

2139-5

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

Special optical devices: from micro-focusing to FEL optics

Daniele Cocco Sincrotrone Trieste SCpA

Special optical devices: from micro-focusing to FEL optics

Daniele Cocco

Sincrotrone Trieste ScpA, S.S. 14 Km 163.5 in Area Science Park, 34012 Trieste, ITALY

Beamline

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Small spot with KB system

$$x^{2}\left(\frac{\sin^{2}\vartheta}{b^{2}} + \frac{1}{a^{2}}\right) + y^{2}\left(\frac{\cos^{2}\vartheta}{b^{2}}\right) - x\left(\frac{4f\cos\vartheta}{b^{2}}\right) - xy\left[\frac{2\sin\vartheta\sqrt{e^{2} - \sin^{2}\vartheta}}{b^{2}}\right] = 0$$

where: $f = \left(\frac{1}{r} + \frac{1}{r'}\right)^{-1}$
Needs a 3rd order approximation in shape

Two unequal moment applied at the edges

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Correction by polishing

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Correction by polishing

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Corrected by variable width

micro-fluorescence & micro-diffraction (HXR)

Bending system

The mirror must be shaped according to the required working distance and angle of incidence constant thickness but linear width variation.

Open clamping system to let the beam pass trough

Picomotors for the bending driving system (2 for each mirror) Two different moments are applied at the end of the flat polished substrate

Corrected by variable width

Bimorph mirror

Optical surface po	olished after gluing	

Bimorph mirror

Dimension: from 150 mm (single element) to 1400 mm.

Radius variation: 370 m (+1500V) to 2300 m (-1500V)

Stability: $\Delta R/R \cong 0.8\%$ on 1 day scale $\Delta R/R \cong 2.0\%$ on 10 day scale

Bimorph mirror

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Small spot comparison

<u>1</u>5

ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Different mirror material

CTP

Out of focus with SiC

2]

Wavefront / Coherence

In physics, coherence is a property of waves, that enables stationary (i.e. temporally and spatially ^h constant) interference. More generally, coherence describes all correlation properties between physical quantities of a wave.

Coherence

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Cherence/wave front preservation

Coherence (wavefront) preservation

 $\lambda/4$ deformation (after <u>all</u> mirrors) needed $\lambda/10$ deformation (at <u>each</u> mirrors) acceted

Fermi@elettra case			
Wavelength	Angle of	shape error p-v	shape error p-v
	incidence	$\phi = 0.25$	φ =0.1
40 nm	6°	47	18
40 nm	3°	95	38
40 nm	1.5°	191	76
10 nm	3°	23	9
10 nm	2°	35	14
10 nm	1°	71	28
5 nm	3°	12	5
5 nm	2°	18	7.2
5 nm	1°	36	14
1.67 nm	3°	4	2

Xfel(s) case			
Wavelength	Angle of	shape error p-v	shape error p-v
	incidence	$\phi = 0.25$	φ =0.1
1 nm	1°	7	3
0.5 nm	1°	3.6	1.4
0.1 nm	0.33°	2	<1

$$\varphi = \frac{2\delta h \cdot \sin\vartheta}{\lambda}$$

Required FEL mirrors

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

"Classical" polishing with "good" metrology (H. Thiess-Zeiss, F. Siewert-HZB)

ICTP, Trieste, ITALY Apr. 26 - May 7 2010 30

Elastic Emission Machining (Jtec, K. Yamauchi-Osaka Univ.)

Optical quality: resume

Fermi@elettra case			
Wavelength	Angle of	shape error p-v	shape error p-v
	incidence	$\phi = 0.25$	φ =0.1
40 nm	6°	47	18
40 nm	3°	95	38
40 nm	1.5°	191	76
10 nm	3°	23	9
10 nm	2°	35	14
10 nm	1°	71	28
5 nm	3°	12	5
5 nm	2°	18	7.2
5 nm	1°	36	14
1.67 nm	3°	4	2

Xfel(s) case			
Wavelength	Angle of	shape error p-v	shape error p-v
	incidence	$\phi = 0.25$	φ =0.1
1 nm	1°	7	3
0.5 nm	1°	3.6	1.4
0.1 nm	0.33°	2	<1

Manufacturer are not ready for the challenging short wavelength request, or, we must relax ur expectation for a while!

Brilliance

Difference with SR sources

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010 36

Fluence & Damage threshold

High density carbon (or B4C) are very "strong" materials but...

Gold or platinum are "soft" or "tender" materials..... Therefore, the only way to substain such a strong energy density is to stay far away from the source and work in grazing incidence mode. Sometimes it is not possible →

Harmonic rejection

Diffraction gratings

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Resolving power = $E/\Delta E$

Grating damage test

Grating can be used, but only with blaze profile and in very grazing incidence mode

Multilayer for harmonic rejection

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Multilayer for harmonic rejection

0.9-1.8 mJ/cm² on the 45° mirror surface at 20 nm 0.9-1.8 mJ/cm² adsorbed

Multilayers suffer from fast aging effect

Matrial	Damage threshold @ 32 nm	Safety margin @ 50 m, 45° Full beam Absorbed
Silicon bulk	87 mJ/cm ²	48 - 48
α-C	60 mJ/cm ²	33 - 33
SiC	140 mJ/ cm^2	77 - 77
B4C	200 mJ/cm^2	111 – 111

Metrology

Long trace profiler

Precision: better than 0.5 μ rad (a pencil on earth)

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications ICTP, Trieste, ITALY Apr. 26 - May 7 2010

Fizeau interferometer

Roughness measurement

Atomic Force Microscope

Power spectral density

Books:

W. B. Peatman: **Gratings Mirrors and Slit** Gordon Sci. Publ. Amsterdam (1997) (Soft X.ray opitcs, introduction to SR sources)

D. Attwood, **Soft X-Rays and Extreme Ultraviolet Radiation**, Cambridge University Press (Interaction radiation-matter, SR sources, UV and Soft X-Ray optics)

A.A. Modern Developments in X-ray and Neutron Optics (Recent achievment in multilayer, metrology, ray tracing and X-ray lenses)

CXRO **X-ray data booklet** Lawrence Berkeley Nat. lab. (2001) <u>free</u> (general information and table useful when using X-ray)

Programs:

Shadow (ray tracing) http://www.nanotech.wisc.edu/shadow/shadow.html XOP (general optical calculation) http://www.esrf.fr/computing/scientific/xop SPECTRA (synchrotron source) http://radiant.harima.riken.go.jp/spectra/index_e.html

Links:

Centre for X-ray Optics http://www-cxro.lbl.gov/ (general information and on line software) The international society for Optical Engineering http://www.spie.org Optics.org http://optics.org Photonics.com http://www.photonics.com/

