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Gd,Tb,Dy    Tb,Dy,Ho    Ho,Er     Er,Tm

NiO

Large variety of magnetic structures

Rare Earths
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La0.5Sr0.5MnO3
(Coherently
strained)

Mn (3d)

Electronic orbital- (and spin-) ordered  structures

LaVO3 LaMnO3

V (3d)
Mn (3d)



• Standard probe: neutron scattering

• However x-ray scattering has some advantages:

- is useful in the case of small samples

- very high momentum resolution (period of

incommensurate structures)

- element sensitive (resonant)

- possibility of a separate determination of spin and orbital
contributions to the magnetic moment (by different
polarization dependences, non-resonant)

Determination of magnetic structures
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• Orbital order: is often an experimentally hidden degree of

freedom in correlated transition-metal oxides

• Resonant x-ray scattering: is a promising technique to probe

orbital ordering

Orbital structure: determination ?
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(1972) First observation of x-ray magnetic scattering

(1985) First Synchrotron radiation studies of magnetism

A bit of history

Antiferromagnetic order in NiO by Bergevin and Brunel,

Phys. Lett. A39, 141 (1972)

Tube source: Counts per 4 hours!

Magnetic x-ray scattering from Holmium,

Gibbs et al.,Phys. Rev. Lett. 55, 234 (1985)

Synchrotron source: Counts per 20s
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(1985) Start of the resonant time

(1985) First resonant scattering from a ferromagnet

(1988) First resonant scattering from an antiferromagnet

More history

Prediction of resonant effect by Blume, J. Appl. Phys. 57, 3615 (1985)

X-ray resonant magnetic scattering from Nickel by Namakawa (1985)

Resonant x-ray scattering from Holmium by Gibbs et al., Phys. Rev. Lett.

61, 1241 (1988)

Since then magnetic and resonant x-ray scattering evolved from scientific curiosities to

widely used techniques 5



Electromagnetic radiation - electron interaction

• Hamiltonian for electrons in an electromagnetic field (Blume 1985):
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• Electromagnetic waves described by the vector potential:

Note: in the second quantization formalism, Hphoton takes the simple form (quantized radiation field):
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With the fields E and B deriving from the vector and scalar
potential A and �:
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• Developing the Hamiltonian:
     Hamiltonian for the electrons

     Hamiltonian for the radiation

    Interaction Hamiltonian
   (will be treated as perturbation)

   Second order in A

    H3 and H4 are related to the electron spin (linear dependence)

H1 H4H3H2

    First order in A
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• We will here focus on elastic scattering

Elastic scattering processes:
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H1
Charge or Thompson scattering
(crystallography)
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• Probability of transition (per unit time) from state |i> [electronic state
|0>, photon (�,k)] to state |f> [electronic state |0>, photon (�’,k’)] :

F: scattering amplitude

Second order in A First order in A

(Fermi’s “Golden rule”)
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Non-resonant diffraction

Resonant diffraction

A)

B)
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Non-resonant and resonant scattering

Core level

A) Non resonant:

h� >> h�0

EF

  h�,k  h�,k '

  h�0

B) Resonant

h� � h�0
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Non-resonant and resonant scattering

A) Non-resonant case:

all four Hi contribute

B) Resonant case:

the contribution from H2~�A(rj) pj dominates
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• Elastic scattering cross section for an assembly of N atoms:
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• The quantity used to describe the intensity of the elastic scattering
is the differential cross section:

Number of photons per unit time scattered within d�

Number of incident photons per unit time per unit surface
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R
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A) Non-resonant scattering amplitude
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A) Non-resonant scattering
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1) Has a mall intensity compared to Thompson scattering:

of the order 10-4

2)  Has a very different polarization factors for the orbital
ML and spin MS contributions to the magnetic moment

                     L and S separation

By selecting the incoming polarization
and analyzing the outgoing polarization
one can determine the orbital and spin
moments

A) Non-resonant scattering
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Magnetic scattering for an antiferromagnet

a: charge periodicity

2a: magnetic periodicity            additional reciprocal vectors
(superstructure) compared to the charge scattering

such as NiO
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(Ni)



First  observation of x-ray magnetic scattering

De Bergevin and Brunel, Phys. Lett. A39, 141 (1972)
Antiferromagnetic order in NiO
Laboratory x-ray tube
NiO (3/2.3/2.3/2) reflection                         Counts per ~ 4 hours

Theta (deg.) 18



X-ray magnetic scattering in NiO
with synchrotron radiation

V. Fernandez et al,, Phys. Rev. B57, 7870 (1998)
ESRF ID20 Beamline (counts/s)
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L and S separation for NiO

V. Fernandez et al,, Phys. Rev. B57, 7870

-> L/S=0.34
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Helical phase  (20<T<130K)
s rotate from plane to plane with turn angle
that depends on T (incommensurate
magnetic spirales; reciprocal vectors: ��m//c)
 (for T< 20 K cone structure)

Scattering geometry:
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Application to Holmium magnetic structures

c
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X-ray magnetic scattering in holmium
with synchrotron radiation

D. Gibbs et al,, Phys. Lett. 55, 234 (1985)

Excellent momentum resolution
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B) Resonant scattering

EF
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L1

L3
L2

     Photon energy resonant with
    a core level absorption edge

2s

2p

Resonant elastic x-ray scattering  is a second order process in which a core electron
is virtually promoted to  some intermediate states above the Fermi energy, and
subsequently decays  to the same core level 23



B) Resonant scattering amplitude
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1) Has a large intensity (102-104 times larger than non-
resonant)

2) Is element sensitive (from the core level binding energy)

3) Is less directly related to the magnetic moments (but
     is energy dependent   -> spectrum)

B) Resonant magnetic scattering
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Dipole-dipole scattering: Hannon-Trammel formula
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f ()

Hannon et al., Phys. Rev. Lett. 61, 1245 (1988)

Note:the Hannon-trammel formula is valid for local atomic site symmetry C4h or higher - see, e.g.,
Stojic et al., Phys. Rev. B 72, 104108 (2005)
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Anomalous
dispersion  

XRMS
(re: linear dichroism)  

XRMS
(re: circular dichroism)



Soft x-ray magnetic scattering probes structures with long
periods:

- Artificial superstructures/multilayers
- Complex crystals with large lattice or magnetic unit cells

L2,3 edge  scattering in 3d transition-metal compounds

2p -> 3d: directly probes the magnetic electronic states 
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Soft x-ray resonant magnetic scattering
at the Mn L2,3 edges in La2-2xSr1+2xMn2O7

Wilkins et al., Phys. Rev. Lett. 90,  (2003)

 (001) scattering due to AFM magnetic
scattering (charge scattering -non-
resonant- found to be much weaker)

(001) Resonant scattering
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Soft x-ray resonant scattering
at the Mn L2,3 edges in La0.5Sr1.5MnO4

Wilkins et al., Phys. Rev. B 71, 245102 (2005)

Magnetic order Mn 3d-orbital order

Mn3+ Mn4+ O

a

c
b

a)

b)
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Wilkins et al., Phys. Rev. B 71, 245102 (2005)

635  640  645  650  655  660  665  670
Energy (eV)

635  640  645  650  655  660  665  670
Energy (eV)

Orbital scattering (1/4,1/4,0) Magnetic scattering (1/4,-1/4,1/2)

Exp.
Theory

Soft x-ray resonant scattering
at the Mn L2,3 edges in La0.5Sr1.5MnO4
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By comparison with atomic multiplet calculations in a crystal field:

determination of magnetic & orbital structure; here -> a) x2-z2 /y2-z2




