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Objective of the presentation

What is calibration

How it is traditionally performed

Why proposing the 

Single station, multi day, arc offset TEC calibration

Effort will be spent in avoiding details, that will be developed in the 
last section.   



The observations

Properly processing GPS measurements 

forming differential delays (dual frequency receiver)

combining them to obtain ‘leveled slants’

one gets slant Total Electron Content (TEC) measurements affected by biasing 
terms βι , γ j , (λArc)

Sijt = TECijt + βι + γ j + (λArc)

At time t
Satellite i

Receiver j
Sijt

i = 1, 2 , …,32  available GPS satellites

j = 1, .., available receivers

Arc = common to all continuous 
observations performed by receiver j on 
satellite i at times contiguos to t

Why bracketing λArc? Because this term 
is disregarded in the traditional approach 
but basic for the proposed “arc offset” 
solution.



Arc:

a sub-set of continuous observations  from one receiver to one satellite

Subset of Sijt  

i = M                                                                   

j = N

t1 < t < t2    

SM,N, t1 < t < t2 

t1

t2

Receiver N

Satellite M

t



Description of the biasing terms

Sijt = TECijt + βι + γ j + (λArc)

β differential hardware delays in satellite electronic circuitry

γ the same for receiver circuitry

λ the average contribution of differential multi-path along an arc

All biasing terms can be considered as constants 

For ionospheric investigation and its applications (ionospheric corrections) an 
algorithm is needed able to estimate the biasing terms in order to have only 
TEC

TECijt = Sijt − βι − γ j − (λArc)
This algorithm is known as

CALIBRATION or DE-BIASING
Red:   unknowns

Blue:  estimates



The calibration or de-biasing of GPS leveled slants

The system of the equations of observation is linear in all unknown terms 

Sijt = TECijt + βι + γ j + (λArc)
but contains more unknowns than equations.

Number of unknowns = number of TECs plus number of  unknown (constant) terms

βι , γj , (λArc)
How is it possible performing the calibration?

TEC’s are not actually uncorrelated: at some location, at some time they depend on the 
electron density distribution Ne. 

Assume electron density Ne can be written as a function of position P, time t and a set of 
K parameters Z1 , Z2 , …

Calibration is performed finding the values Z1,Z2,.., βι , γ j , (λArc) which minimize the  
sum of the square of the residuals

εijt = Sijt – TEC (P,t,Z1 ,Z2 ,..)− βι − γ j − (λArc)

Σε 2ijt => Minimum

∫= dsZZtQPNTEC e ),,,,( ,...21



Example: Ionospheric model NeQuick computes electron density Ne at given point P, 

at given time t, as a function of a Solar Flux equivalent parameter Az.

εijt = Sijt – TEC (P, t , Az)− βι − γ j − (λArc)

Find Az, βι , γ j , (λArc) such that Σε 2ijt => Minimum
Observations/Unknowns budget: very favorable

Problems

Non linear minimization methods needed / Dependence on parameters is not 
analytical but numerical

Models provide with excellent median values whereas calibration requires that the 
model describes very precisely the actual Ne distribution 

But:

Excellent perspectives for the future



Writing TEC

Better using formulations in which also actual gradients (not only median ones provided 
by the Ionospheric Models) can be taken into account,   possibly linear in all unknowns.

Sijt = TECijt + βι + γ j + (λArc)

Writing TEC Write the integral

Possible (linear) expansions of TEC

3D (Tomography)

Multi shell

Thin shell

∫= dsZZtQPNTEC e ),,,,( ,...21



3D-4D approach (Tomography)

the ionosphere is divided in elements of volume (voxels) inside which Ne is constant. Ne of 
voxels are the unknowns. Evolution with time of Ne is considered to improve the budget 
unknowns/observations. Vertical behavour of Ne is expanded in Empirical Orthogonal 
Functions (EOF) 
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3D: The multishell method

If many shells are used, this is exactly the method by which numerical 
integration is carried out. For each shell, a suitable 2D expansion in 
horizontal coordinates is assumed. 

Pi, point on the generic ith shell 

δhi increment in height

δsi increment in arc length

δsi = δhi sec χi



The classical thin shell model

Reducing down the number of shells, and in principle the expected accuracy,

take only one (thin) shell at some reference height h

TEC = V(P) sec χ

V(P) is the TEC along the vertical of the ionospheric point P

(Vertical Electron Content, VEC)

V(P) is a 2D function of horizontal coordinates

Station

Vertical

To GPS

ds

dh

h

χ
P

Ionosphere



Note

Thanks to its simplicity and despite its known limitations,  the 
thin shell approach has been and is very widely used also in 
application in which integrity is a basic requirement, such as  

Satellite Based Augmentation Systems (SBAS)

In which VEC dependence on horizontal coordinates is 
implemented interpolating values of a grid of points covering the 
area of application

Klobuchar model uses this approach too

In the following, only the thin shell approach will be considered



Calibration using the thin shell approximation

Given

The observations                       Sijt = TECijt + βι + γ j + (λArc)

The thin shell assumption        TECijt = V(Pijt ) sec χijt

Write Vertical V(Pijt) as expansion in horizontal coordinates  (geographic, 
geomagnetic or equivalent latitude Φ and longitude Λ)

V(Pijt) = Σnc(t)
nΨn (Φ ijt, Λijt)

Sijt = TECijt + βι + γ j + λArc = V(Pijt) sec χijt + βι + γ j + (λArc) =

= sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + βι + γ j + (λArc)

Representing the linear system of equations of observation to be solved in the 
unknowns 

c(t)
n, βι , γ j , (λArc)



Some simple example  for VEC expansion

V(Pijt) = Σnc(t)
nΨn (Φ ijt, Λijt)

Single-station: assume, at time t, that VEC is constantover the station horizon, 
VEC = V0

(t):

V(Pijt) = V0  
(t)

Single-station : assume VEC varies linearly with latitude Φ and longitude Λ

V(Pijt) = V(t)
0 + a (t) (Φ − Φ 0 )+ b(t) ( Λ − Λ0 )

Which can be improved up to bi-linear, bi-polynomial expansion and the full 
spherical harmonics expansion for global solutions 



Rewrite equations of observation

Sijt = TECijt + βι + γ j + λArc = V(Pijt) sec χijt + βι + γ j + (λArc)

Sijt = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + βι + γ j + (λArc)

Symbolically written as 

S = Ax
Unknowns x will be solved using Least Squares or equivalent (and more 
sophisticated) methods

x = (AT A )-1 AT S
Going back to the equations of observations, knowing solution  x means 
knowing

The coefficients of the expansion of vertical TEC c(t)
n

The biasing terms βι , γ j , (λArc)



After the numerical solution

Having solved for c(t)
n, βι , γ j , (λArc), available products are

The calibrated slants

Calibrated slants will be available as TECijt = Sijt - βι − γ j − (λArc)

The Vertical TEC
In addition, as a by-product of calibration, knowledge of the coefficients 
c(t)

n of TEC expansion will enable to estimate slants along directions 
different from the ones of the actual observations. 

TECijt = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt)

The most familiar is vertical TEC (VEC), the Total Electron Content 
relative to the zenith of the station of coordinates Φ ∗j, Λ∗j

VEC(j,t) = TECjt = Σnc(t)
nΨn (Φ ∗j, Λ∗j)



Summary 

All solutions for calibration follow the reported scheme

Extraction of un-calibrated slants from GPS observations

Solution of the system in unknown VEC coefficients and biasing terms

According to the geographical distribution of stations and the time span in 
which observations are available, several solutions are possible getting the 
possible combinations of one solution per line  

Hourly / Single-day / Multi-day

Single-station / Regional /Global



Factors affecting the reliability of calibration

Modelling of observations 

S = VEC sec χ + β + γ  + (λArc)

Mapping function accuracy, constancy of biases, role of  (λArc)

Adequacy of the model used for the expansion of VEC

VEC ( P , t ) = Σ c Ψ ( P , t )

Conditioning of the resulting systems of equations

Still under investigation: biasing terms and VEC strongly correlated



The traditional method: assumptions
Accept the known limitations of the thin shell approach

Accept the constancy of biases

Disregard the multi-path contribution

Solve the system

Sijt = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + βι + γ j

In the unknowns c(t)
n, βι , γ j



The traditional method: Advantages

Sijt = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + βι + γ j

Excellent observations/unknowns budget

Coefficients of VEC expansion plus
one β  per satellite, one γ per receiver, both constant

No need to perform calibration for every new set of data:

just compute the leveled slants and subtract an available set of pre-computed βι , γ j
TECijt = Sijt - βι − γ j

Use pre-computed values during storm periods or at extreme latitudes (inadequacy of VEC 
expansion)

Use pre-computed values provided by others



Use of pre-computed values

Slants to calibrate

From a set of IGS stations (RINEX files)

Work has been already done by IGS: monthly values biases for satellites and 
IGS stations are available at

ftp://ftp.unibe.ch/aiub/CODE/
For user owning their own receiver

Use CODE for satellite biases, set up a calibration algorithm to estimate the bias 
of the receiver γ 

Sijt − βι = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + γ



Why proposing a different solution?

Reported gossips on the traditional solution:

Slants (to the same satellite) of co-located receivers are not the same

Possible occurrence of negative TECs  



Ionosphere

χA

A

B

χBSB

SA

If χA = χB then SA = SB

Which of the reported limitations can produce this errors?

Limitations of the thin shell assumption? 

The thin shell assumption is self-evidently poor:

TEC is the same for rays passing through the same ionospheric point,

disregarding at all gradients



But shall we discard the thin shell approach?

A new interpretation

For a given ray, rearrange TEC definition using sec χREF at a given reference height

The expression is formally identical to the mapping function approximation,

but it is exact provided VEq, a 2D Function (elevation/azimut or displacement of 
horizontal coordinates from the station) is not interpreted as the vertical TEC.

VEq will change for stations in different locations, so its use is limited to the 
calibration performed by the single station solution.

Calibration requires a relationship correlating the various slants: for the single station 
solution the properly interpreted mapping function does not implies errors other than 
the capability to map VEq in satisfactory way.

eqREF
REF

eEq

eqREF
REF

eREFee

VsecχTECds
secχ

secχNV

Vsecχdh
secχ

secχNsecχdhsecχNdsNTEC

==

====

∫
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Station 1

S1PRN = TEC + λ1 + β PRN+  γ1

The close stations experiment

< 100 m

TEC

β

S1 – S2 =γ1 - γ2  + λ1 − λ2

Not dependent on PRN

Station 2

S2PRN = TEC + λ2 + β PRN+  γ2

Which of the reported limitations can produce this errors?

Disregarding the multi-path error λArc



SL1 – SL2 , all satellites



How the λArc contribution affects the observations?

Sijt = TECijt + βι + γ j + λArc

This term results from the contribution of multi-path (and the way it is 
processed by the receiver) along any individual arc. For the same satellite, the 
same receiver, the overall contribution  βι + γ j + λArc will be different arc by 
arc.

Proposed solution
Consider the observations affected by an unknown overall arc dependent bias 

ΩArc = βι + γ j + λArc

Implement only single-station, possibly multi-day, solutions for calibration 
(getting in part rid of problems with the mapping function) 

The system of observation equations becomes

Sijt = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + ΩArc

Expecting that from a numerical point of view the proposed solution will be less 
conditioned than the traditional one, but free from reported errors, 



Notes:

having assumed the validity of the thin shell approximation in the single-
station solution, in the observations

Sijt = sec χijt Σnc(t)
nΨn (Φ ijt, Λijt) + ΩArc

the expansion Σnc(t)
nΨn (Φ ijt, Λijt) represents the Vertical Equivalent 

Content (VEq) and not the actual Vertical Electron Content (VEC)     

VEq takes automatically into account of plasmaspheric contribution. 

Considering Vertical TEC over the station, nothing will change as VEC and 
VEq coincide.                                                      

No possibility to use pre-computed biases

But the solution for co-located receiver will look much more reliable



Proposed solution (Arc by arc)

Proposed solution (Arc by arc) 



Summary of Proposed Solution characteristics

Observations

Leveled slants or directly phase slants 

Assumptions

One thin shell at 400 km

Elevation mask: 10o

TEC expressed through VEq at the ionospheric point, by the mapping   
function sec χ

VEq expressed as a proper expansion of horizontal coordinates l, f with 
one set of coefficients at each time VEq(l, f) = Σncnpn(l,f)

Sijt = Σnc (t)n pn ( lijt , fijt ) sec χijt+ ΩArc

The unknowns are now the coefficients cn
(t) and the offsets ΩArc



The adopted horizontal coordinates

Using as horizontal coordinates  Modified Dip Angle and Local Time, we can 
assume that for a set of adjacent epochs (up to ±15 minutes), the coefficients 
cn

(t) keep constant.

This allows also reducing computing resources during solution using 
commonly used standard methods for sparse systems.

After the solution of the system, we avail with :

Calibrated slants along the observed rays TECijt = Sijt - ΩArc

“Mapped slants” at given coordinates lijt , fijt

Vertical TEC above the station (ionospheric point at the its zenith)

( ) ijt
Zenith

ijt
Zenith
ijt

n
n

t
n flpctVTec χsec,)( )(∑=



Why multi-day solution

A multi-day solution is performed, avoiding day to day discontinuities in calibrated 
slants, except that at the beginning and the end of the solution.

Still, at the beginning and the end of the set of data, broken arcs occur.

Broken arcs are generally shorter implying

1. worse results during leveling

2. worse numerical conditioning for the solution 

To reduce these problems, in order to calibrate N days, N+2 days are actually 
processed: first and last day of the N+2 set are discarded.



Will it work everytime?  Yes, provided phase slants SP are reliable. For some pair of  stations 
(namely SP [mobj] - SP [mobn]), the situation looks like here, showing that, for at least one of 
them, observations are not reliable. Still, no a priori way exists to know what is going wrong. For 
the present sample, the solutions of individual stations (next slide) show that the problem arises 
with “mobj”.





Conclusions for the single-station, multi-day, arc-offset solution

Is it better than the traditional solutions?

A direct answer is not possible because reliable truth data to perform comparison 
are not available.

Models of the electron density can provide with “artificial data” to check the 
performance of the technique used for the calibration, 

but they will not “simulate” the problems of the observations (multi-path)

Some positive aspects:

TEC’s from two co-located receivers is the same

In the following, “details” and use of “artificial data” will be briefly discussed 



End of the description of calibration:

Some detail



Geometrical Optics, Rays, Propagation Delays
Phase delay L, Optical path Λ = L · λ
Group or Code Delay P = c · G, G = dL / df 

Two carriers
f1 (1575.42 MHz),  f2 (1227.6 MHz)

Modulated by codes P and C/A

Arc, set of continuous observations

GPS observables L1, L2, P1, P2, C1

GPS scenario

GPS

Ground receiver



.

Interference
Ray

Multi-path

Thermal noise Hardware Delays (HD)

Output 
files

Propagation delays, Disturbances, Hardware Delays, Multi-Path



Propagation Delays

Propagation and Atmospheric contributions to optical path Λ: 

Geometric (Distance), Τropospheric, Ionospheric 

Λ =       D + T + I

Equivalent Group Path P = Group delay G × speed of light 

P = G · c = D + T - I

Refractivity R = n -1, n Index of Refraction
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Measurements introduce additional "delays" 

Hardware electronic delays originating

in satellite and receiver,  β, γ

Offset (delay, ambiguity) for phase Ω

Noise n

Multipath m

User clock offset τ

Code delay affected by user clock offset is pseudorange

P = D + T - I + β + γ + n + m + τ

For following discussion, noise and multipath can be neglected for phase delays. 
Hardware delays for phase are included in Ω

Λ =  D + T + I + Ω



τ1 = ( D+T+I1) / c

Propagation 
delays

Space

Modulator

δ tT1

δ tT2

L1

L2

TX Transmitter, satellite

Code Generator

Modulator

Correlator

δ τR1

δ τR2

RX Receiver

Code Generator

Correlator
τ2 = ( D+T+I2) / c

τ2 + δ tT2 + δ τR2

τ1 + δ tT1 + δ τR1

Code hardware delays



Osc 10.23 MHz

× 154

× 120

L1 = ( D+T-I1) / λ1

L2 = ( D+T-I2) / λ2

Propagation delays

δφ T1

δφ T2

÷ 154H

δφ R1δ φR2

L1

L2

TX

RXSpace
Hardware delays

Hardware delays

L2  + δφ T2 + δ φR2

L1  + δ φT1 + δ φR1

Phase Hardware Delays



Availing GPS delays P1, P2, L1, L2, C1

Users aiming to determine their position, will get rid of ionospheric contribution 
taking proper combinations of them.

Users aiming to investigate ionosphere, will simply compute differential delays

Differential pseudorange                

P2 – P1

Differential phase path

Λ1 – Λ2 = L1 ⋅ λ1 - L2 ⋅ λ2

Both differential delays are in meters.

Following steps:

Show dependence on TEC

Transform to TEC units (1016 electrons/m2 ), TECu



The differential Delays

For the carrier i (i = 1,2), contributions with no index do not depend on frequency and cancel 
out forming differential delays 

Pi = Gi · c = D + T - Ii + βi + γi + ni + mi + τ, 

ΔP = P2 – P1 = I1 – I2 + Δβ + Δγ + Δn + Δm

Λi =  D + T + Ii + Ωi

ΔΛ = Λ1 – Λ2 = I1 – I2 + ΔΩ

Divide by k·10-16, drop out the Δ symbol to obtain the phase slants SP and group or code 
slants SC in TECu, 1 TECu = 1016 electrons/m2, disregard radio noise n
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The classical interpretation of TEC as the numbers of electrons
contained in a column of unitary base along the ray

Rx,U
ser

Never forget: TEC > 0

∫=
Tx

Rx edsNTEC
Tx,G
PS



Note for the following: expressions for observations  like

S = TEC + b

denote the set of all available observations used for performing some 
specific task.

Actually observations should be indexed as Sijt meaning that the individual 
observed quantity , the “slant ”, refers to  ith satellite, jth station, tth time.

Biasing terms can still be indexed according to satellite and station (not time 
as assumed to be constant), but also according to the specific observed arc.

When needed for clarity, indexing will be explicitly adopted.    



Plot of SC arcs for one day

* Evidence that calibration is needed: TEC is a positive quantity



Sample SC , one arc: the common situation



Sample SP , one arc: the common situation (phase jumps)



Sample SP, one arc,, : after removing jumps, fixing the minimum to zero 



Offset Ω is an arbitrary quantity: can we set it in some useful way?

A new set of observables: Phase slants leveled to Code

Operator <·> is a properly selected weighted (possibly robust) average

Build, arc by arc, the leveled slants SL

SL = SP - < SP – SC >

< SP – SC > =   Ω - < m> - β - γ

SL = TEC +  < m> + β +  γ

Properties of SL

Noise is the same (neglected) of phase slants

Biased exactly as code slants

But: an arc dependent  constant leveling error λ = < n> + < m> appears 



Sample SC and SP with properly selected phase offset Ω = SL



* Evidence that calibration is needed: TEC is a positive quantity

*

One day, SC and SL arcs



How do traditional and proposed solution compare?

In the following slides it can be seen that the two solutions agree in 
the average, but the difference in bias can amount to 10 TECu

The pattern of the jumps, similar for different satellites, simply 
indicates that something has changed in the receiver



CODE Station + Satellite Biases

Arc offset solution, individual values



CODE Station + Satellite Biases

Arc offset solution, individual values



Thank you


