

2139-19

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

Magnetic and resonant x-ray scattering

Nadia Binggeli ICTP Trieste

Magnetic and resonant x-ray scattering

Nadia Binggeli

Abdus Salam International Center for Theoretical Physics, 34014 Trieste

• Purpose and a bit of history

- Theoretical outline: non-resonant and resonant scattering
- Some examples

Large variety of magnetic structures

NiO

Gd,Tb,Dy Tb,Dy,Ho Ho,Er Er,Tm

Electronic orbital- (and spin-) ordered structures

La_{0.5}Sr_{0.5}MnO₃ (Coherently strained)

Mn (3d)

 $LaVO_3$

V (3d)

LaMnO₃

Mn (3d)

Determination of magnetic structures

- Standard probe: **neutron scattering**
- However x-ray scattering has some advantages:
 - is useful in the case of small samples
 - very high momentum resolution (period of
 - incommensurate structures)
 - element sensitive (resonant)

- possibility of a *separate determination of spin and orbital contributions* to the magnetic moment (by different polarization dependences, non-resonant)

Orbital structure: determination ?

- Orbital order: is often an experimentally hidden degree of freedom in correlated transition-metal oxides
- Resonant x-ray scattering: is a promising technique to probe orbital ordering

A bit of history

1972) First observation of x-ray magnetic scattering

Antiferromagnetic order in NiO by Bergevin and Brunel,

Phys. Lett. A39, 141 (1972)

Tube source: Counts per 4 hours!

(1985) First Synchrotron radiation studies of magnetism

Magnetic x-ray scattering from Holmium, Gibbs et al.,Phys. Rev. Lett. 55, 234 (1985) Synchrotron source: Counts per 20s

More history

(1985) Start of the resonant time

Prediction of resonant effect by Blume, J. Appl. Phys. 57, 3615 (1985)

(1985) First resonant scattering from a ferromagnet

X-ray resonant magnetic scattering from Nickel by Namakawa (1985)

(1988) First resonant scattering from an antiferromagnet

Resonant x-ray scattering from Holmium by Gibbs et al., Phys. Rev. Lett. 61, 1241 (1988)

Since then magnetic and resonant x-ray scattering evolved from scientific curiosities to widely used techniques

Electromagnetic radiation - electron interaction

• Hamiltonian for electrons in an electromagnetic field (Blume 1985):

With the fields **E** and **B** deriving from the vector and scalar potential **A** and ϕ :

$$\vec{B}(\vec{r}_j) = \vec{\nabla} \times \vec{A}(\vec{r}_j) \quad \text{and} \quad \vec{E}(\vec{r}_j) = -\vec{\nabla} \Phi(\vec{r}_j) - \frac{1}{c} \frac{\partial \vec{A}}{\partial t}(\vec{r}_j), \qquad \vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

• Electromagnetic waves described by the vector potential:

Note: in the second quantization formalism, H_{photon} takes the simple form (quantized radiation field):

$$H_{photon} = \sum_{\vec{k},\lambda} \hbar \omega_k \Big(a^+(\vec{k},\lambda) a(\vec{k},\lambda) + 1/2 \Big),$$

a⁺ (a): photon creation (annihilation) operator

• Developing the Hamiltonian:

Hamiltonian for the electrons

 H_3 and H_4 are related to the electron spin (linear dependence)

• We will here focus on elastic scattering

Elastic scattering processes:

• Probability of transition (per unit time) from state li> [electronic state l0>, photon $(\varepsilon, \mathbf{k})$] to state lf> [electronic state l0>, photon $(\varepsilon', \mathbf{k}')$] :

(Fermi's "Golden rule")

Non-resonant and resonant scattering

Non-resonant and resonant scattering

A) Non-resonant case:

all four H_i contribute

B) Resonant case:

the contribution from $H_2 \sim \sum A(\mathbf{r}_j) \mathbf{p}_j$ dominates

• The quantity used to describe the intensity of the elastic scattering is the differential cross section:

Number of photons per unit time scattered within $d\Omega$

Number of incident photons per unit time per unit surface

• Elastic scattering cross section for an assembly of N atoms:

$$\frac{d\sigma}{d\Omega} = \left(\frac{e^2}{mc^2}\right)^2 \left|\sum_{N} e^{i\vec{q}\cdot\vec{R}_n} F_N(\vec{k},\vec{k}',\vec{\varepsilon},\vec{\varepsilon}')\right|^2$$

F_N: atomic scattering amplitude

 $d\sigma$

 $d\Omega$

$$\vec{q} = \vec{k} - \vec{k}'$$

Periodic system: $\vec{q} = \vec{G}_{hkl}$

A) Non-resonant scattering

1) Has a mall intensity compared to Thompson scattering:

$$\left(\frac{\hbar\omega}{mc^2}\right)^2 \approx \left(\frac{\sim 10 keV}{511 keV}\right)^2$$

of the order 10⁻⁴

2) Has a very different polarization factors for the orbital M_L and spin M_S contributions to the magnetic moment

By selecting the incoming polarization and analyzing the outgoing polarization one can determine the orbital and spin moments

First observation of x-ray magnetic scattering

De Bergevin and Brunel, Phys. Lett. A39, 141 (1972) Antiferromagnetic order in NiO Laboratory x-ray tube NiO (3/2.3/2.3/2) reflection

Counts per ~ 4 hours

Theta (deg.)

X-ray magnetic scattering in NiO with synchrotron radiation

(counts/s)

V. Fernandez et al., Phys. Rev. B57, 7870 (1998) ESRF ID20 Beamline

L and S separation for NiO

V. Fernandez et al,, Phys. Rev. B57, 7870

Application to Holmium magnetic structures

C

Helical phase (20<T<130K) s rotate from plane to plane with turn angle that depends on T (incommensurate magnetic spirales; reciprocal vectors: $\tau_m//c$) (for T< 20 K cone structure)

Scattering geometry:

X-ray magnetic scattering in holmium with synchrotron radiation

D. Gibbs et al., Phys. Lett. 55, 234 (1985)

Excellent momentum resolution

B) Resonant scattering

Resonant elastic x-ray scattering is a second order process in which a core electron is virtually promoted to some intermediate states above the Fermi energy, and subsequently decays to the same core level

B) Resonant scattering amplitudeScattering amplitude
$$F^{res.} \propto \sum_{n} \frac{<0 |\vec{\varepsilon}^* \cdot \vec{p} e^{i\vec{k} \cdot \vec{r}} |n > < n |\vec{\varepsilon} \cdot \vec{p} e^{-i\vec{k} \cdot \vec{r}} |0 > E_n - E_0 - \hbar\omega + i\Gamma/2$$
Multipole expansion:

Strength of the transition depends on: -overlap integrals -transition order

In transition metals: $L_{2,3}$ edge **2p** -> **3d** (dipolar) 0.4-1keV strong

B) Resonant magnetic scattering

1) Has a large intensity (10²-10⁴ times larger than non-resonant)

- 2) Is element sensitive (from the core level binding energy)
- 3) Is less directly related to the magnetic moments (but is energy dependent -> spectrum)

Dipole-dipole scattering: Hannon-Trammel formula

Hannon et al., Phys. Rev. Lett. 61, 1245 (1988)

$$F^{res.} = -\frac{e^2}{mc^2} \Big[(\vec{\varepsilon}^{*} \cdot \vec{\varepsilon}) f^{(0)} - i(\vec{\varepsilon}^{*} \times \vec{\varepsilon}) \cdot \hat{z}_n f^{(1)} + (\vec{\varepsilon}^{*} \cdot \hat{z}_n)(\vec{\varepsilon}^{*} \cdot \hat{z}_n) f^{(2)} \Big]$$

AnomalousXRMSdispersion(re: circular dichroism)

XRMSoism)(re: linear dichroism)

is a unit vector parallel to the magnetic moment of the nth ion

are linear combination of the components of the atomic scattering tensor $\boldsymbol{f}_{m,m^{\prime}}$

Note: the Hannon-trammel formula is valid for local atomic site symmetry C_{4h} or higher - see, e.g., Stojic et al., Phys. Rev. B 72, 104108 (2005)

L_{2,3} edge scattering in 3*d* transition-metal compounds

2p -> 3d: directly probes the magnetic electronic states

Soft x-ray magnetic scattering probes structures with long periods:

- Artificial superstructures/multilayers
- Complex crystals with large lattice or magnetic unit cells

Soft x-ray resonant magnetic scattering at the Mn $L_{2,3}$ edges in $La_{2-2x}Sr_{1+2x}Mn_2O_7$

Wilkins et al., Phys. Rev. Lett. 90, (2003)

(001) scattering due to AFM magneticscattering (charge scattering -non-resonant- found to be much weaker)28

Soft x-ray resonant scattering at the Mn $L_{2,3}$ edges in $La_{0.5}Sr_{1.5}MnO_4$

Wilkins et al., Phys. Rev. B 71, 245102 (2005)

Magnetic order

Mn 3*d*-orbital order

Soft x-ray resonant scattering at the Mn $L_{2,3}$ edges in $La_{0.5}Sr_{1.5}MnO_4$

Wilkins et al., Phys. Rev. B 71, 245102 (2005)

Orbital scattering (1/4, 1/4, 0)

Magnetic scattering (1/4,-1/4,1/2)

By comparison with atomic multiplet calculations in a crystal field: determination of magnetic & orbital structure; here -> a) x²-z²/y²-z²

30