

2139-8

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

Interaction of X-Rays with Matter: Coherence and Time Structure

> D. Attwood *University of California Berkeley*

Interaction of X-Rays with Matter: Coherence and Time Structure

David Attwood

University of California, Berkeley

Trieste April 27, 2010 / David Attwood / ICTP Lecture 2 Trieste April2010 Lec2.ppt

Coherence at short wavelengths

Synchrotron radiation from relativistic electrons

Note: Angle-dependent doppler shift

 $λ = λ' (1 - \frac{V}{C} \cos θ)$ $λ = λ' γ (1 - \frac{V}{C} \cos θ)$

$$
\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}
$$

Ch05_F09_Apr2008.al

Undulator radiation from a small electron beam radiating into a narrow forward cone, is very bright

Undulator radiation

 $N = #$ periods

Bandwidth:

wavelength:

 $\lambda' = \frac{\lambda_u}{\gamma}$

Frame of

Moving e⁻

 e^-

 e^- radiates at the

Lorentz contracted

 $sin^2\Theta$

$$
\frac{\lambda'}{\Delta\lambda'}\simeq N
$$

Frame of

Doppler shortened wavelength on axis:

- $\lambda = \lambda' \gamma (1 \beta \cos \theta)$
- $\lambda = \frac{\lambda_{\rm u}}{2V^2} (1 + \gamma^2 \theta^2)$

Accounting for transverse motion due to the periodic magnetic field:

$$
\lambda = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2\right)
$$

where $K = eB_0\lambda_0/2\pi mc$

 $\boldsymbol{\theta}_{\mathsf{cen}}$

Following

Monochromator

For
$$
\frac{\Delta\lambda}{\lambda} \approx \frac{1}{N}
$$

$$
\theta_{\rm cen} \simeq \frac{1}{\gamma \sqrt{N}}
$$

typically $\theta_{\rm cen} \simeq 40$ rad

Ch05 LG186 Apr2010.al

Determining the power radiated: the equation of motion of an electron in an undulator

Magnetic fields in the periodic undulator cause the electrons to oscillate and thus radiate. These magnetic fields also slow the electrons axial (z) velocity somewhat, reducing both the Lorentz contraction and the Doppler shift, so that the observed radiation wavelength is not quite so short. The force equation for an electron is

$$
\frac{d\mathbf{p}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})\tag{5.16}
$$

where $\mathbf{p} = \gamma m \mathbf{v}$ is the momentum. The radiated fields are relatively weak so that

$$
\frac{d\mathbf{p}}{dt} \simeq -e(\mathbf{v} \times \mathbf{B})
$$

Taking to first order $v \approx v_z$, motion in the x-direction is

$$
m\gamma \frac{dv_x}{dt} = +ev_z B_y
$$

$$
v_x = \frac{Kc}{\gamma} \sin\left(\frac{2\pi z}{\lambda_u}\right)
$$
 (5.19)

$$
K = \frac{e B_0 \lambda_u}{2\pi m c} = 0.9337 B_0(\text{T})\lambda_u(\text{cm})
$$
 (5.18)

Calculating power in the central radiation cone: using the well known "dipole radiation" formula by transforming to the frame of reference moving with the electrons

Trieste April 27, 2010 / David Attwood / ICTP Lecture 2 Trieste April2010 Lec2.ppt

Time structure of synchrotron radiation

The axial electric field within the RF cavity, used to replenish lost (radiated) energy, forms a potential well "bucket" system that forces electrons into axial electron "bunches". This leads to a time structure in the emitted radiation.

Coherence at short wavelengths

Young's double slit experiment: spatial coherence and the persistence of fringes

Spatial and spectral filtering to produce coherent radiation

Courtesy of A. Schawlow, Stanford.

Ch08 F08.ai

Coherence, partial coherence and incoherence

 $-\infty < t < \infty$

Source of finite size, divergence, and duration

Ch08_F01.ai

Spatial and temporal coherence

Mutual coherence factor

$$
\Gamma_{12}(\tau) \equiv \langle E_1(t+\tau)E_2^*(t) \rangle \tag{8.1}
$$

Normalize degree of spatial coherence (complex coherence factor)

$$
\mu_{12} = \frac{\langle E_1(t)E_2^*(t) \rangle}{\sqrt{\langle |E_1|^2 \rangle} \sqrt{\langle |E_2|^2 \rangle}} \tag{8.12}
$$

A high degree of coherence ($\mu \rightarrow 1$) implies an ability to form a high contrast interference (fringe) pattern. A low degree of coherence ($\mu \rightarrow 0$) implies an absence of interference, except with great care. In general radiation is partially coherent.

Longitudinal (temporal) coherence length

$$
\ell_{\rm coh} = \frac{\lambda^2}{2 \Delta \lambda} \tag{8.3}
$$

Full spatial (transverse) coherence

$$
d \cdot \theta = \lambda / 2\pi \qquad (8.5)
$$

Ch08_Eq1_12_F2.ai

Spectral bandwidth and longitudinal coherence length

Define a coherence length ℓ_{coh} as the distance of propagation over which radiation of spectral width $\Delta\lambda$ becomes 180° out of phase. For a wavelength λ propagating through N cycles

 (8.3)

 $\ell_{\rm coh} = N\lambda$

and for a wavelength $\lambda + \Delta\lambda$, a half cycle less $(N - \frac{1}{2})$

$$
\ell_{\rm coh} = (N - \frac{1}{2}) (\lambda + \Delta \lambda)
$$

Equating the two

 $N = \lambda/2\Delta\lambda$

so that

$$
\ell_{\text{coh}}=\frac{\lambda^2}{2\;\Delta\lambda}
$$

Ch08 F03,ai

A practical interpretation of spatial coherence

- Associate spatial coherence with a spherical wavefront.
- A spherical wavefront implies a point source.
- How small is a "point source"?

From Heisenberg's Uncertainty Principle (Δ x · Δ p $\geq \frac{\hbar}{2}$), the smallest source size "d" you can resolve, with wavelength λ and half angle θ , is

$$
\mathbf{d} \cdot \boldsymbol{\theta} = \frac{\lambda}{2\pi}
$$

Ch08 XBL 915-6740A.ai

Partially coherent radiation approaches uncertainty principle limits

Spatially coherent x-rays: spatially filtered undulator radiation

 \overline{a}

rrrrrr

BERKELEY LA

Spatially filtered undulator radiation

Spatial and spectral filtering of undulator radiation

In addition to the pinhole $-$ angular aperture for spatial filtering and spatial coherence, add a monochromator for narrowed bandwidth and increased temporal coherence:

which for $\sigma'_{x,y} \ll \theta_{\text{cen}}^2$ (the undulator condition) gives the spatially and temporally coherent power $(d \cdot \theta = \lambda/2\pi \; ; \; l_{\text{coh}} = \frac{\lambda^2}{2 \Lambda \lambda})$

$$
\bar{P}_{\text{coh},\lambda/\Delta\lambda} = \frac{e\lambda_u I \eta(\Delta\lambda/\lambda) N^2}{8\pi \epsilon_0 d_x d_y} \cdot \left(1 - \frac{\hbar \omega}{\hbar \omega_0}\right) f(\hbar \omega/\hbar \omega_0) \qquad (8.10c)
$$

which we note scales as N^2 .

Ch08_SpatialSpectral_Apr2010.ai

Lensless imaging at the nanoscale

The 'Halloween storm' How the Sun plays its tricks

16 December 200

Protein transport
Escape from the nucleus

Duck-billed platypus Curiouser and curiouser

Locusts over Africa Time for biological control?

International weekly journal of science

Undulators, FELs and coherence

- Spatial coherence
- Temporal coherence
- Partial coherence
- Full coherence
- Spatial filtering
- Uncorrelated emitters
- Correlated emitters
- True phase coherence and mode control
- Lasers, amplified spontaneous emission (ASE) and mode control
- Undulator radiation
- SASE FEL fsec and asec x-rays
- Seeded FEL true phase coherent x-rays

Young's double slit experiment: spatial coherence and the persistence of fringes

Young's double slit experiment: spatial coherence and the persistence of fringes

Young's double slit experiment with random emitters: Young did not have a laser

YoungsExprmt_Random_March08.ai

How do these concepts apply to undulators and FELs?

Undulator - uncorrelated electron positions, radiated fields uncorrelated, intensities add, limited coherence, power \sim N.

UndulatorsAndFELs1 at

Undulators and FELs

Undulator - uncorrelated electron positions, radiated fields uncorrelated, intensities add, limited coherence, power \sim N.

 ${\tt S}$ S N S N ${\bf S}$ N N N \vdots $\mathbb S$ S S S N S N N N

Free Electron Laser (FEL) – very long undulator, electrons are "microbunched" by their own radiated fields into strongly correlated waves of electrons, all radiated electric fields now add, spatially coherent, power $\sim N^2$

 $\frac{d\mathbf{p}}{dt} =$ $-e(E + v \times B)$

FEL Microbunching

Courtesy of Sven Reiche, UCLA, now SLS

FLASH EUV/soft x-ray FEL at DESY Lab, Hamburg

6.5-32 nm wavelength in 1st harmonic 20 fsec, 10¹² photons per pulse

Courtesy of Henry Chapman (LLNL, now Hamburg) and Stefano Marchesini (LLNL, now LBL).-

Coherent x-ray diffractive imaging with the FLASH free-electron laser (FEL) in Hamburg, Germany

25 fs diffraction pattern

1 micron

Chapman et al, *Nature Phys* **2** 839 (2006)-

The Linear Coherent Light Source (LCLS), an x-ray FEL at Stanford

Free Electron Lasers

FreeElectronLasers.ai

References

- D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge, UK, 2000).
- 2) P. Duke, *Synchrotron Radiation* (Oxford, UK, 2000).
- 3) J. Als-Nielsen and D. McMorrow, *Elements of Modern X-ray Physics* (Wiley, New York, 2001).
- 4) J.D. Jackson, *Classical Electrodynamics* (Wiley, New York, 1999). Third edition.
- 5) A. Hofmann, *Synchrotron Radiation* (Cambridge, UK, 2004).
- J. Samson and D. Ederer, Vacuum Ultraviolet Spectroscopy I and II 6) (Academic Press, San Diego, 1998). Paperback available.

Ch05 References.ai

Lectures online a www.youtube.com

 \blacksquare

UC Berkeley www.coe.berkeley.edu/AST/sxreuv www.coe.berkeley.edu/AST/srms

