

2139-15

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

X-ray absorption spectroscopy

F. De Groot Utrecht University Netherlands

Strada Costiera II, 34151 Trieste, Italy - Tel.+39 040 2240 III; Fax +39 040 224 163 - sci_info@ictp.it

<u>X-ray Absorption Spectroscopy</u> (K edges)

- Interaction of X-rays with matter
- XANES and EXAFS
- XANES analysis
- Pre-edge analysis
- Resonant Inelastic X-ray Spectroscopy (RIXS)

Frank de Groot

Studie: scheikunde in **Nijmegen** (1982-1986) Promotie: vaste stof chemie **Nijmegen** (1991)

Post-doc: Laboratoire pour l' utilisation du rayonnement électromagnétique in **Parijs** (93-94) Post-doc: vaste stof natuurkunde in **Groningen** (95-98)

Universitair hoofddocent: anorganische chemie Utrecht

- Theorie van röntgenspectroscopie
- Ontwikkelen nieuwe röntgenspectroscopieën
- Onderzoek aan heterogene katalysatoren
- Onderzoek aan vaste stoffen

Why X-ray Absorption?

- Element specific
- Sensitive to low concentrations (0.01-0.1 %)
- Applicable under extreme conditions (high-pressure, high temperature, in-situ)
- Applicable to gasses, liquids and solids
- Combination with microscopy

What do we learn from XAS?

- Metal valence during synthesis and reaction
- Metal coordination
- (very small) nanoparticles/clusters
- Metal site symmetry
- d-band occupation
- (3d, 4d or 5d; metal versus oxide, valence)
- Energy positions of empty bands of adsorbates (CO, H₂ on Pt, nature of adsorption site)
- 20 nm spatial-resolved, 50 ps time-resolved

X-ray absorptionExcitation of core electrons to empty states.Spectrum given by the Fermi Golden Rule
$$I_{XAS} \sim \Sigma_f \left| \left\langle \Phi_f \left| \hat{e} \cdot r \right| \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

2. Neglect <cv|1/r|cv> ('multiplet effects')

Atomic Multiplet Theory (ground state)

$$\left\langle {}^{2S+1}L_{J} \mid \frac{e^{2}}{r_{12}} | {}^{2S+1}L_{J} \right\rangle = \sum_{k} f_{k} F^{k}$$
Electron Correlation of Valence States

$$H_{ATOM} = \sum_{pairs} \frac{e^{2}}{r_{ij}} + \sum_{N} \zeta(r_{i}) l_{i} \cdot s_{i}$$
Valence Spin-orbit coupling

Atomic Multiplet Theory (core hole)

$$\begin{pmatrix} 2S+1\\ L_J \mid \frac{e^2}{r_{12}} \mid^{2S+1} L_J \end{pmatrix} = \sum_k f_k F^k + \sum_k g_k G^k$$
Core Valence Overlap

$$H_{ATOM} = \sum_{pairs} \frac{e^2}{r_{ij}} + \sum_N \zeta(r_i) l_i \cdot s_i$$
Core Spin-orbit coupling

СТМ4ХАЅ 0.3	2p XAS of TiO	🖉 CTM4XAS 2.5 📃 🖸 🔛
Calculate Plot Help *		Caculate Plat Help
		Tid . and
en 1444+ Constant Constants		table date 20 200 bits date (CT) 205 200 L
2p Pass state 306 3007 Initial state (CT)		Final state: 3P05 3009 Final state: (CT) 3P05 3010 L
() 3p Final state 2P05 3000 Final state (CT)		Stater integral reduction (%) Spin-orbit coupling
Sater integral reduction (%) 3d spin-orbit	CTM4XAS:	88 07 06 05 04
00 00 00 10 Run	0110147770.	Past Pps Ceps 20 34
Fdd Fpd Gpd	Error for 3d ⁰ systems in	
Crystal field parameters (eV)		uto Plat
Symmetry On +	version 3	Crustel field parameters (aV) Charge francise parameters (aV)
Ground state Excited state		Symphy City
10 Dq 0 0 Dette 0 2.0 T(b1)		India state Final state -
Dt 0 0 Uss 0 2.0 T(e1)	Line version O.F.fer	10 Dq 1 5 Dets 1 4 70/1)
	Use version 2.5 lor	01 2 6 Uair 2 5 T(H1)
	2dl avetomo	De T T Ued 3 5 TOUD
M (meV) 0 0 1.0 T(e)	Su° systems	And a second sec
Distance in the second s		and and a second s
Fie		
A Spectrum XAS -	(Will be solved in	The
		A Disecture XAS
Suppress sticks	version 3.1)	
💌 🗶		Sepress stoks
Energy Lorentzian Gaussian		<u> </u>
range (ev) broadening broadening		Enwgy Loreitzan Oaussen range (xV) broadening broadening
0 1000 0.2 0.4 0.2		0 1000 02 02 03
Force energy range Split (00)		
Piot		PM PM

	3d [∧] XAS	S calculation	on
Transition	Ground	Transitions	Term Symbols
$3d^0 \rightarrow 2p^53d^1$	¹ S ₀	3	12
$3d^1 \rightarrow 2p^5 3d^2$	² D _{3/2}	29	45
$3d^2 \rightarrow 2p^53d^3$	³ F ₂	68	110
$3d^3 \rightarrow 2p^53d^4$	⁴ F _{3/2}	95	180
3d ⁴ →2p ⁵ 3d ⁵	⁵D ₀	32	205
$3d^5 \rightarrow 2p^5 3d^6$	⁶ S _{5/2}	110	180
$3d^6 \rightarrow 2p^5 3d^7$	⁵ D ₄	68	110
3d ⁷ →2p ⁵ 3d ⁸	4F _{9/2}	16	45
3d ⁸ →2p ⁵ 3d ⁹	³ F ₄	4	12
3d ⁹ →2p ⁵ 3d ¹⁰	² D _{5/2}	1	2

Term Sy	mbols and XA	S
Fe atom: Ground state: Final state: Dipole transition:	3d ⁶ (4s ²) 2p ⁵ 3d ⁷ p-symmetry	
3d ⁶ -configuration: 2p ⁵ 3d ⁷ -configuration: p-transition:	⁵ D, etc. 110 states 1P	j=4 j'= 3,4, 5 ∆j=+1,0,-1
ground state symmetry transition: possible final states:	/: ⁵ D ⁵ D ⊗ ¹ P = ⁵ PDF	⁵ D ₄ 68 states

Calculate the atomic multiplet spectrum of the 2p XAS spectrum of an iron atom (use Fe²⁺)

Run CTM4XAS with Autoplot ON. Do a second calculation with the 3d spin-orbit coupling set to zero.

Choose an appropriate name; the program saves the rcn, rcg, rac, ban, plo and xy files with this name.

Term Sy	mbols and X	AS
Ni ^{II} ion in NiO: Ground state: Final state: Dipole transition:	<mark>3d⁸</mark> 2p⁵3d ⁹ p-symmetry	
3d ⁸ -configuration: 2p ⁵ 3d ⁹ -configuration: p-transition:	¹ S, ¹ D, ³ P, ¹ G, ³ F ² P⊗ ² D = ^{1,3} PDF ¹ P	j=4 j'=0,1,2,3,4 Δj=+1,0,-1
ground state symmetry transition: two possible final state	y: ³ F ³ F ⊗ ¹ P = ³ DFG es: ³ D, ³ F	³ F ₄ ³ D ₃ , ³ F ₃ , ³ F ₄ , ¹ F ₃

3d XAS of La₂O₃

- La in La_2O_3 can be described as La^{3+} ions:
- Ground state is 4f⁰
- Dipole transition $4f^0 \rightarrow 3d^94f^1$
- Ground state symmetry: ¹S₀
- Final state symmetry: ²P^{®2}D gives
- ¹P, ¹D, ¹F, ¹G, ¹H and ³P, ³D, ³F, ³G, ³H

• 3 peaks in the spectrum

Crystal Field Effects			
SC	D ₃		O _h (Mulliken)
S	0		A ₁
Р	1		T ₁
D	2		E+T ₂
F	3		$A_2 + T_1 + T_2$
G	4		$A_1 + E + T_1 + T_2$

Crystal Field Effect on XAS			
J in SO_3	Deg.	Branchings	
0	1	A ₁	
1	3	3×T,	
2	4	4×E, 4×T ₂	
3	3	3×A _{2,} 3×T ₁ ,3×T ₂	
4	1	$A_1, E_{1,}T_2$	
Σ	12		
	<¹S ₀ dip	oole ¹ P ₁ > goes to <a< td=""><td>Λ₁ T₁ T₁></td></a<>	Λ ₁ T ₁ T ₁ >

Calculate the crystal field multiplet spectrum of the 2p XAS spectrum of all divalent transition metal ions from Ca to Cu. Use 10Dq=1.2 eV.

Run CTM4XAS with Autoplot ON. Do a calculation with and without the 3d spin-orbit coupling set to zero.

Which TM²⁺ ions are sensitive to 3d spin-orbit coupling? Explain

Exercise

Calculate the crystal field multiplet spectrum of the 2p XAS spectrum of all divalent transition metal ions from Ca to Cu.

Use 10Dq=1.0, 2.0 and 3.0 eV.

Which TM²⁺ ions are very sensitive to the crystal field strength? Explain

Try to reproduce the Cu 2p XAS spectrum of Cs_2KCuF_6 The symmetry is octahedral; Use T(eg) = 2.0, T(e_g)=2* T(t_{2g}) and U_{dd}-U_{pd}=-1.0 eV. Optimize 10Dq and Δ . Try to reproduce the Cu 2p XAS spectrum of

La₂Li_{1/2}Cu_{1/2}O₄ The symmetry is square planar; Use Ds=0.3, T(b₁) = 3.0, T(a₁) = 1.73, T(b₂) = 1.5, T(e) = 1.05* and U_{dd}-U_{pd}=-1.0 eV. Optimize 10Dq and Δ .

Exercise

Calculate all spectra for NiO

2p XAS, 3p XAS, 1s (pre-edge) XAS 1s, 2s and 3s XPS 2p and 3p XPS 1s2p and 1s3p XES

- Run CTM4XAS for Cu²⁺ in C4 symmetry, with a magnetic field (M) of 1 meV; Plot the XAS spectrum and the MCD spectrum;
- Run CTM4XAS for Cu₂⁺ in C4 symmetry, with a magnetic field (M) of 1 meV and with the 3d spin-orbit coupling set to 0.0; Plot the XAS spectrum and the MCD spectrum;

Exercise

- Run CTM4XAS for Cu2+ in C4v symmetry, with a magnetic field (M) of 1 meV, adding a crystal field value 10Dq of 0.3 eV.; Plot the XAS spectrum and the MCD spectrum;
- Perform a number of calculations for varying values of 10Dq, in steps of 0.3 eV from 0.0 to 1.5 eV. What does one observe for the XAS and MCD spectra?
- Perform a calculation for negative values of 10Dq, for example -0.3, -0.5 and -0.9 eV. What does one observe? Explain.

Applications

- Systems with pi-bonds
- X-MCD of Fe-complexes on metal surfaces
- In-situ STXM chemical imaging

Why X-ray absorption?	Electron Energy Loss Spectroscopy
Element specificLow concentrations (0.01-0.1 wt%)	 > Identical spectral shape > XAS at Synchrotron
 Valence, Spin-state, Crystal field energies, dd-excitations Hybridization (differential orbital covalence) 	> EELS with Electron Microscope > VAR: 0.0 = V/(200 mm) > VAR: 0.0 = V/(200 mm) > Collection angle ~40 mm
MO energies / Density of states	▷ XAS: 0.2 eV/20nm ▷ EELS: 0.2 eV/0.5 nm HAADF detector
UHV Space?, Time?, Pressure?	 XAS: extreme conditions EELS: vacuum

-The Fischer-Tropsch GTL process produces an extremely clean synthetic fraction of gasoil - GTL fuel is virtually free of sulphur and aromatics.

O K-edg

~

Why X-ray Absorption?
Element specific
Low concentrations (0.01-0.1 wt%)
Valence, Spin-state, Crystal field energies
Hybridization, MO energies / Density of states
Time: excited states (mainly) in ps range
Pressure: <u>1 bar/500 °C flowing gas</u>
Space: 0.5 nm (STEM), 20 nm (STXM)
• • • • • • • • • • • • • • • • • • • •
www.anorg.chem.uu.nl/people/staff/FrankdeGroot/