TEC Calibration techniques:

Single-station estimation of arc offsets

L. Ciraolo

IFAC-CNR, Firenze / ICTP, Trieste E-mail: l.ciraolo@ifac.cnr.it, lciraolo@ictp.it

Second Workshop on Satellite Navigation Science and Technology for Africa 6-24 April 2010 the Abdus Salam ICTP, Trieste, Italy

Objective of the presentation
What is calibration
How it is traditionally performed
Why proposing the

Single station, multi day, arc offset TEC calibration

Effort will be spent in avoiding details, that will be developed in the last section.

The observations

Properly processing GPS measurements
forming differential delays (dual frequency receiver)
combining them to obtain 'leveled slants'
one gets slant Total Electron Content (TEC) measurements affected by biasing terms $\beta_{i}, \gamma_{j},\left(\lambda_{\text {Arc }}\right)$

$$
S_{i j t}=T E C_{i j t}+\beta_{t}+\gamma_{j}+\left(\lambda_{A r c}\right)
$$

$\boldsymbol{i}=1,2, \ldots, 32$ available GPS satellites
$\boldsymbol{j}=1, .$. , available receivers
Arc $=$ common to all continuous observations performed by receiver \boldsymbol{j} on satellite \boldsymbol{i} at times contiguos to \boldsymbol{t}

Why bracketing $\lambda_{\text {Arc }}$? Because this term is disregarded in the traditional approach but basic for the proposed "arc offset" solution.

Arc:
a sub-set of continuous observations from one receiver to one satellite
Subset of $\boldsymbol{S}_{i j t}$
$\boldsymbol{i}=\boldsymbol{M}$
$j=N$
$\boldsymbol{t}_{1}<\boldsymbol{t}<\boldsymbol{t}_{2}$
$S_{M, N, t l<t<t 2}$

\bigotimes Receiver N

Description of the biasing terms

$$
\boldsymbol{S}_{i j t}=\boldsymbol{T E} \boldsymbol{C}_{i j t}+\beta_{\imath}+\gamma_{j}+\left(\lambda_{A r c}\right)
$$

β differential hardware delays in satellite electronic circuitry
γ the same for receiver circuitry
λ the average contribution of differential multi-path along an arc
All biasing terms can be considered as constants
For ionospheric investigation and its applications (ionospheric corrections) an algorithm is needed able to estimate the biasing terms in order to have only TEC

$$
T E C_{i j t}=S_{i j t}-\beta_{t}-\gamma_{j}-\left(\lambda_{A r c}\right)
$$

This algorithm is known as

CALIBRATION or DE-BIASING

Red: unknowns
Blue: estimates

The calibration or de-biasing of GPS leveled slants

The system of the equations of observation is linear in all unknown terms

$$
\boldsymbol{S}_{i j t}=\boldsymbol{T} \boldsymbol{E} \boldsymbol{C}_{i j t}+\beta_{\imath}+\gamma_{j}+\left(\lambda_{A r c}\right)
$$

but contains more unknowns than equations.
Number of unknowns = number of TECs plus number of unknown (constant) terms

$$
\beta_{t}, \gamma_{j},\left(\lambda_{A r c}\right)
$$

How is it possible performing the calibration?
$\boldsymbol{T E C}$'s are not actually uncorrelated: at some location, at some time they depend on the electron density distribution $\boldsymbol{N}_{\boldsymbol{e}}$.
Assume electron density $\boldsymbol{N}_{\boldsymbol{e}}$ can be written as a function of position \boldsymbol{P}, time \boldsymbol{t} and a set of K parameters $\boldsymbol{Z}_{1}, Z_{2}, \ldots$

$$
T E C=\int N_{e}\left(P, Q, t, Z_{1}, Z_{2, \ldots .}\right) d s
$$

Calibration is performed finding the values $Z_{1}, Z_{2}, . ., \beta_{i}, \gamma_{j},\left(\lambda_{A r c}\right)$ which minimize the sum of the square of the residuals

$$
\begin{gathered}
\varepsilon_{i j t}=S_{i j t}-T E C\left(P, t, Z_{1}, Z_{2}, . .\right)-\beta_{t}-\gamma_{j}-\left(\lambda_{A r c}\right) \\
\Sigma \varepsilon_{i j t}^{2}=>\text { Minimum }
\end{gathered}
$$

Example: Ionospheric model NeQuick computes electron density $\boldsymbol{N}_{\boldsymbol{e}}$ at given point \boldsymbol{P}, at given time \boldsymbol{t}, as a function of a Solar Flux equivalent parameter $\boldsymbol{A} \boldsymbol{z}$.

$$
\varepsilon_{i j t}=\boldsymbol{S}_{i j t}-\boldsymbol{T E C}(\boldsymbol{P}, \boldsymbol{t}, \boldsymbol{A} \boldsymbol{z})-\beta_{\imath}-\gamma_{j}-\left(\lambda_{A r c}\right)
$$

Find $A z, \beta_{t}, \gamma_{j},\left(\lambda_{\text {Ard }}\right)$ such that $\Sigma \varepsilon^{2}{ }_{i j t}=>$ Minimum
Observations/Unknowns budget: very favorable

Problems

Non linear minimization methods needed / Dependence on parameters is not analytical but numerical
Models provide with excellent median values whereas calibration requires that the model describes very precisely the actual \boldsymbol{N}_{e} distribution

But:
Excellent perspectives for the future

Writing TEC

Better using formulations in which also actual gradients (not only median ones provided by the Ionospheric Models) can be taken into account, possibly linear in all unknowns.

$$
S_{i j t}=\boldsymbol{T E} C_{i j t}+\beta_{\imath}+\gamma_{j}+\left(\lambda_{A r c}\right)
$$

Writing TEC \rightarrow Write the integral $\boldsymbol{T E C}=\int \boldsymbol{N}_{\boldsymbol{e}}\left(P, Q, \boldsymbol{t}, \boldsymbol{Z}_{1}, Z_{2, \ldots .}\right) d \boldsymbol{s}$

Possible (linear) expansions of $\boldsymbol{T E C}$

3D (Tomography)

Multi shell

Thin shell

3D-4D approach (Tomography)
the ionosphere is divided in elements of volume (voxels) inside which \boldsymbol{N}_{e} is constant. \boldsymbol{N}_{e} of voxels are the unknowns. Evolution with time of \boldsymbol{N}_{e} is considered to improve the budget unknowns/observations. Vertical behavour of $\boldsymbol{N}_{\boldsymbol{e}}$ is expanded in Empirical Orthogonal Functions (EOF)

3D: The multishell method

If many shells are used, this is exactly the method by which numerical integration is carried out. For each shell, a suitable 2D expansion in horizontal coordinates is assumed.

The classical thin shell model
Reducing down the number of shells, and in principle the expected accuracy, take only one (thin) shell at some reference height \boldsymbol{h}

$$
T E C=V(P) \sec \chi
$$

$\boldsymbol{V}(\boldsymbol{P})$ is the $\boldsymbol{T E C}$ along the vertical of the ionospheric point \boldsymbol{P}
(Vertical Electron Content, VEC)
$\boldsymbol{V}(\boldsymbol{P})$ is a 2D function of horizontal coordinates

Note

Thanks to its simplicity and despite its known limitations, the thin shell approach has been and is very widely used also in application in which integrity is a basic requirement, such as

Satellite Based Augmentation Systems (SBAS)

In which $\boldsymbol{V E C}$ dependence on horizontal coordinates is implemented interpolating values of a grid of points covering the area of application

Klobuchar model uses this approach too
In the following, only the thin shell approach will be considered

Calibration using the thin shell approximation

Given

The observations

$$
S_{i j t}=\boldsymbol{T E C} C_{i j t}+\beta_{t}+\gamma_{j}+\left(\lambda_{A r c}\right)
$$

The thin shell assumption $\quad \boldsymbol{T E C}_{i j t}=\boldsymbol{V}\left(\boldsymbol{P}_{i j t}\right)$ sec $\chi_{i j t}$
Write Vertical $\boldsymbol{V}\left(\boldsymbol{P}_{i j j}\right)$ as expansion in horizontal coordinates (geographic, geomagnetic or equivalent latitude Φ and longitude Λ)

$$
\begin{gathered}
V\left(P_{i j t}\right)=\Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right) \\
S_{i j t}=\boldsymbol{T E C}_{i j t}+\beta_{l}+\gamma_{j}+\lambda_{A r c}=V\left(\boldsymbol{P}_{i j t}\right) \sec \chi_{i j t}+\beta_{\imath}+\gamma_{j}+\left(\lambda_{A r c}\right)= \\
=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)+\beta_{l}+\gamma_{j}+\left(\lambda_{A r c}\right)
\end{gathered}
$$

Representing the linear system of equations of observation to be solved in the unknowns

$$
c^{(t)}{ }_{n}, \beta_{i}, \gamma_{j},\left(\lambda_{A r c}\right)
$$

Some simple example for $\boldsymbol{V E C}$ expansion

$$
V\left(P_{i j t}\right)=\Sigma_{n} c_{n}^{(t)} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)
$$

Single-station: assume, at time \boldsymbol{t}, that $\boldsymbol{V} \boldsymbol{E C}$ is constantover the station horizon, $V E C=V_{0}{ }^{(t)}$:

$$
V\left(P_{i j}\right)=V_{o}{ }^{(t)}
$$

Single-station : assume $\boldsymbol{V} \boldsymbol{E} \boldsymbol{C}$ varies linearly with latitude $\boldsymbol{\Phi}$ and longitude Λ

$$
V\left(P_{i j t}\right)=V^{(t)}+a^{(t)}\left(\Phi-\Phi_{0}\right)+b^{(t)}\left(\Lambda-\Lambda_{0}\right)
$$

Which can be improved up to bi-linear, bi-polynomial expansion and the full spherical harmonics expansion for global solutions

Rewrite equations of observation

$$
\begin{gathered}
S_{i j t}=\boldsymbol{T E} C_{i j t}+\beta_{l}+\gamma_{j}+\lambda_{A r c}=V\left(P_{i j t}\right) \sec \chi_{i j t}+\beta_{\imath}+\gamma_{j}+\left(\lambda_{A r c}\right) \\
S_{i j t}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)+\beta_{t}+\gamma_{j}+\left(\lambda_{A r d}\right)
\end{gathered}
$$

Symbolically written as

$$
S=A x
$$

Unknowns \boldsymbol{x} will be solved using Least Squares or equivalent (and more sophisticated) methods

$$
x=\left(A^{T} A\right)^{-1} A^{T} S
$$

Going back to the equations of observations, knowing solution \boldsymbol{x} means knowing

The coefficients of the expansion of vertical TEC $\boldsymbol{c}^{(t)}{ }_{n}$
The biasing terms $\beta_{1}, \gamma_{j},\left(\lambda_{\text {Arc }}\right)$

After the numerical solution

Having solved for $\boldsymbol{c}^{(t)}{ }_{n}, \beta_{i}, \gamma_{j},\left(\lambda_{\text {Arc }}\right)$, available products are

The calibrated slants

Calibrated slants will be available as $\boldsymbol{T E} \boldsymbol{C}_{i j t}=\boldsymbol{S}_{i j t}-\beta_{i}-\gamma_{j}-\left(\lambda_{A r c}\right)$

The Vertical TEC

In addition, as a by-product of calibration, knowledge of the coefficients $\boldsymbol{c}^{(t)}{ }_{n}$ of $\boldsymbol{T E C}$ expansion will enable to estimate slants along directions different from the ones of the actual observations.

$$
T E C_{i j t}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)
$$

The most familiar is vertical TEC (VEC), the Total Electron Content relative to the zenith of the station of coordinates $\Phi^{*}{ }_{j}, \Lambda_{j}$

$$
V E C(j, t)=T E C_{j t}=\Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{j}^{*}, \Lambda_{j}^{*}\right)
$$

Summary

All solutions for calibration follow the reported scheme

Extraction of un-calibrated slants from GPS observations

Solution of the system in unknown VEC coefficients and biasing terms

According to the geographical distribution of stations and the time span in which observations are available, several solutions are possible getting the possible combinations of one solution per line

Hourly / Single-day / Multi-day
Single-station / Regional /Global

Factors affecting the reliability of calibration

Modelling of observations

$$
\boldsymbol{S}=\boldsymbol{V E C} \sec \chi+\beta+\gamma+\left(\lambda_{A r c}\right)
$$

Mapping function accuracy, constancy of biases, role of ($\lambda_{\text {Arc }}$)

Adequacy of the model used for the expansion of $V E C$

$$
\operatorname{VEC}(P, t)=\Sigma c \Psi(P, t)
$$

Conditioning of the resulting systems of equations
Still under investigation: biasing terms and VEC strongly correlated

The traditional method: assumptions
Accept the known limitations of the thin shell approach
Accept the constancy of biases
Disregard the multi-path contribution
Solve the system

$$
\begin{gathered}
S_{i j t}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)+\beta_{\imath}+\gamma_{j} \\
\text { In the unknowns } c^{(t)}, \beta_{\imath}, \gamma_{j}
\end{gathered}
$$

The traditional method: Advantages

$$
S_{i j t}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)+\beta_{\imath}+\gamma_{j}
$$

Excellent observations/unknowns budget

Coefficients of VEC expansion plus one β per satellite, one γ per receiver, both constant

No need to perform calibration for every new set of data:
just compute the leveled slants and subtract an available set of pre-computed β_{i}, γ_{j}

$$
T E C_{i j t}=S_{i j t}-\beta_{t}-\gamma_{j}
$$

Use pre-computed values during storm periods or at extreme latitudes (inadequacy of VEC expansion)
Use pre-computed values provided by others

Use of pre-computed values

Slants to calibrate

From a set of IGS stations (RINEX files)

Work has been already done by IGS: monthly values biases for satellites and IGS stations are available at

ftp://ftp.unibe.ch/aiub/CODE/

For user owning their own receiver

Use CODE for satellite biases, set up a calibration algorithm to estimate the bias of the receiver γ

$$
S_{i j t}-\beta_{l}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)+\gamma
$$

Why proposing a different solution?

Reported gossips on the traditional solution:
Slants (to the same satellite) of co-located receivers are not the same
Possible occurrence of negative TECs

Which of the reported limitations can produce this errors?

Limitations of the thin shell assumption?
The thin shell assumption is self-evidently poor:
$\boldsymbol{T E C}$ is the same for rays passing through the same ionospheric point, disregarding at all gradients

$$
\text { If } \chi_{A}=\chi_{B} \text { then } S_{A}=S_{B}
$$

But shall we discard the thin shell approach?

A new interpretation

For a given ray, rearrange $\boldsymbol{T E C}$ definition using sec $\chi_{\text {REF }}$ at a given reference height

$$
\begin{aligned}
& T E C=\int N_{e} d s=\int N_{e} \sec \chi d h=\sec \chi_{R E F} \int N_{e} \frac{\sec \chi}{\sec \chi_{\text {REF }}} d h=s e c \chi_{\text {REF }} V_{e q} \\
& V_{E q}=\int N_{e} \frac{\sec \chi}{\sec _{\text {REF }}} d s \quad T E C=\sec \chi_{R E F} V_{e q}
\end{aligned}
$$

The expression is formally identical to the mapping function approximation, but it is exact provided $\boldsymbol{V}_{\boldsymbol{E q}}$, a 2D Function (elevation/azimut or displacement of horizontal coordinates from the station) is not interpreted as the vertical $\boldsymbol{T E C}$.
$\boldsymbol{V}_{E q}$ will change for stations in different locations, so its use is limited to the calibration performed by the single station solution.

Calibration requires a relationship correlating the various slants: for the single station solution the properly interpreted mapping function does not implies errors other than the capability to map $V_{E q}$ in satisfactory way.

Which of the reported limitations can produce this errors?
Disregarding the multi-path error $\lambda_{\text {Arc }}$

The close stations experiment

Not dependent on PRN

$S_{L 1}-S_{L 2}$, all satellites

TEC(10**16) zimm - zimj Lat=46.9N Lon=7.5E

2005/03/30, Hour, UTC

How the $\lambda_{A r c}$ contribution affects the observations?

$$
S_{i j t}=\boldsymbol{T E} C_{i j t}+\beta_{\imath}+\gamma_{j}+\lambda_{A r c}
$$

This term results from the contribution of multi-path (and the way it is processed by the receiver) along any individual arc. For the same satellite, the same receiver, the overall contribution $\beta_{l}+\gamma_{j}+\lambda_{A r c}$ will be different arc by arc.

Proposed solution

Consider the observations affected by an unknown overall arc dependent bias

$$
\Omega_{A r c}=\beta_{l}+\gamma_{j}+\lambda_{A r c}
$$

Implement only single-station, possibly multi-day, solutions for calibration (getting in part rid of problems with the mapping function)

The system of observation equations becomes

$$
S_{i j t}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)+\Omega_{A r c}
$$

Expecting that from a numerical point of view the proposed solution will be less conditioned than the traditional one, but free from reported errors,

Notes:
having assumed the validity of the thin shell approximation in the singlestation solution, in the observations

$$
S_{i j t}=\sec \chi_{i j t} \Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j b} \Lambda_{i j t}\right)+\Omega_{A r c}
$$

the expansion $\Sigma_{n} c^{(t)}{ }_{n} \Psi_{n}\left(\Phi_{i j t}, \Lambda_{i j t}\right)$ represents the Vertical Equivalent Content (VEq) and not the actual Vertical Electron Content (VEC)
$\boldsymbol{V E q}$ takes automatically into account of plasmaspheric contribution.
Considering Vertical $\boldsymbol{T E C}$ over the station, nothing will change as $\boldsymbol{V E C}$ and $\boldsymbol{V E q}$ coincide.

No possibility to use pre-computed biases
But the solution for co-located receiver will look much more reliable

Summary of Proposed Solution characteristics

Observations
Leveled slants or directly phase slants
Assumptions
One thin shell at 400 km
Elevation mask: 10°
$\boldsymbol{T E C}$ expressed through $\boldsymbol{V}_{\boldsymbol{E q}}$ at the ionospheric point, by the mapping function sec χ
$V_{E q}$ expressed as a proper expansion of horizontal coordinates $\boldsymbol{l}, \boldsymbol{f}$ with one set of coefficients at each time $V_{E q}(l, f)=\Sigma_{n} c_{n} p_{\boldsymbol{n}}(l, f)$

$$
S_{i j t}=\Sigma_{n} c{ }^{(t)}{ }_{n} p_{n}\left(l_{i j t}, f_{i j t}\right) \text { sec } \chi_{i j t}+\Omega_{A r c}
$$

The unknowns are now the coefficients $\boldsymbol{c}_{\boldsymbol{n}}{ }^{(t)}$ and the offsets $\Omega_{\text {Arc }}$

The adopted horizontal coordinates

Using as horizontal coordinates Modified Dip Angle and Local Time, we can assume that for a set of adjacent epochs (up to ± 15 minutes), the coefficients $\boldsymbol{c}_{\boldsymbol{n}}{ }^{(t)}$ keep constant.

This allows also reducing computing resources during solution using commonly used standard methods for sparse systems.

After the solution of the system, we avail with :
Calibrated slants along the observed rays $\boldsymbol{T E C} C_{i j t}=S_{i j t}-\Omega_{A r c}$
"Mapped slants" at given coordinates $\boldsymbol{l}_{i j t}, \boldsymbol{f}_{i j t}$
Vertical $\boldsymbol{T E C}$ above the station (ionospheric point at the its zenith)

$$
V T e c(t)=\sum_{n} c_{n}^{(t)} p_{n}\left(l_{i j t}^{\text {Zenith }}, f_{i j t}^{Z \text { enith }}\right) \sec \chi_{i j t}
$$

Why multi-day solution
A multi-day solution is performed, avoiding day to day discontinuities in calibrated slants, except that at the beginning and the end of the solution.

Still, at the beginning and the end of the set of data, broken arcs occur.
Broken arcs are generally shorter implying

1. worse results during leveling
2. worse numerical conditioning for the solution

To reduce these problems, in order to calibrate \boldsymbol{N} days, $\boldsymbol{N}+\mathbf{2}$ days are actually processed: first and last day of the $\mathbf{N + 2}$ set are discarded.

Will it work everytime? Yes, provided phase slants $\boldsymbol{S}_{\boldsymbol{P}}$ are reliable. For some pair of stations (namely $\boldsymbol{S}_{\boldsymbol{P}}[\boldsymbol{m o b j}]-\boldsymbol{S}_{\boldsymbol{P}}[\boldsymbol{m o b n}]$), the situation looks like here, showing that, for at least one of them, observations are not reliable. Still, no a priori way exists to know what is going wrong. For the present sample, the solutions of individual stations (next slide) show that the problem arises with "mobj".

Conclusions for the single-station, multi-day, arc-offset solution

Is it better than the traditional solutions?
A direct answer is not possible because reliable truth data to perform comparison are not available.

Models of the electron density can provide with "artificial data" to check the performance of the technique used for the calibration,
but they will not "simulate" the problems of the observations (multi-path)
Some positive aspects:
TEC's from two co-located receivers is the same
In the following, "details" and use of "artificial data" will be briefly discussed

End of the description of calibration:
Some detail

GPS scenario

Propagation delays, Disturbances, Hardware Delays, Multi-Path

Propagation Delays

Propagation and Atmospheric contributions to optical path Λ :
Geometric (ㅁistance), Tropospheric, $\underline{\text { Ionospheric }}$

$$
\Lambda=D+T+I
$$

Equivalent Group Path $\boldsymbol{P}=$ Group delay $\boldsymbol{G} \times$ speed of light

$$
P=G \cdot c=D+T-I
$$

Refractivity $\boldsymbol{R}=\boldsymbol{n} \boldsymbol{- 1}, \boldsymbol{n}$ Index of Refraction

$$
\begin{aligned}
& T=\int R_{\text {atm }}(s) d s \quad I=\int R_{\text {Iono }}(s) d s \quad R_{\text {Iono }}=-\frac{40.3 \cdot N_{e}}{f^{2}}, \\
& T E C=\int N_{e}(s) d s, \quad I=-\frac{40.3 \cdot T E C}{f^{2}} \\
& L=\frac{D+T+I}{\lambda}=\frac{f}{c}(D+T)-\frac{40.3 T E C}{c f} \\
& G=\frac{d L}{d f}=\frac{D+T}{c}+\frac{40.3 T E C}{c f^{2}}
\end{aligned}
$$

Measurements introduce additional "delays"
Hardware electronic delays originating
in satellite and receiver,
β, γ
Offset (delay, ambiguity) for phase $\quad \Omega$
Noise n

Multipath m
User clock offset τ

Code delay affected by user clock offset is pseudorange

$$
\boldsymbol{P}=\boldsymbol{D}+\boldsymbol{T}-\boldsymbol{I}+\beta+\gamma+\boldsymbol{n}+\boldsymbol{m}+\tau
$$

For following discussion, noise and multipath can be neglected for phase delays. Hardware delays for phase are included in Ω

$$
\Lambda=D+T+I+\Omega
$$

Code hardware delays

Availing GPS delays $\boldsymbol{P 1}, \boldsymbol{P 2}, \mathbf{L 1}, \mathbf{L 2}, \boldsymbol{C 1}$

Users aiming to determine their position, will get rid of ionospheric contribution taking proper combinations of them.

Users aiming to investigate ionosphere, will simply compute differential delays
Differential pseudorange

$$
P 2-P 1
$$

Differential phase path

$$
\Lambda 1-\Lambda 2=L 1 \cdot \lambda 1-L 2 \cdot \lambda 2
$$

Both differential delays are in meters.
Following steps:
Show dependence on $\boldsymbol{T E C}$
Transform to TEC units ($\mathbf{1 0}{ }^{16}$ electrons/m \mathbf{m}^{2}), TECu

The differential Delays

For the carrier i (i=1,2), contributions with no index do not depend on frequency and cancel out forming differential delays

$$
\begin{aligned}
\boldsymbol{P}_{i}=\boldsymbol{G}_{i} \cdot \boldsymbol{c}=\boldsymbol{D}+\boldsymbol{T}-\boldsymbol{I}_{i}+\beta_{i}+\gamma_{i}+\boldsymbol{n}_{\boldsymbol{i}}+\boldsymbol{m}_{\boldsymbol{i}}+\tau \\
\underline{\Delta \boldsymbol{P}=\boldsymbol{P} \mathbf{2}-\boldsymbol{P} \mathbf{1}=\boldsymbol{I} \mathbf{1}-\boldsymbol{I} \mathbf{2}+\Delta \beta+\Delta \gamma+\Delta \boldsymbol{n}+\Delta \boldsymbol{m}}
\end{aligned}
$$

$$
\Lambda_{i}=\boldsymbol{D}+\boldsymbol{T}+\boldsymbol{I}_{i}+\Omega_{i}
$$

$$
\begin{gathered}
\underline{\Delta \Lambda=\Lambda 1-\Lambda 2=I 1-I 2+\Delta \Omega} \\
I 2-I 1=k \cdot T E C \quad k=40.3 T E C\left(\frac{1}{f_{2}^{2}}-\frac{1}{f_{1}^{2}}\right)
\end{gathered}
$$

Divide by $\boldsymbol{k} \cdot 10^{-16}$, drop out the Δ symbol to obtain the phase slants \boldsymbol{S}_{P} and group or code slants $\boldsymbol{S}_{\boldsymbol{C}}$ in $\boldsymbol{T E C u}, 1 \boldsymbol{T E C u}=10^{16}$ electrons $/ \mathrm{m}^{2}$, disregard radio noise \boldsymbol{n}

$$
\begin{aligned}
& S_{P}=\frac{1}{k} \cdot(\Lambda 1-\Lambda 2)=T E C+\Omega \\
& S_{C}=\frac{1}{k} \cdot(P 2-P 1)=T E C+m+\beta+\gamma
\end{aligned}
$$

The classical interpretation of $\boldsymbol{T E C}$ as the numbers of electrons contained in a column of unitary base along the ray
$\boldsymbol{T E C}=\int_{R x}^{T_{x}^{x}} \boldsymbol{N}_{e} d \boldsymbol{s}$

Never forget: $T E C>0$

Note for the following: expressions for observations like

$$
S=T E C+b
$$

denote the set of all available observations used for performing some specific task.

Actually observations should be indexed as $S_{i j t}$ meaning that the individual observed quantity, the "slant", refers to $\boldsymbol{i}^{\text {th }}$ satellite, $\boldsymbol{j}^{\text {th }}$ station, $\boldsymbol{t}^{\boldsymbol{t h}}$ time.

Biasing terms can still be indexed according to satellite and station (not time as assumed to be constant), but also according to the specific observed arc.

When needed for clarity, indexing will be explicitly adopted.

Plot of S_{C} arcs for one day
TEC(10**18) albh Lsf=48.4N Lonm-123.6E 2025 AOABENCHMARK ACT 3.3 .32 .2 N |k 89/07/2

* Evidence that calibration is needed: TEC is a positive quantity

Sample S_{C}, one arc: the common situation

Sample $\boldsymbol{S}_{\boldsymbol{P}}$, one arc: the common situation (phase jumps)
Phase Slant (TECu), PRNF=26 mate Letw40.6N Lon=16.7E RecTypeVar = 21580
TRIMBLE 4000SSI NAV 7.29 SIG 3.07

Sample \boldsymbol{S}_{P}, one arc „: after removing jumps, fixing the minimum to zero

Offset Ω is an arbitrary quantity: can we set it in some useful way?
A new set of observables: Phase slants leveled to Code
Operator <•> is a properly selected weighted (possibly robust) average
Build, arc by arc, the leveled slants $\boldsymbol{S}_{\boldsymbol{L}}$

$$
\begin{gathered}
\boldsymbol{S}_{L}=\boldsymbol{S}_{P}-<\boldsymbol{S}_{P}-\boldsymbol{S}_{C}> \\
<\boldsymbol{S}_{P}-\boldsymbol{S}_{C}>=\boldsymbol{\Omega}-<\boldsymbol{m}>-\beta-\gamma \\
\boldsymbol{S}_{L}=\boldsymbol{T} \boldsymbol{E} \boldsymbol{C}+<\boldsymbol{m}>+\beta+\gamma
\end{gathered}
$$

Properties of $\boldsymbol{S}_{\boldsymbol{L}}$
Noise is the same (neglected) of phase slants
Biased exactly as code slants
But: an arc dependent constant leveling error $\boldsymbol{\lambda}=\langle\boldsymbol{n}\rangle+\langle\boldsymbol{m}\rangle$ appears

Sample \boldsymbol{S}_{C} and $\boldsymbol{S}_{\boldsymbol{P}}$ with properly selected phase offset $\Omega=\boldsymbol{S}_{\boldsymbol{L}}$

mate Lat=40.6N Len=16.7E RecTypeVer=21580

TRIMBLE 40008si NAV 7.20 sig 3.07

One day, $\boldsymbol{S}_{\boldsymbol{C}}$ and $\boldsymbol{S}_{\boldsymbol{L}}$ arcs
$\mathrm{TEC}\left(10^{* *} 16\right)$ albh Lat=48.4N Lon=123.5W
*

* Evidence that calibration is needed: TEC is a positive quantity

How do traditional and proposed solution compare?
In the following slides it can be seen that the two solutions agree in the average, but the difference in bias can amount to $10 \boldsymbol{T E C u}$

The pattern of the jumps, similar for different satellites, simply indicates that something has changed in the receiver

> CODE Station + Satellite Biases

Arc offset solution, individual values

Station brus PRN ${ }^{\text {P1 }}$

Day, Year 2000

Thank you

