Precision Agriculture

Reza Ehsani Assistant Professor

Department of Agricultural and Biological Engineering University of Florida ehsani@ufl.edu

2nd Satellite Navigation Science and Technology for Africa Trieste – Italy 6 - 24 April 2010

Objectives

Provide an overview of:

- Navigation and field guidance systems in agriculture
- Precision Agriculture concept
- Precision Agriculture components
 - Yield monitoring and yield mapping
 - Sensors and data collection methods
 - ★ Remote sensing for agriculture
 - Geographic Information Systems (GIS)
 - ⋆ Data analysis
 - ★ Variable Rate Application (VRT)
- Socio-Economic Issues

Field Guidance

Traditional Guidance Aids

Light-bar Guidance Steering Aids

Autosteering Systems

Increase Productivity and Efficiency of Field Operations

- Reduce driver fatigue and stress
- Ability to drive at night or under poor visibility
- Using less experienced drivers
- Possibly increase of application speed

Benefits of Autosteering Systems

Increase productivity and efficiency of field operations

 Facilitates the adoption of new and innovative field practices

Facilitates the Adoption of New and Innovative Field Practices

- Controlled traffic
- Strip-till for corn
- Strip cropping corn and soybeans
- Precise spraying to minimize overlap and skips

Other Benefits Include

- Perfect guess rows
- Ability to produce "as applied map"
- Creating a precise topographic map of the field
- Eliminating conventional markers, or foam.

Applications of Guidance Systems

Managing Compaction...

- Controlled Traffic
- More axles
- More tires
- Bigger tires
- Rubber tracks
- Subsoiling

Mitchell's Family

RTK Nozzle Control Eliminates Overlap due to Waterways

Autonomous Guidance

Autonomous Tractor

Precision Agriculture - Definition

It is the technique of applying the right amount of input (fertilizer, pesticide, water etc.) at *the right location at the right time* to enhance production , decrease input, and/or protect the environment.

History of Precision Agriculture

33

Yield Monitor & Yield Map

Data Collection

Precision Agriculture

- What is the yield <u>at this point</u>?
 Yield monitoring and location (GPS)
- Why is the yield high/low <u>here</u>?
 - Geographic Information System (GIS) and GPS
- What can we do to increase yield or reduce input <u>at this point</u>?
 - Variable Rate Technology (VRT) and GPS
Elements of Precision Agriculture

Yield Monitoring

Yield Monitoring

Yield monitoring is the process of continuously recording the grain mass flow through the combine and integrating it with location and grain moisture information.

Types of Yield Monitors

Grain

Wheat, Soybean, Corn, Barley, etc.

- Non-Grain
 - Potatoes, Carrots
 - Tomatoes, Grapes, Strawberries
 - Cotton, Forage crops

Yield Map

- YieldLocation
 - DGPS

What Do We Need to Know to Determine the Crop Yield?

Grain flow rate through the combineArea covered

$$Yield = \frac{Mass/volume}{Area}$$

Components of A Yield Monitor

Carrot Yield Monitor

Weigh roller

Yield Monitor for Grape Harvester

Profile Yield Sensor Array

Tomato Yield Monitor

Citrus Mechanical Harvesters

Continuous Canopy Shaker

Yield Data Contains Useful Information

- Soil Type Productivity
- Variety & Soil Type
- Herbicide & Variety
- Disease & Variety
- Fertility Level
- Organic Matter & Variety

Yield Map

Flow

🔍 ArcView GIS 3.2			_ 8 ×	
<u>File Edit View Theme Graphics Window H</u> elp				
		Scale	40.11 +	
& View2			_ ₽ ×	
 ✓ Gpsreza.txt 0.251 - 2.1 2.1 - 2.957 2.957 - 3.375 3.375 - 3.899 3.699 - 4.608 				

Field Efficiency

- Field Efficiency = harvest time/total time
- = 61% for the field shown
- Depends on
 - Field shape
 - Turns
 - Plugging
 - Unloading
 - Other time losses

Factors influencing yield variations

Little Control	Possible Control	
 Soil Texture Climate Topography Hidden features 	 Soil Structure Available water Water-logging Nutrient levels pH Level Trace element levels Weed competition Pests and diseases 	

Earl etal 1996

Cost Effective Data Collection

- Soil sensors
- Plant sensors
- Remote sensing
 - Aerial images

Soil Sensors

Electrical Conductivity (EC)

- Soil Texture Compaction Index (TCI) sensor
- Soil organic matter sensor
- Soil pH sensor

Soil Electrical Conductivity

VERIS Technologies EC Device

Yield Map

EC Map

Application of EC Survey for Vineyard Site Selection

Soil Sensor

Load Pins

Soil Moisture Sensor

Hyperspectral Imaging

Healthy Tree

HLB Infected Tree

Application of handheld computers, GPS, and GIS software for crop scouting

Agricultural Robots

Variable Rate Application

Variable Rate Technology (VRT)

VRT consists of machines and systems for applying <u>desired rate</u> of crop production materials at a <u>specific location</u>

Types of VRT

Tree Canopy Volume Measurement and Mapping

Tree Canopy Measurement

Sensor Based Nitrogen Application

Results

Tree height

Tree canopy volume

Variable-rate Technologies for Fertilizer Application

M&D 3.5 Ton Unit (split belt-chain)

VRT Fertilizer Applicators

Spinner Disc

Variable Rate Technology (VRT)

Basis for Variable Rate Application Map

Soil Type

- Soil Electrical Conductivity
- > Previous Yield/ Historic Information
- Elevation
- > Fertility (Soil Sampling)
- > Aerial Images (Bare Soil Image)

Variable Rate Seeding Corn

Uniform Rate
8 Rows
28,400 seeds/acre

Variable Rate
 8 Rows
 24,444 - 31,111 - 37,77
 seeds/acre

Variable rate seed map

Normalized Yield

VRT Sprayer

VRT Sprayers

Variable Rate Spraying

(Young leaves)

• Psyllid feed on young leaf/flush

Frequent Foliar Pesticide Applications and Selective Spraying

- Effect of pesticides on beneficial insects
- Health effects
- Long term environmental effects

 Discharging spray droplets only on young flush potentially reduces pesticide usage.
 Selective spraying could minimize pesticide impact on beneficial insects

Spectral reflectance of leaves

Spot Sprayer System

Seed Mapping

Planter Instrumentation

REMOTE SENSING

A Cost Effective Source of Data for Precision Agriculture

This image of early season corn may help locate and explain yield variability.

NIR and Water

Remote Sensing

(Berry)

A healthy plants would look like a huge snowstorm hit, and things would be very bright:

NIR and Water

What is remote sensing?

Typical Visible and NIR Reflectance Spectrum of Healthy Green Plants

WHAT ARE REFLECTANCE SPECTRA?

Yield Map

NDVI Map

- Sensors used for disease detection
 - □ Active Four-band Sensor (with incident light source):
 - Visible (570 nm, 670 nm)
 - Infrared (870 nm, 970 nm)

•Four-band Active Sensor

- Passive Multi-band Sensor (without incident light source)
 - Visible (485 nm, 560 nm, 660 nm)
 - Infrared (830 nm, 1650 nm)

•Five-band Passive Sensor

<section-header>

Weed sensors

Oblique Aerial Photos (Panchromatic)

- Images can be manipulated to overlay existing precision farming data such as yield data, pH, etc.
- Lines depicting problem areas can be easily hand-drawn on maps
- Above left: Tobacco Ringspot Virus on soybeans?
- Above right: tile lines or planter/sprayer problems?

Oblique Aerial Photos (B&W IR, CIR)

Note the variability from one day to the next, due to rain on June 29

 Different soil drainage classes are often revealed following a rainfall event

 Until a full canopy is established, soil response directly contributes to image

 Mature crops (Sep 17) still reveal the basic soil pattern, even though no soil is visible

Applications of UAV in Agriculture

With readily available components: a pair of cheap digital cameras, an infrared filter, a tethered helium balloon, radio control servos and transmitter, we can gather over-head images of field crops. Simultaneous IR and VIS bands are captured with the 2 cameras. The RGB bands are recombined in Adobe Photoshop to create false color infrared images. This low cost system (under \$800.00), is a useful tool for educational and agronomic applications.

Strawberry Patch in May 2002: The 2 left photos were taken by Geo-Vantage flown at 2000 ft.

The above photo was taken the same day with an Intel PC camera flown at 500 ft.

Economics

- Wheat, Corn, Soybean (\$5 to 20/ acre?)
- Sugar beet (\$25 100/acre or higher?)
- How about High-Value crops?
- Price of information?
Social Impacts?

- Rural employment ?
- Who will provide the service?
- Big versus Small farmer?