r1, r2) =
ψb

α(Ω,k,r1)ψ̄b
β(Ω,k,r2)

Wab
A(Ω, k)

bulk spectral density ImD

1. ... is determined by bdy fermion spectral density, A(ω, k) = ImGR(ω, k)

2. ... factorizes on normalizable bulk sol’ns ψb

a(r )1 2a(r )

Figs by Nabil Iqbal



Charge transport by holographic non-Fermi liquids

like Fermi liquid calculation
but with extra integrals over r , and no vertex corrections.

σFS
DC = C

∫ ∞

0
dkk

∫ ∞

−∞

dω

2π

df

dω
Λ2(k, ω)A2(ω, k)

f (ω) = 1

e
ω
T +1

: the Fermi distribution function

Λ: an effective vertex, data analogous to vF , h1,2.

Λ ∼ q
R
∞

r0
dr
√

gg xxax(r , 0)
ψ̄b(r)Γxψb(r)

Wab
∼ const.∫

dkA(k, ω)2 ∼ 1

T 2νg(ω/T )

scale out T -dependence =⇒ σDC ∼ T−2ν .



Dissipation mechanism

++

boundary

horizon
+ + +++ + + +

σDC ∝ Im〈jj〉 comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS2 DoFs.
=⇒ single-particle lifetime controls transport.

marginal Fermi liquid: ν = 1
2 =⇒ ρFS =

(
σDC

)−1
∼ T .

The optical conductivity σ(Ω) can distinguish the existence of
quasiparticles (ν > 1

2) through the presence of a transport peak.



Stability of the groundstate

Charged bosons: In many explicit dual pairs, ∃ charged scalars.
• At small T , they can condense spontaneously breaking the U(1)

symmetry, changing the background [Gubser, Hartnoll-Herzog-Horowitz].

spinor: GR(ω) has poles only in LHP of ω [Faulkner-Liu-JM-Vegh, 0907]

scalar: ∃ poles in UHP 〈O(t)〉 ∼ e iω�t ∝ e+Imω�t

=⇒ growing modes of charged operator: holographic superconductor
[Gubser, Hartnoll-Herzog-Horowitz...]
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why: black hole spontaneously

emits
charged particles [Starobinsky, Unruh, Hawking].
AdS is like a box: they can’t escape.

Fermi:
negative energy states get filled.
Bose: the created particles then cause
stimulated emission (superradiance).
A holographic superconductor is a “black hole laser”.



Stability of the groundstate, cont’d
• If their mass/charge is big enough, they don’t condense.
[Denef-Hartnoll]

This is weird: a weakly-coupled charged boson

at μ �= 0 will condense.
Finding such string vacua

is like moduli stabilization.

• Many systems to which we’d like to
apply this also have a superconducting region.

• So far we are describing
the state behind and above the dome.

Aside: Other light bulk modes (e.g. neutral
scalars)
can also have an important effect on the groundstate

[ Fareghbal-Gowdigere-Mosaffa-Sheikh-Jabbari Mulligan, Polchinski,

Goldstein-Kachru-Prakash-Trivedi, Gubser-Rocha].



Photoemission ‘exp’ts’ on holographic superconductors
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So far: a model of
some features of the normal state.

In SC state: a sharp peak forms in A(k , ω).
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With a suitable coupling between ψ and ϕ,

the superconducting condensate

opens a gap in the fermion spectrum.

[Faulkner, Horowitz, JM, Roberts, Vegh]

if qϕ = 2qψ we can have

Lbulk 	 η5ϕψ̄CΓ5ψ̄T + h.c

The (gapped) quasiparticles
are exactly stable in a certain
kinematical regime
(outside the lightcone of the IR CFT) –
the condensate lifts the IR CFT modes

into which they decay.



Charged AdS black holes and frustration
Entropy density of black hole:

s(T = 0) =
1

Vd−1

A

4GN

= 2πedρ. (ed ≡ gF√
2d(d − 1)

)

This is a large low-energy density of states!
not supersymmetric ... lifted at finite N

pessimism: S(T = 0) �= 0 violates third law of thermodynamics, unphysical,

weird string-theorist nonsense.

optimism:
we’re describing the state where the SC instability is removed by hand

(here: don’t include charged scalars, expt: large �B).

Can we get this behavior w/o the large low-E density of states?
Presumably: Small-freq behavior depended on existence of IR CFT, not large

c ∝ s(T = 0) of IR CFT.

[Hartnoll-Polchinski-Silverstein-Tong, 0912.]: bulk density of fermions modifies
extreme near-horizon region (out to δr ∼ e−N2

), removes residual
entropy.



A universal instability of the groundstate

When we find a Fermi surface, there is a finite density of fermions in the bulk.

(∃ negative energy states which must be filled.)

These bulk fermions interact weakly via the metric and gauge field.
Coulomb force is naively always stronger [weak gravity conjecture] but can be screened.

This leaves gravity, universally attractive.
−→ BCS pairing with an energy scale

Tc ∼ εbulk

F e
− 1

ν(0)V ∼ μe−N2

ν(0) = DoS at the bulk Fermi surface,

V ∼ N−2 ≡ GN in units of the AdS radius

Tc ∼ scale of the splitting between the degenerate groundstates over which the

RN black hole averages.
Recently, this has been studied in detail [Hartmann-Hartnoll].

They find that the pairing does not happen for the NFL case ν < 1
2
.



framework for strange metal

a cartoon of the mechanism:
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a similar picture has been advocated by [Varma et al]



comparison
• a Fermi surface coupled to a critical boson field

L = ψ̄ (ω − vFk)ψ + ψ̄ψa + L(a)

small-angle scattering dominates.

• a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent [TF-HL-JM-DV 0907.2694,

Faulkner-Polchinski 1001...]

L = ψ̄ (ω − vFk)ψ + ψ̄χ+ ψχ̄+ χ̄G−1χ

χ: IR CFT operator

�=� +

�

+

�
+. . .

〈ψ̄ψ〉 = 1

ω − vFk − G G = 〈χ̄χ〉 = c(k)ω2ν

ν ≤ 1
2 : the ψ̄χ coupling is a relevant perturbation.



Concluding remarks

1. The green’s function near the FS is of the form (‘local quantum

criticality’, analytic in k .) found previously in perturbative
calculations, but the nonanalyticity can be order one.

2. This is an input of many studies (dynamical mean field theory)

3. The knowledge of quantum statistics displayed by the classical
wave equations is remarkable and necessary for AdS/CFT to
be consistent with basic facts about many-body physics.

4. [Denef-Hartnoll-Sachdev] The leading N−1 contribution to the free
energy exhibits quantum oscillations in a magnetic field.

5. Main challenge: step away from large N. So far:

• Fermi surface is a small part of a big system.
• Fermi surface does not back-react on IR CFT.
• IR CFT has z =∞.



The end.

Thanks for listening.



Where are the Fermi sufaces?

m = −0.4, 0, 0.4:
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orange: ‘oscillatory region’: ν ∈ iIR, G periodic in log ω

δk =
1

2
+ νk , νk =

1√
6

√
m2 + k2 − q2/2



Fermion poles always in LHP!

arg ck = arg
(
e2πiν ± e−2πqed

) G = ckω
2ν

± for boson/fermion.
ω2ν

c = real · (e−2πiν − e−2πqed
)
.
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Figure: A geometric argument that poles of the fermion Green function
always appear in the lower-half ω-plane: Depicted here is the ω2ν

covering space on which the Green function is single-valued. The shaded
region is the image of the upper-half ω-plane of the physical sheet.



fermi velocity

Think of ω = 0 Dirac eqn as Schrödinger problem.

Like Feynman-Hellmann theorem: ∂k〈H〉 = 〈∂kH〉
we can derive a formula for vF in terms of expectation values in
the bound-state wavefunction Φ+

(0).
Let:

〈O〉 ≡
∫ ∞

r�

dr
√

grrO ,

Jμ ≡ Φ̄+
(0) ∂kμ /D0,kF

Φ+
(0) = Φ̄+

(0)Γ
μΦ+

(0)

is the bulk particle-number current.

vF =
〈J1〉
〈J0〉 =

∫
dr

√
grrg ii

(|y |2 − |z |2)∫
dr

√
grr (−g tt) (|y |2 + |z |2) .

Φ =

(
y

z

)
Note: gii

−gtt = f (r) ≤ 1 implies that vF ≤ c.



fermi velocity

Figure: The Fermi velocity of the primary Fermi surface of various
components as a function of 2ν > 1 for various values of m.



An explanation for the particle-hole symmetry
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Figure: Left: Motion of poles in the ν < 1
2 regime. As k varies towards

kF , the pole moves in a straight line (hence Γ ∼ ωc), and hits the branch
point at the origin at k = kF . After that, depending on γ(kF ), it may
move to another Riemann sheet of the ω-plane, as depicted here. In that
case, no resonance will be visible in the spectral weight for k > kF .
Right: Motion of poles in the ν > 1

2 regime, which is more like a Fermi
liquid in that the dispersion is linear in k⊥; the lifetime is still never of
the Landau form.

Note: the location of the branch cut is determined by physics:

at T > 0, it is resolved to a line of poles.



Oscillatory region

Above we assumed ν = R2

√
m2 + k2 − (qed)2 ∈ R

ν = iλ ⇔ Oscillatory region.

This is when particle production occurs in AdS2. [Pioline-Troost]

Effective mass below BF bound in AdS2. [Hartnoll-Herzog-Horowitz]

Reωi2λ = sin 2λ log ω =⇒ periodic in logω with period π
|ν| .

comments about boson case:
Net flux into the outer region > 0 = superradiance of AdS RN
black hole (rotating brane solution in 10d)

Classical equations know quantum statistics!
like: statistics functions in greybody factors

Required for consistency of AdS/CFT!

boson: particles emitted from near-horizon region, bounce off
AdSd+1 boundary and return, causing further stimulated emission.
spinor: there is particle production in AdS2 region, but net flux
into the outer region is negative (‘no superradiance for spinors’).



oscillatory region and log-periodicity

When ν(k) is imaginary, G ∼ ων is periodic in logω.
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Figure: Both ReG22(ω, k = 0.5) (blue curve) and ImG22(ω, k = 0.5)
(orange) are periodic in logω as ω → 0.
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Figure: The motion of poles of the Green functions of spinors (left) and
scalars (right) in the complex frequency plane. Both plots are for
parameter values in the oscillatory region (q = 1,m = 0). In order to give
a better global picture, the coordinate used on the complex frequency
plane is s = |ω| 1

20 exp(i arg(ω)). The dotted line intersects the locations
of the poles at k = k0 = ..., and its angle with respect to the real axis is
determined by G(k , ω). The dashed lines in the left figure indicate the
motion of poles on another sheet of the complex frequency plane at
smaller values of k < k0. As k approaches the boundary of the oscillatory
region, most of the poles join the branch cut. It seems that one pole that
becomes the Fermi surface actually manages to stay in place. These plots
are only to be trusted near ω = 0.
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Oscillatory Region

No Classical Orbits

P

Information from WKB. At large q,m, the primary Fermi momentum is given

by the WKB quantization formula: kF

R s+

s
−

ds
p

V (s;α, β) = π, where

α ≡ q

k
, β ≡ m

k
, s is the tortoise coordinate, and s± are turning points

surrounding the classically-allowed region. For k < q/
√

3, the potential is

everywhere positive, and hence there is no zero-energy boundstate. This line

intersects the boundary of the oscillatory region at k2 + m2 = q2/2 at the point

P = (α, β) = (
√

6,
√

2). Hence, only in the shaded (blue) region is there a

Fermi surface. The exponent ν(kF ) is then given by ν(kF ) =
π
√

1+β2−α2/2
R

ds
√

V (s;α,β)
.

This becomes ill-defined at the point P, and interpolates between ν = 0 at the

boundary of the oscillatory region, and ν =∞ at k = q/
√

3.


