

2134-12

Spring School on Superstring Theory and Related Topics

22 - 30 March 2010

Puzzles and Problems for Gravity and Glue Lecture I

R.C. Myers Perimeter Institute for Theoretical Physics Waterloo Canada

Themes:

- AdS/CFT correspondence may be a powerful tool to study (certain phases of) QCD
- touch on holographic hydrodynamics
- examine role/effects of higher curvature gravity interactions in AdS/CFT calculations

(Maldacena; Witten; Gubser, Klebanov & Polyakov, . . AdS/CFT correspondence:

Type IIb superstrings
on $AdS_5 X S^5$ (3+1)-dimensional
 $\mathcal{N}=4 SU(N_c)$
super-Yang-Mills

Holographic dictionary begins:

$$\lambda = g_{YM}^2 N_c = L^4 / \ell_s^4$$

$$g_{YM}^2 = 4\pi g_s$$

 much of subsequent work is extending/better understanding the entries in this dictionary (Maldacena; Witten; Gubser, Klebanov & Polyakov, . . AdS/CFT correspondence: Type IIb superstrings on AdS₅ X S⁵ (3+1)-dimensional $\mathcal{N}=4$ SU(N_c) with RR flux N_c super-Yang-Mills

Problem: we don't know how to do string theory in RR backgrounds very well!!

Solution: take limit to classical (super)gravity

 $g_s \ll 1$ *control loop/quantum string effects*

(Maldacena; Witten; Gubser, Klebanov & Polyakov, . . AdS/CFT correspondence: Type IIb superstrings on AdS₅ X S⁵ (3+1)-dimensional $\mathcal{N}=4$ SU(N_c)

 $g_s \ll 1 \qquad L^4/\ell_s^4 \gg 1$

super-Yang-Mills

with RR flux N_c

work with classical two-derivative (super)gravity action [as well as occasional string/D-brane probes]

in dual gauge theory: $\ N_c \gg \lambda \gg 1$

't Hooft limit – physics dominated by planar diagrams [still lots of SYM loops] with AdS/CFT correspondence, we have a great tool to study strongly coupled gauge theories – only problem is that its the "wrong" gauge theory!

QCD

 $N_{c} = 3 = N_{f}$

Matter: fermions in fundamental rep. confinement, discrete spectrum, chiral symmetry breaking,

n=4 SYM

N_c large Matter: fermions & scalars in adjoint rep. deconfined, conformal, supersymmetric,

very different !!

with AdS/CFT correspondence, we have a great tool to study strongly coupled gauge theories – only problem is that its the "wrong" gauge theory!

Not the topic of these lectures

 we will look at possible connection between AdS/CFT and QCD from different angle

→ finite temperature

(breaks both SUSY and conformal symmetries)

 recent years have seen a great deal of activity which is primarily driven by two suprises: Surprise 1: experiments at RHIC have discovered a new phase of nuclear matter, known as the strongly coupled quark-gluon plasma, which behaves like a near ideal fluid with:

$$\eta/s \simeq .08 - .16$$

Theoretical challenge: strong-coupling dynamics!!

Surprise 2: examining hydrodynamic properties of N=4 SYM plasma with AdS/CFT, Kovtun, Son & Starinets found:

$$\frac{\eta}{s} = \frac{1}{4\pi} \sim 0.08$$

"universal result for all theories with Einstein gravity dual"

(Kovtun, Son & Starinets; Buchel & Liu; Benincasa, Buchel & Naryshkin; Iqbal & Liu; . . .)

Anatomy of collision:

Anatomy of collision:

Gold nuclei flattened by relativistic effects; energy ~ 100 GeV/nucleon

Anatomy of collision:

some of the energy converted to intense heat liberating quarks and gluons; timescale ~ 2-3 X 10⁻²² sec

Anatomy of collision:

Anatomy of collision:

with expansion and cooling, matter converted back to hadrons AdS/CFT may have interesting things to say about any of the last three phases but primary focus has been on Expansion

Anatomy of collision:

Consider collisions which are not head-on:

Elliptic flow:

Collective flow: pressure gradients generate nonuniform distribution $v_2 \sim \langle \cos 2\phi \rangle \neq 0$

theoretical models assume Shear Viscosity η is small!

How small?

• simulations characterized in terms of ratio of shear viscosity to entropy density: η/s (dimensionless in units where $\hbar = 1 = k_B$)

• simulations characterized in terms of ratio of shear viscosity to entropy density: η/s (dimensionless in units where $\hbar = 1 = k_B$)

• simulations characterized in terms of ratio of shear viscosity to entropy density: η/s (dimensionless in units where $\hbar = 1 = k_B$)

(Luzum & Romatschke, arXiv:0804.4015)

- find: $\eta/s \simeq .08 .16$
- greatest uncertainty is in initial energy distribution within almond shaped region
- simulations will continue to improve upper bound: $\eta/s < .2$ (D. Teaney: $\eta/s < .5$)
- note η/s is really small here typical materials (liquid Helium, water) exhibit $\eta/s \gg 1$

(hep-th/0405231)

• simulations characterized in terms of ratio of shear viscosity to entropy density: η/s (dimensionless in units where $\hbar = 1 = k_B$)

(Luzum & Romatschke, arXiv:0804.4015)

- find: $\eta/s \simeq .08 .16$
- greatest uncertainty is in initial energy distribution within almond shaped region
- simulations will continue to improve upper bound: $\eta/s < .2$ (D. Teaney: $\eta/s < .5$)
- note $\eta/s\,$ is really small here typical materials (liquid Helium, water) exhibit $\,\eta/s\gg 1\,$
- challenge for theorists we need to describe strong coupling (real-time) dynamics
- standard tools (e.g., lattice gauge theory) are not effective

• simulations characterized in terms of ratio of shear viscosity to entropy density: η/s (dimensionless in units where $\hbar = 1 = k_B$)

(Luzum & Romatschke, arXiv:0804.4015)

• find:
$$\eta/s \simeq .08 - .16$$

• recall:

Surprise 2: examining hydrodynamic properties of N=4 SYM plasma with AdS/CFT, Kovtun, Son & Starinets found:

$$\frac{\eta}{s} = \frac{1}{4\pi} \sim 0.08$$

• numbers look similar but so what??

QCD

n=4 SYM

T>>T_c runs to weak coupling; coupling remains strong; free gas of quarks & gluons strongly-coupled plasma very different !!

- may find universal behaviour in intermediate regime (just above T_c) where we can import (qualitative and quantitative?) insights from N=4 SYM to understand QCD plasma
- sounds good but . . .

Lattice studies suggest that QCD makes a cross-over to quark-gluon plasma at T ~ 175 ± 15 MeV (~ 10^{12} K)

Karsch (hep-lat/0106019)

• scale energy density by free result: $\frac{\varepsilon_0}{T^4} = \frac{\pi^2}{30} N_{m=0}$

Strongly coupled QGP seems to be "conformal", just above T_c

Hints from the lattice about sQGP:

- plotting $\mathcal{E}/\mathcal{E}_0$ vs T/T_c, various QCD-like theories show a plateau near $\mathcal{E}/\mathcal{E}_0 \sim .8$ (universal behaviour??)
- plateau is significantly less than 1 (strongly coupled)
- plateau shows T is only relevant scale (conformal phase)
- N=4 plasma quite close to plateau in lattice studies (universal behaviour??)
- Note 1: N=4 SYM shows no transition (of course) not capture full physics of QCD but perhaps still a good model of sQGP
- Note 2: more recent lattice results still show same dramatic plateau but $\epsilon/\epsilon_0 \sim .85 .9$ (Cheng et al, 0710.0354)

Next day, more on shear viscosity and hydrodynamics

Exercise:

Express the critical temperature for deconfinement In QCD in degrees Kelvin. (Ans.: $T_c \sim 2 \times 10^{12} K$)

Exercise:

Express the density of nuclear matter in gram/centimeter³.

(Ans.: $ho~\sim~2 imes10^{14}g/cm^3$)