GPS TEC calibration: details and practical aspects
L. Ciraolo

IFAC-CNR, Firenze / ICTP, Trieste
E-mail: l.ciraolo@ifac.cnr.it, lciraolo@ictp.it

Second Workshop on Satellite Navigation Science and Technology for Africa

6-24 April 2010
the Abdus Salam ICTP, Trieste, Italy

GPS scenario

Propagation delays, Disturbances, Hardware Delays, Multi-Path

Propagation Delays

Propagation and Atmospheric contributions to optical path Λ :
Geometric (Distance), Tropospheric, Ionospheric

$$
\Lambda \quad=\quad D+T+I
$$

Equivalent Group Path $\boldsymbol{P}=$ Group delay $\boldsymbol{G} \times$ speed of light

$$
P=G \cdot c=D+T-I
$$

Refractivity $\boldsymbol{R}=\boldsymbol{n} \boldsymbol{- 1}, \boldsymbol{n}$ Index of Refraction

$$
\begin{aligned}
& T=\int R_{\text {atm }}(s) d s \quad I=\int R_{\text {Iono }}(s) d s \quad R_{\text {Iono }}=-\frac{40.3 \cdot N_{e}}{f^{2}}, \\
& T E C=\int N_{e}(s) d s, \quad I=-\frac{40.3 \cdot T E C}{f^{2}} \\
& L=\frac{D+T+I}{\lambda}=\frac{f}{c}(D+T)-\frac{40.3 T E C}{c f} \\
& G=\frac{d L}{d f}=\frac{D+T}{c}+\frac{40.3 T E C}{c f^{2}}
\end{aligned}
$$

Measurements introduce additional "delays"
Hardware electronic delays originating
in satellite and receiver, β, γ
Offset (delay, ambiguity) for phase $\quad \Omega$
Noise
Multipath \boldsymbol{m}
User clock offset τ

Code delay affected by user clock offset is pseudorange

$$
\boldsymbol{P}=\boldsymbol{D}+\boldsymbol{T}-\boldsymbol{I}+\beta+\gamma+\boldsymbol{n}+\boldsymbol{m}+\tau
$$

For following discussion, noise and multipath can be neglected for phase delays. Hardware delays for phase are included in Ω

$$
\Lambda=D+T+I+\Omega
$$

Code hardware delays

Availing GPS delays $\boldsymbol{P 1}, \boldsymbol{P 2}, \mathbf{L 1}, \mathbf{L 2}, \boldsymbol{C 1}$

Users aiming to determine their position, will get rid of ionospheric contribution taking proper combinations of them.

Users aiming to investigate ionosphere, will simply compute differential delays
Differential pseudorange

$$
P 2-P 1
$$

Differential phase path

$$
\Lambda 1-\Lambda 2=L 1 \cdot \lambda 1-L 2 \cdot \lambda 2
$$

Both differential delays are in meters.
Following steps:
Show dependence on $\boldsymbol{T E C}$
Transform to TEC units ($\mathbf{1 0}{ }^{16}$ electrons/m \mathbf{m}^{2}), TECu

The differential Delays

For the carrier i (i=1,2), contributions with no index do not depend on frequency and cancel out forming differential delays

$$
\begin{aligned}
\boldsymbol{P}_{i}=\boldsymbol{G}_{\boldsymbol{i}} \cdot \boldsymbol{c}=\boldsymbol{D}+\boldsymbol{T}-\boldsymbol{I}_{i}+\beta_{i}+\gamma_{i}+\boldsymbol{n}_{\boldsymbol{i}}+\boldsymbol{m}_{\boldsymbol{i}}+\tau, \\
\underline{\Delta \boldsymbol{P}=\boldsymbol{P} \mathbf{2}-\boldsymbol{P} \mathbf{1}=\boldsymbol{I} \mathbf{1}-\boldsymbol{I} \mathbf{2}+\Delta \beta+\Delta \gamma+\Delta \boldsymbol{n}+\Delta \boldsymbol{m}}
\end{aligned}
$$

$$
\Lambda_{i}=\boldsymbol{D}+\boldsymbol{T}+\boldsymbol{I}_{i}+\Omega_{i}
$$

$$
\begin{gathered}
\underline{\Lambda \Lambda=\Lambda 1-\Lambda 2=I 1-I 2+\Delta \Omega} \\
I 2-I 1=k \cdot T E C \quad k=40.3 T E C\left(\frac{1}{f_{2}^{2}}-\frac{1}{f_{1}^{2}}\right)
\end{gathered}
$$

Divide by $\boldsymbol{k} \cdot 1 \boldsymbol{0}^{-16}$, drop out the Δ symbol to obtain the phase slants S_{P} and group or code slants $\boldsymbol{S}_{\boldsymbol{C}}$ in $\boldsymbol{T E C u}, 1 \boldsymbol{T E C u}=10^{16}$ electrons $/ \mathrm{m}^{2}$, disregard radio noise \boldsymbol{n}

$$
\begin{aligned}
& S_{P}=\frac{1}{k} \cdot(\Lambda 1-\Lambda 2)=T E C+\Omega \\
& S_{C}=\frac{1}{k} \cdot(P 2-P 1)=T E C+m+\beta+\gamma
\end{aligned}
$$

The classical interpretation of $\boldsymbol{T E C}$ as the numbers of electrons contained in a column of unitary base along the ray
$\boldsymbol{T E C}=\int_{R x}^{T_{x}} N_{e} d \boldsymbol{s}$

Never forget: $\boldsymbol{T E C}>0$

Note for the following: expressions for observations like

$$
S=T E C+b
$$

denote the set of all available observations used for performing some specific task.
Actually observations should be indexed as $S_{i j t}$ meaning that the individual observed quantity, the "slant", refers to $\boldsymbol{i}^{\boldsymbol{t h}}$ satellite, $\boldsymbol{j}^{\text {th }}$ station, $\boldsymbol{t}^{\text {th }}$ time.

Biasing terms can still be indexed according to satellite and station (not time as assumed to be constant), but also according to the specific observed arc.

When needed for clarity, indexing will be explicitly adopted.

Plot of S_{C} arcs for one day

TEC($10^{+416)}$) albh Lan=48.4N Lon-123.6E
2026
AOA BENCHMARK ACT 3.3.32.2 Ik 99/07/2

2003/03/30, Heur, UTC

* Evidence that calibration is needed: TEC is a positive quantity

Sample S_{C}, one arc: the common situation

Code Slant (TECU), PRNF=25 mato Lat=40.6N Lon=16.7E RecTypoVor $=21580 \quad$ TRIMBLE 4000SSI NAV 7.29 SIG 3.07

Sample $\boldsymbol{S}_{\boldsymbol{P}}$, one arc: the common situation (phase jumps)
Phaee Slant (TECu), PRN\% 25 mate Lat=40.6N Lon=16.7E RecTypeVer $=21680 \quad$ TRIMBLE 4000SSI NAV 7.29 SIG 9.07

Sample $\boldsymbol{S}_{\boldsymbol{P}}$, one arc „, after removing jumps, fixing the minimum to zero

Phaee Slant (TECU), PRNF-28 mate Lat=40.6N Lon=10.7E RecTypoVor $=21680 \quad$ TRIMBLE 4000 SSi NAV 7.29 sIG 3.07

Offset Ω is an arbitrary quantity: can we set it in some useful way?
A new set of observables: Phase slants leveled to Code
Operator <•> is a properly selected weighted (possibly robust) average
Build, arc by arc, the leveled slants $\boldsymbol{S}_{\boldsymbol{L}}$

$$
\begin{gathered}
\boldsymbol{S}_{L}=\boldsymbol{S}_{P}-<\boldsymbol{S}_{P}-\boldsymbol{S}_{C}> \\
<\boldsymbol{S}_{P}-\boldsymbol{S}_{C}>=\boldsymbol{\Omega}-<\boldsymbol{m}>-\beta-\gamma \\
\boldsymbol{S}_{L}=\boldsymbol{T} \boldsymbol{E C}+<\boldsymbol{m}>+\beta+\gamma
\end{gathered}
$$

Properties of $\boldsymbol{S}_{\boldsymbol{L}}$
Noise is the same (neglected) of phase slants
Biased exactly as code slants
But: an arc dependent constant leveling error $\boldsymbol{\lambda}=\langle\boldsymbol{n}\rangle+\langle\boldsymbol{m}\rangle$ appears

Sample $\boldsymbol{S}_{\boldsymbol{C}}$ and $\boldsymbol{S}_{\boldsymbol{P}}$ with properly selected phase offset $\Omega=\boldsymbol{S}_{\boldsymbol{L}}$

mate Lat-40.6N Lon=16.7E RecTypaVer $=21680$

TRIMBLE 4000SSI NAV 7.29 SIG 3.07

One day, $\boldsymbol{S}_{\boldsymbol{C}}$ and $\boldsymbol{S}_{\boldsymbol{L}}$ arcs
TEC(10**16) albh Lat=48.4N Lon=123.5W

* Evidence that calibration is needed: TEC is a positive quantity

Summary of the observables

$$
\begin{gathered}
\boldsymbol{S}_{\boldsymbol{P}}=\boldsymbol{T E} \boldsymbol{C}+\boldsymbol{\Omega} \\
\boldsymbol{S}_{\boldsymbol{C}}=\boldsymbol{T E C}+\boldsymbol{m}+\beta+\gamma \\
\boldsymbol{S}_{L}=\boldsymbol{T E C}+\lambda_{A r c}+\beta+\gamma
\end{gathered}
$$

$\boldsymbol{\Omega} \quad$ Offset, constant but arbitrarily changing from arc to arc
$\beta, \gamma \quad H a r d w a r e ~ b i a s e s: ~ d e l a y s ~ i n ~ e l e c t r o n i c s ~ o f ~ t r a n s m i t t e r ~ a n d ~ r e c e i v e r . ~$ One β for satellite, one γ per station.
$m \quad$ Multi-path,
$\lambda \quad$ Leveling error, $\langle\boldsymbol{m}\rangle$, changing generally (but not arbitrarily) from arc to arc.
$\boldsymbol{T E C} \quad$ The quantity to estimate, variable from observation to observation

Following topics will be discussed in the following

GPS ionospheric observables

Reliability of leveled slants
Problems with multipath
Problems with receivers?

TEC expansion

Reliability of the thin shell approximation

Calibration

The thin-shell, single-station, multi-day solution
of individual arc offsets

Validation

Use of ionospheric models to validate the calibration techniques

$$
\begin{aligned}
& \text { Features of observations, Code slants } \\
& \qquad \boldsymbol{S}_{\boldsymbol{C}}=\boldsymbol{T E} \boldsymbol{C}+\boldsymbol{n}+\boldsymbol{m}+\beta+\gamma
\end{aligned}
$$

Advantages: the electronic delays are physical quantities, stable or undergoing slow aging in controlled environmental conditions: they are generally considered constants over long times (up to 1 month).

One β per satellite, one γ for station: a favorable unknowns/observations budget.
\boldsymbol{n} : strong radio noise (non linear techniques used to evaluate pseudo-ranges), but still a stochastic variable with zero mean (resulting in consistent estimations)

Can multipath \boldsymbol{m} be considered a disturbance?
How to distinguish it from noise? Period of GPS orbits is 12 sidereal hours: day after day the same satellite will occupy the same position with an advance of ≈ 4 minutes: if same environment day after day, \boldsymbol{m} will advance by the same amount.

Plot a fraction of arc of the same satellite day by day with an advance of ≈ 4 minutes
Note: to avoid $\boldsymbol{T E C}$ variability, what is plotted for each arc is $\boldsymbol{T E C}(\boldsymbol{t})-\boldsymbol{T E C}\left(\boldsymbol{t}_{0}\right), \boldsymbol{t}_{\boldsymbol{\theta}}$ being the beginning of each arc. Both $\boldsymbol{S}_{\boldsymbol{G}}$ and $\boldsymbol{S}_{\mathscr{\Phi}}$ relative to the same arc are plotted .

Features of observations: Phase slants

$$
S_{P}=T E C+\Omega
$$

No significant noise and multipath (above slide)
Modest equations/unknown budget: one unknown per arc
Global single day solution, 200 stations
Unknowns: coefficients of TEC expansion plus around 1000 unknown offsets, compared to 200+30 hardware biases.

Possibility to use first differences (in time) of the observations of one arc. Only TEC coefficients remain: calibration relies entirely on the model used for the expansion.

Other possibility: solving by geodetic techniques for the ambiguities and therefore for the offsets.

$$
\begin{gathered}
\text { Leveled slants: } \quad \boldsymbol{S}_{\boldsymbol{L}}=\boldsymbol{T} \boldsymbol{E} \boldsymbol{C}+\lambda+\beta+\gamma \\
\lambda=<\boldsymbol{m}>
\end{gathered}
$$

As for code slants, one unknown per satellite β and for station γ
Same observations/unknown budget of phase slants $\boldsymbol{S}_{\boldsymbol{P}}$, apart the leveling error, constant arc by arc

Commonly assumed: disregard leveling error $\lambda=<\boldsymbol{m}>$
In leveling error, the mean of a stochastic variable , <n> has been neglected as a quantity with (likely) zero mean: it can be considered a disturbance that will not significantly affect the ultimate accuracy of calibration.

Does the same holds for $<\boldsymbol{m}>$?
No: multi-path is not a stochastic variable and it has no zero mean
The close stations experiment can evidence this statement

Availability of close stations

Many co-located IGS stations are available:
darr/darw, dav1/davr, gode/godz, gol2/gold,kou1/kour, mad2/madr, mat1/mate ohi2/ohi3, reyk/reyz, tcms/tnml, thu2/thu3, tid1/tid2, tid1/tidb, tid2/tidb, zimj/zimz and the combinations of $w t z a, w t z j, w t z r, w t z t$.

Besides IGS stations, a special set of observation has been set up by the group of La Plata University, Argentina (C.Brunini, F.Azpiliqueta).

Close to the IGS station "lpgs", the additional stations "blue", "red0" and "asht" have been set up for present investigation, whose characteristics will be described in (*).

Duration: days 182/205 and 262/269, 2005
(*) Journal of Geodesy
DOI 10.1007/s00190-006-0093-1
Calibration Errors on Experimental Slant Total Electron Content (TEC) Determined with GPS
L. Ciraolo, F. Azpilicueta, C. Brunini, A. Meza, S. M. Radicella

Updated availability of close station (2008)

cagl/cagz; cont/conz; darr/darw; dav1/davr; gode/godz; gol2/gold; harb/hrao; hers/hert; irkj/irkm; irkj/irkt; irkm/irkt; joz2/joze; kir0/kiru; lhas/lhaz; mad2/madr; mat1/mate; mdvj/mdvo; mets/metz; mobj/mobn; nya1/nyal; ohi2/ohi3; suth/sutm; tcms/tnml; thu2/thu3; tid1/tid2; tid1/tidb; tid2/tidb; tixi/tixj; tro1/trom; tsk2/tskb; usn3/usno; wtza/wtzj; wtza/wtzr; wtza/wtzs; wtza/wtzz;
wtzj/wtzr; wtzj/wtzs; wtzj/wtzz; wtzr/wtzs; wtzr/wtzz; wtzs/wtzz; yakt/yakz; yar2/yarr; zimj/zimm;

Not dependent on PRN

The close stations experiment

In equations of observation

$$
\boldsymbol{S}=\boldsymbol{T} \boldsymbol{E} \boldsymbol{C}+\beta+\gamma+\lambda
$$

Consider observations to satellite \boldsymbol{i} from stations \boldsymbol{j} e \boldsymbol{k}

$$
\begin{aligned}
\boldsymbol{S}_{i j} & =\boldsymbol{T E} \boldsymbol{C}_{i j}+\beta_{i}+\gamma_{j}+\lambda_{A r c_{-} i} \\
\boldsymbol{S}_{i k} & =\boldsymbol{T E} \boldsymbol{C}_{i k}+\beta_{i}+\gamma_{k}+\lambda_{A r c_{-} k}
\end{aligned}
$$

For close stations (up to few km) $\boldsymbol{T E C}_{i \boldsymbol{i j}}=\boldsymbol{T E} \boldsymbol{C}_{\boldsymbol{i k}}$ satellite bias contribution is canceled

$$
S_{i j}-S_{i k}=\gamma_{j}-\gamma_{k}+\lambda_{A r c_{-} i}-\lambda_{A r c_{-} k}
$$

If contribution of leveling error is not significant, plotting $S_{i j}-S_{i k}$ one gets points close to the difference $\gamma_{j}-\gamma_{k}$, a constant quantity for the investigated pair of stations.

$$
S_{i 1}-S_{i 2}, i=1 . . \text { all satellites, } T E C u
$$

gol2 Latm35.4N Lonm116.9E RecTypoVer m UC2200524002 ASHTECH UZ-12 CQ00 gold Latm35.4N Lon=116.9E RecTypeVer=LP03572 ASHTECH Z-XII3 CC00 1s goc2rnx

The situation for gol2/gold is rather uncommon

Most of times the situation is quite different as
a significant spread among satellites appears
As shown in following slides

Possible cause
the leveling error $\lambda=<\boldsymbol{m}>\boldsymbol{?}$

$S_{L 1}-S_{L 2}$, all satellites

TEC(10**16) zimm - zimj Lat=46.9N Lon=7.5E

$$
\boldsymbol{S}_{\boldsymbol{P}}, \text { zimm } \quad \text { Arcs leveled to } 0 \text { minimum value }
$$

TEC(10**16) ximm Lat=46.9N Lon=7.6E
20224769 TRIMBLE 4700 Nav $1.30 /$ Boot 1

$$
\boldsymbol{S}_{\boldsymbol{P}}(\text { zimj })-\boldsymbol{S}_{\boldsymbol{P}}(\text { zimm })
$$

TEC(10 ** 16) ziml Latw46.9N Lon=7.5E
 MT300342503 JPS LEGACY 2.3 APR,28,2004 P4

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

Is this spread due to multipath?

The spread among satellites, according to

$$
S_{i j}-S_{i k}=\gamma_{j}-\gamma_{k}+\lambda_{A r c_{-} i}-\lambda_{A r c_{-} k}
$$

provides with an estimation of the spread of $\lambda_{A r c_{-} i}-\lambda_{\boldsymbol{A r c}_{-} \boldsymbol{k}}$ around $\gamma_{j}-\gamma_{\boldsymbol{k}}$

The split antenna experiment seems to confirm it.
The receivers of "blue" and "red0", of the same firm, have been fed from the same antenna.

Implications: "blue" and "red0" see exactly the same multipath.

Besides IGS stations, a special set of observation has been set up by the group of La Plata University, Argentina (C.Brunini, F.Azpiliqueta).

Close to the IGS station "lpgs", the additional stations "blue", "red0" and "asht" have been set up to perform the following experiments

Close stations: different multipath; same or different way of processing multipath
Split antenna, receivers of same firm: same multipath, same way of processing it
Split antenna, receivers of different firms: same multipath, different way of processing

Split antenna, same multipath, same type of receiver
TEC($10^{* *} 16$) blue - red0 Lat=34.9S Lon=57.9W

Split antenna, same multipath, same type of receiver

TEC($10^{* *} 16$) blue - red0 Lat=34.9S Lon=57.9W

To reduce errors in observations, what is needed is

Recipes to reduce multipath effects

-care antenna environment and radio-technical coupling
In the normal situation, the observed discrepancies amount to several $\boldsymbol{T E C u}$.
If this is due to multi-path only, great care must be taken in selecting a weighted average $<\cdot>$ using small weights when multi-path is expected to be large:
-avoid short arcs
-care the selection of weights
-use an elevation mask as higher as possible (where \boldsymbol{m} is reasonably less strong)
empirically, using past experience
trying to estimate them from the plots of $\boldsymbol{S}_{\boldsymbol{G}}-\boldsymbol{S}$, which according to the equations of the reported observables is $\boldsymbol{m}+\boldsymbol{n}-<\boldsymbol{m}+\boldsymbol{n}>$

$$
\begin{aligned}
& W=1 \text { if Abs }\left(S_{G}-S\right)<\text { Sigma }_{S G}{ }_{S G}^{S} \\
& W=\left\{\text { Sigma }_{S G-S} / \operatorname{Abs}\left(S_{G}-S\right)\right\}^{2 n}
\end{aligned}
$$

TEC(10**16) asc1 Lat=08.0S Lon=14.4W

TEC(10**16) asc1 Lat=08.0S Lon=14.4W

But are we dealing with actual multipath only?
For some station pairs, strange patterns appear.
In the following, station "wtzj" compared to the colocated "wtza", "wtzr", "wtzt", "wtzz", exhibits a strange pattern.

The problem is limited to "wtzj", as the plots for other pairs are "normal".
Is it a thermal drift of station bias?
What will it happen to the calibration with discrepancies amounting to almost 25 TECu , and having no knowledge of the behavior of the station (evidenced only by the availability of close stations) ?

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

TEC(10**16) wtza - wtzj Lat=49.1N Lon=12.9E

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

TEC(10**16) wtzt - wtzj Lat=49.1N Lon=12.9E

$S_{L 1}-S_{L 2}$, all satellites

TEC(10**16) wtz - wtzj Lat=49.1N Lon=12.9E

29

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

TEC(10**16) wtza - wtr Lat=49.1N Lon=12.9E

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

TEC(10**16) wtza - wtzt Lat=49.1N Lon=12.9E

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

TEC(10**16) wtzt - wtzr Lat=49.1N Len=12.9E

26

$$
S_{L 1}-S_{L 2}, \text { all satellites }
$$

TEC(10**16) wtzr - wtzj Lat=49.1N Lon=12.9E

Arcs leveled to 0 minimum value

2005/03/31, UTC Hour

MT312211422 JPS LEGACY EURO_3/2.3P4

2005/03/31, UTC Hour

$$
\boldsymbol{S}_{P}(w t z j)-\boldsymbol{S}_{P}(w t z r)
$$

TEC(10**16) wtar Latw49.1N Lon=12.9E T-317 AOA SNR-8000 ACT
3.3.32.5

2005/03/31 00:00:00.00 UTC Hour

Still: only multipath or some other problem?

Back to the split antenna experiment,
but using receivers of different firms.
Spread will appear again, suggesting that its cause is more the way by which multipath is processed rather than multipath itself.

Split antenna, same multipath, different type of receiver

TEC(10**16) asht - blue Lat=34.9S Lon=57.9W

Split antenna, same multipath, different type of receiver

TEC(10**16) asht - blue Lat=34.9S Lon=57.9W

TEC(10**16) asht - blue Lat=34.9S Lon=57.9W

Conclusion of above experiments
Leveled to code slants are affected by the leveling error λ
The leveling error λ is most likely due to multipath (${ }^{*}$)
Receivers of the same type produce similar λ 's, but there is no way to estimate their magnitude

Different types of receivers produce different λ 's observing the same ray
(*) other possible cause are possible, but not up to now investigated: studying scintillation it has been evidenced effect due to interference of other GPS satellites (still sidereal-time synchronous effects)

Is it correct modeling leveled slants S_{L} disregarding λ ?
For many station pairs, answer is negative
Still: no a priori method exists to notice that something is wrong unless availing two or more stations (see above plot of slants from close stations).

The results of the close stations experiment seem to evidence the need to introduce an additional satellite "bias", the leveling error λ, dependent on the receiving station
(and the receiver type $==$ way of extracting pseudorange).

Leveling error λ is an arc dependent unknown: this implies that
No advantage is taken using leveled slants S_{L} with respect to phase slants (but this will need introducing one unknown per arc).

The choice of the calibration method

Aiming to
a simple solution (thin shell)
avoiding the problems of slants leveled to code $\boldsymbol{S}_{\boldsymbol{L}}$
(when leveling error is disregarded)
mitigating the errors of mapping function
It is natural to select a single station solution using phase slants $\boldsymbol{S}_{\boldsymbol{P}}$ or leveled slants SL

Notes about $\boldsymbol{V}_{\boldsymbol{E q}}$ approach
It takes automatically into account of plasmaspheric contribution
It is easier to model at low latitudes than actual vertical $\boldsymbol{T E C}$
It presents some more difficulty to model at low elevations

The single station solution: Calibration

Observations
Phase slants $\boldsymbol{S}_{\boldsymbol{P}}$
Assumptions
One thin shell at 400 km
Elevation mask: 10°
$\boldsymbol{T E C}$ expressed through $\boldsymbol{V}_{\boldsymbol{E q}}$ at the ionospheric point, by the mapping function sec χ
$V_{E q}$ expressed as a proper expansion of horizontal coordinates $\boldsymbol{l}, \boldsymbol{f}$ with one set of coefficients at each time $V_{E q}(l, f)=\Sigma_{n} c_{n} p_{n}(l, f)$

$$
S_{i j t}=\Sigma_{n} c{ }^{(t)}{ }_{n} p_{n}\left(l_{i j t}, f_{i j t}\right) \text { sec } \chi_{i j t}+\Omega_{A r c}
$$

The unknowns are now the coefficients $\boldsymbol{c}_{\boldsymbol{n}}{ }^{(t)}$ and the offsets $\Omega_{\boldsymbol{A r c}}$

To solve the system

$$
S_{i j t}=\Sigma_{n} c^{(t)}{ }_{n} p_{n}\left(l_{i j t}, f_{i j t}\right) \text { sec } \chi_{i j t}+\Omega_{A r c}
$$

extra assumptions are taken to reduce the number of coefficients $\Sigma_{n} c^{(t)}{ }_{n}$
Using as horizontal coordinates Modified Dip Angle and Local Time, we can assume that for a set of adjacent epochs (up to ± 15 minutes), the coefficients $\boldsymbol{c}_{\boldsymbol{n}}{ }^{(t)}$ keep constant.

This allows also reducing computing resources during solution using commonly used standard methods for sparse systems.

After the solution of the system, we avail with
Calibrated slants along the observed rays $\boldsymbol{T E} C_{i j t}=S_{i j t}-\Omega_{\text {Arc }}$
"Mapped slants" at given coordinates $\boldsymbol{l}_{\boldsymbol{i j t}}, \boldsymbol{f}_{\boldsymbol{i j t}}$
Vertical $\boldsymbol{T E C}$ above the station (ionospheric point at the its zenith)

$$
V \operatorname{Tec}(t)=\sum_{n} c_{n}^{(t)} p_{n}\left(l_{i j t}^{\text {Zenith }}, f_{i j t}^{Z \text { enith }}\right) \sec \chi_{i j t}
$$

Performance of the proposed calibration method must be now investigated

1) A first look: will it provide same TEC's from colocated stations?
2) Internal consistency: compute the residuals

$$
R_{i j t}=S_{i j t}-\Sigma_{n} c^{(t)}{ }_{n} p_{n}\left(l_{i j t}, f_{i j t}\right) \sec \chi_{i j t}-\Omega_{A r c}
$$

Small residuals mean good internal consistency, but do not help in asserting the accuracy of the method.
3) External consistency, namely the comparison with completely independent observations, should be the only way to assert the accuracy.
Possible observations: Incoherent Scatter Radar (ISR), Two-Frequency Radar Altimeter (RA-2). Problems: very few ISR's, RA-2 needs its own calibration.

Only possibility: using artificial truth data obtained using ionospheric models

A first look: worth adopting the above procedure for calibration?

TEC(10**16) wtza - wtzi Lat=49.1N Lon=12.9E

TEC(10**16) wtza - wtz Lat=49.1N Lon=12.9E

TEC(10**16) wtzr - wtz Lat=49.1N Lon=12.9E

Close station plots for wtza, wtzj, wtzr suggest that something is wrong with wtzj. Try arc offsets and standard biases calibration for the above stations

How do traditional and proposed solution compare?
In the following slides it can be seen that the two solutions agree in the average, but the difference in bias can amount to $10 \boldsymbol{T E C u}$

The pattern of the jumps, similar for different satellites, simply indicates that something has changed in the receiver

Day, Year 2000

Station brus PRN 4

Day, Year 2000

Station brus PRN ${ }^{24}$

Next topic: how can artifical data help in estimating the reliability of calibration techniques?

How accuracy of calibration techniques can be estimated

Examination of residuals

$$
\operatorname{Res}_{i j t}=S_{i j t}-\Sigma_{n} c{ }_{n}^{t} p_{n}\left(l_{i j t}, f_{i j t}\right) \text { sec } \chi_{i j t}-\Omega_{A r c}
$$

After a calibration run will provide with useful information about the

Internal consistency of the solution

Residuals are plotted in the following examples for few sample stations.
Standard deviation of the individual samples is reported.

Internal consistency of the method is estimated from the residuals (actual data)

$$
\operatorname{Res}_{i j t}=S_{i j t}-\Sigma_{n} c_{n}^{t} p_{n}\left(l_{i j t}, f_{i j t}\right) \text { sec } \chi_{i j t}-\Omega_{A r c}
$$

Residuals, actual data

TEC(10**16) allc Letw23.7S Lon=133.9E Sigma alantain.69 C126U AOA ICS-4000Z ACT 00.01.14/3.3.32.3.

Residuals, actual data

TEC(10**16) cro1 Lat=17.8N Lonm-64.6E Sigma slantere. 43 R141 AOA SNR-8100 ACT 3.3.32.2

Residuals, actual data

TEC(10**16) fort Lat=03.9s Lon=-38.4E Sigma sidnti-3.72 T149 ROGUE SNR-8000 $\quad \mathbf{3 . 2 . 3 2 . 8}$

Sigma of the shown sample residuals ranges from $\approx .5$ to $4 \boldsymbol{T E C} \boldsymbol{u}$ according to latitude.
Is this an estimation of the accuracy of the calibration?
No, as this requires a comparison with truth data, which are unavailable (Incoherent Scatter Radar, Radar Altimeter may help, but are not sufficient).

What can look more like truth data?
Artificial data produced by Ionospheric Models.

But keeping in mind that agreement with artificial data is a condition necessary but not sufficient to validate the method

The artificial data
Ionospheric models enable to estimate median electron density at some time at some geographic location, i.e. given date and time, latitude, longitude, height.

$$
N_{e}=N_{e}(t, \phi, \lambda, h)
$$

$\boldsymbol{T E C}$ is the integral of electron density along the ray-path from satellite to receiver,

$$
T E C=\int N_{e}(P) d s
$$

which will be numerically evaluated as the sum

$$
T E C \approx \sum N_{e}\left(P_{i}\right) \delta s_{i}
$$

or with any more effective numerical algorithm (Gauss, ...)

Model TEC computation

Divide the path in elements $\delta \boldsymbol{s}_{\boldsymbol{i}}$
$T E C=\int N_{e}(P) d s \approx \sum N_{e}\left(P_{i}\right) \delta s_{i}$
At each point $\boldsymbol{P}_{\boldsymbol{i}}$ compute the electron density $\boldsymbol{N}_{\boldsymbol{e}}\left(\boldsymbol{P}_{\boldsymbol{i}}\right)$ provided by the model

Simple uses of artificial data: the mapping function
Which errors do affect the standard approach (actual vertical TEC) of mapping function?

Using an artificial ionosphere:
Compute χ
Compute Slant \boldsymbol{S}
Compute Vertical TEC \boldsymbol{V} at the Ionospheric Point Error: $\boldsymbol{S}-\boldsymbol{V} \sec \chi$

Plot Error distribution

Occurrence \%, ajac Lat=41.9N Lon=8.8E

Occurrence \%, areq Lat=16.5S Lon=71.5W

Simple uses of artificial data: VEC and VEq
In the Single-Station / Arc Offset calibration the Vertical $\boldsymbol{E q u i v a l e n t ~ T E C ~ V E q ~ f o r ~ w h i c h ~}$ it is exactly $\boldsymbol{S}=\boldsymbol{V} \boldsymbol{E q} \boldsymbol{\operatorname { s e c }} \chi$ is used.

How different is $\boldsymbol{V E q}$ from actual Vertical $\boldsymbol{T E C}(\boldsymbol{V E C})$?
Using an artificial ionosphere:
Compute χ
Compute Slant \boldsymbol{S}
By definition $\quad \boldsymbol{V E q}=\boldsymbol{S} \boldsymbol{\operatorname { c o s }} \chi$
Compute Vertical TEC \boldsymbol{V} at the Ionospheric Point $\boldsymbol{V E C}$
Plot VEC, VEq
Plasmasphere can be included too using a suitable model

Integration paths for

Simple uses of artificial data: How much $\boldsymbol{V E C}$ and $\boldsymbol{V E q}$ differ?
TEC, $10^{\wedge} 16 \mathrm{el} / \mathrm{m} 2$, Station Lat $=+45.0$

TEC, $10^{\wedge} 16 \mathrm{el} / \mathrm{m} 2$, Station Lat $=+00.0$

TEC, $10^{\wedge} 16 \mathrm{el} / \mathrm{m} 2$, Lon $=+20.0$

TEC, $10^{\wedge} 16 \mathrm{el} / \mathrm{m} 2$, Lon $=+20.0$

Test of Single-Station, Arc-Offset solution

Generation of artificial truth data
Given all slants actually observed and archived
in a (quasi) complete set of IGS stations (≈ 200 per day)
for year 2000
for days 88-91 (March 28-31)
Re-compute them using
NeQuick (Az =150), integrating up to 2000 km
Therefore:
Not only the actual GPS constellation has been preserved for the reference period, but also the possible lack of observations (this will affect the solution)

Internal consistency: Residuals, simulated data

$$
\operatorname{Res}_{i j t}=S_{i j t t}-\Sigma_{n} c_{n}^{t} p_{n}\left(l_{i j t}, f_{i j t}\right) \text { sec } \chi_{i j t}-\Omega_{A r c}
$$

21821

 THMRLE 40009ai Nav 7.24 tig 2.07

Testing the calibration procedure

$$
\boldsymbol{S}_{\text {Out }}-\boldsymbol{S}_{\boldsymbol{I n}} \text { are plotted vs time }
$$

Worth (but expected) noting that errors at low latitudes are larger
Remark about highlighted arc: errors show a weakness of the solution.

These errors occur for arcs of low elevation also if, in some case, of long duration.
Processing real data, there is no chance to know if the subject arc is ill-calibrated (unless in presence of very strong errors)

Testing the solution with simulated data will (likely) enable to find a more effective way of avoiding such errors, or in a last instance, rejecting them

Slant $_{\text {Out }}$ Slant $_{\text {In }}$, TECu

TEC(10*16) albh Lap-48.4N Lonn-129.6E

 2026 AOA BENCHMARK ACT 3.3.32.2N $1 \mathrm{k9} 9 / 07 / 28$

Day, Year 2000

Slant $_{\text {Out }}$ Slant $_{\text {In }}$, TECu

TEC(10**16) allc Let=29.78 Lon=199.9E
C128U AOA ICS-400Z ACT 00.01 .14 / 3.3.323

Day, Year 2000

Slant $_{\text {out }}$ Slant $_{\text {In }}$, TECu

TEC(10**16) cro1 Late17.8N Lon-64.6E
R141
AOA \&NR-8100 ACT 3.3.92.2

Day, Year 2000

Slant $_{\text {Out }}$ Slant $_{\text {In }}$, TECu

TEC(10"r16) fort Lat=03.9S Lon=-38.4E T148 ROGUE SNR-8000 $\quad \mathbf{3 . 2 . 3 2}$.

An overall look to the errors: $S_{\text {Out }}-S_{I n}$, whole set

slant out - Truth, TECu

An overall look to the errors: $S_{\text {out }}-S_{I n}$, probability density
Probablity Densly, \% (Number of alants of zample=1.89E+07)

$0.12 \%<-10$
Error (SlantOut-Slantin), TECu
$0.067 \%>10$

Error's behavior vs latitude: percentiles, whole set

Errer 6% (Red), 50% (Black), 95% (Blue) Parcentileg, TECu

Simulation: role of multi-path contribution λ
An arbitrary set of satellite + receiver biases + multipath errors is added to model slants

Station bias $\gamma=25$
Satellite biases $\beta_{i}=10$ * ($\left.\boldsymbol{R n d}()-\boldsymbol{R n d}()\right), \boldsymbol{i}=1, . ., 32$
LevelingError $\lambda_{\text {Arc }}=\mathbf{1 0} * \boldsymbol{R n d}()$
Arc Offset $\Omega_{\text {Arc }}=1000 * \operatorname{Rnd}() \quad\{\quad$ Arc $=1 .$. Number of Arcs
NextData are processed both by traditional and arc offset single-station calibration.

Traditional, SOut - SIn

TEC(10**16) aec1 Lat-08.0S Lon=14.4W RecTypeVer $=$

Traditional, VEq computed / VEq True

TEC(10**16) aec1 Lat-08.0S Lon=14.4W RecTypoVer $=$

Day, Year 0

TEC(10**16) aect Lat-08.0S Lon=14.4W RecTypeVer =

Day, Year 0

TEC(10"+18) ase1 Lat-08.0S Lon=14.4W RecTypoVor =

Day, Year 0

Thank you

