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What properties do wave functions of overlapping
(thus indistinguishable) particles have?—electrons as example:
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( r ,s ; r ,s ), including spin of both electrons
But labels can' t affect any measurable quantity.
E.g. probability density :

( r ,s ; r ,s ) ( r ,s ; r ,s )
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with P permutation operator r ,s ; r ,s
and eigenvalues of 1

Finally , all particles in two classes :
FERMIONS : ( incl. e ' s ) : ant
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Probability of finding two
electrons at the same point in 
space with the same spin is 
zero: “the Fermi Hole”

�the Exchange Interaction
�Hund’s 1st rule & magnetism
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Assume N-electron, P nucleus wave function to be:

and also require orthonormality of one-electron orbitals

Minimize total energy� Hartree-Fock equations:

with:

One-electron integral:

Two-electron coulomb integral:

Two-electron exchange integral:

Lowers energy—”attractive”
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One-electron energies
or eigenvalues
� binding energy�

Koopmans’ Theorem
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Paper  [1]--Basic Concepts of XPS

space: like 1s, 2s,…
spin: �(	) or �(�)
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Note--Kij often
Jij in solid-state



Basic energetics—Many e- picture

kinetic kinet
Vacuum Fermi
binding binding spectrometer

Vacuum
binding final initial
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Atom Q

Ion Q+

Kth state

n� j
hole

Vacuum
bindingE (Qn j ,K )�

Relaxation/screening

N electrons

N-1

+ photoelectron @ �
Ekin = 0



What does
the hole do?



Paper [1]--“Basic 
Concepts of XPS”

Figure 18



PLUS SPIN:
�(
)= msi = +½ = 	
�(
)= msi =  -½ = �
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�ms =
msf - msi
= 0 !





Atomic orbitals:
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Total
No e-
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2p

3s

3p

3d

x2
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Filling
degeneracy

Maximum
Occupation =
Degeneracy
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+ 14 for nf

� �Filling the
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Orbitals:
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Intraatomic electron screening 
in many-electron atoms--a simple model

kC � 1/(4 �0)

[Zeff]

In many-electron atoms:
For a given n, s feels nuclear charge
more than p, more than d, more than f

Lifts degeneracy on � in hydrogenic
atom



Intraatomic
electron screening 
in many-electron 
atoms--a self-
consistent Q.M.
calculation

Plus radial one-
electron functions:
Pn� (r) � rRn�(r)







WITH C1 AND C2 TABULATED CLEBSCH-GORDAN
OR WIGNER 3j SYMBOLS





The energies are given in eV relative to the vacuum level for the rare gases and for 
H2, N2, O2, F2, and Cl2; relative to the Fermi level for the metals; and relative to the 
top of the valence bands for semiconductors (and insulators).

X-Ray Data Booklet--Section 1.1  ELECTRON BINDING ENERGIES

Missing
valence
B.E.s

Electronic
configuration

! 45            ! 17             ! 17 

! 9              ! 9
! 13            ! 13 Interpolated,

extrapolated

Valence levels

Valence levels



X-Ray Data Booklet--Section 1.1  ELECTRON BINDING ENERGIES

Valence levels

Valence levels



"- = "antibonding
# "1sa - "1sb

"+ = "bonding
# "1sa + "1sb

The quantum mechanics of covalent bonding in molecules: 
H2

+ with one electron

=R

Total
Energy "antibonding
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“Basic Concepts of XPS”
Chapter 3
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V0,Cu
=13.0eV

- 8.6 eV

Vacuum level


Cu = 4.4 eV = work function
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eg and t2g not
equivalent in 

octahedral (cubic) 
environment

Transition
Metal (e.g. Mn)

Ligand
(e.g. O)

Face-centered cubic—
12 nearest neighbors
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Copper densities of states-total and by orbital type:
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�

3s23p6 filled +      3d,4s CB    3d24s2                  3d34s2                    3d54s1                       3d64s2

3d74s2                 3d84s2               3d104s1            3d104s2

+ Flat “core-
like” Zn 3d 
bands at !-0.8
Rydberg

+ Flat “core-
like” Ar 3s, 3p  
bands at !-1.0-
1.5 Rydbergs

+ Exchange!
+ Exchange!

+ Exchange!
+ Exchange!



�Eexch

V0,Fe
=12.4 eV

Vacuum level


Fe = 4.3 eV

-8.1 eV



Fe:  ANGLE AND 
SPIN-RESOLVED
SPECTRA AT $ POINT

coana
Rectangle

coana
Rectangle



Outline

Surface, interface, and nanoscience—short introduction

Some surface concepts and techniques�photoemission

Synchrotron radiation: experimental aspects

Electronic structure—a brief review

The basic synchrotron radiation techniques:
more experimental and theoretical details

Valence-level photoemission

Core-level photoemission

Photoemission with high ambient pressure
around the sample



The Soft X-Ray Spectroscopies

Core

VB
EF

CB

e-
e-Valence PE Core PE

PE = photoemission = photoelectron spectroscopy
XAS = x-ray absorption spectroscopy
AES = Auger electron spectroscopy
XES = x-ray emission spectroscopy

RIXS = resonant inelastic x-ray scattering / x-ray Raman scatt.

h%

h%



hv

"i(bound)

"f(free)
Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES:  DIPOLE LIMIT
& Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e r" "' &
�

&





“Basic Concepts of XPS”
Figure 1
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Vibrational
fine structure

Kimura et al.,
“Handbook of HeI

Photoelectron Spectra”



SAME SUBSHELL COUPLING +
TOTAL L,S�”MONOPOLE”

(N-1)e- SHAKE-UP/
SHAKE-OFF�
”MONOPOLE”1e- DIPOLE�d
/d) “Basic Concepts of XPS”

Chapter 3
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The Soft X-Ray Spectroscopies

Core

VB
EF

CB

e-
e-Valence PE Core PE

PE = photoemission = photoelectron spectroscopy
XAS = x-ray absorption spectroscopy
AES = Auger electron spectroscopy
XES = x-ray emission spectroscopy

RIXS = resonant inelastic x-ray scattering / x-ray Raman scatt.

h%

h%

XAS



hv

"i(bound)

"f(free)
Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES:  DIPOLE LIMIT
& Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e r" "' &
�

& Near-edge x-ray absorption:
2ˆ (1) (1)f iI e r" "' &

�

"i(bound)

"f(bound)
Vacuum

hv

&

&



Variation of 
Near-Edge X-Ray 
Absorption Fine 

Structure
(NEXAFS) with Atomic 

No. for Some 3d 
Transition Metals

“White lines”

4   :ATOM
3.5 :SOLID

3
2.4

2
1.8

0
0.5

Number of d-holes

= 2p3/2

= 2p1/2

J. Stohr, “NEXAFS 
Spectroscopy”



Magnetic Circular Dichroism in X-Ray Absorption 
(XMCD)

Ferromagnetic cobalt with magnetization
along incident light direction 

RCP

LCP



Variation of Near-Edge X-Ray Absorption Fine 
Structure (NEXAFS) for Different Polymers

H. Ade, X-ray  Microscopy 99,
AIP Conf. Proc. 507, p.197



The Soft X-Ray Spectroscopies

Core

VB
EF

CB

e-
e-

XAS

Valence PE

PE = photoemission = photoelectron spectroscopy
XAS = x-ray absorption spectroscopy
AES = Auger electron spectroscopy
XES = x-ray emission spectroscopy

REXS/RIXS = resonant elastic/inelastic x-ray scattering

h%

h%

Electron-out:
surface
sensitive

e-
2

Core PE e-
1 e-

3

AES

h%



hv

"i(bound)

"f(free)
Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES:  DIPOLE LIMIT
& Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e r" "' &
�

& Near-edge x-ray absorption:
2ˆ (1) (1)f iI e r" "' &

�

"i(bound)

"f(bound)
Vacuum

hv

& Auger  electron emission:
2 22

1 1 3 2
12

3 2
12

(1) (2) (1) (2) (1) (2) (1) (2)ff
e eI

rr
" "" " "" " "' �

"1
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Vacuum

&

&

&&

"fDirect Exchange



“Basic Concepts of XPS”
Figure 1

Auger kinetic energies do 
not change with photon 
energy

Photoelectron kinetic 
energies shift linearly with 
photon energy



Or more accurately:
K.E. � B.E.5Z - B.E.3Z+1- B.E.1Z

� B.E.5Z - B.E.3Z - B.E.1Z+1

� (average of two above)

�

�

+ +�

The equivalent core or Z+1 
approximation



Ag MNN 

1253.6 - Auger Energy (eV)

Ni LMM

1253.6 - Auger Energy (eV)

O KLL
1253.6 - Auger Energy (eV)

65      70      75      80      85
Kinetic Energy (eV)

65      70      75      80      85
Kinetic Energy (eV)

65      70      75      80      85
Kinetic Energy (eV)

Au N6,7O4,5O4,5

X-Ray Data
Booklet
Fig. 1.4

K.E. � B.E.1s
Z=8 - B.E.2p

9- B.E.2p
8

� B.E.1s
8 + B.E.2p

8 - B.E.2p
9

� 543.1 - 17 - 13 � 513 eV

1s1/2

2p3/2
2p1/2

2s1/2

Ekin =
508.3



The energies are given in eV relative to the vacuum level for the rare gases and for 
H2, N2, O2, F2, and Cl2; relative to the Fermi level for the metals; and relative to the 
top of the valence bands for semiconductors (and insulators).

X-Ray Data Booklet--Section 1.1  ELECTRON BINDING ENERGIES

Missing
valence
B.E.s

Electronic
configuration

! 45            ! 17             ! 17 

! 9              ! 9
! 13            ! 13 Interpolated,

extrapolated

Valence levels

Valence levels



The Soft X-Ray Spectroscopies

Core

VB
EF

CB

e-
e-

XAS

Valence PE

PE = photoemission = photoelectron spectroscopy
XAS = x-ray absorption spectroscopy
AES = Auger electron spectroscopy
XES = x-ray emission spectroscopy

REXS/RIXS = resonant elastic/inelastic x-ray scattering

h%

h%

Photon-out:
“bulk”,
deeper
interfaces

Electron-out:
surface
sensitive

e-
2

Core PE

XES

e-
1 e-

3

AES

h%

h%’



Or more accurately:
h%’ = B.E.5 - B.E.3 or core
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hv

"i(bound)

"f(free)
Vacuum

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES:  DIPOLE LIMIT
& Photoelectron spectroscopy/photoemission:

2ˆ (1) (1)f iI e r" "' &
�

& Near-edge x-ray absorption:
2ˆ (1) (1)f iI e r" "' &

�

"i(bound)

"f(bound)
Vacuum

hv

& Auger  electron emission:
2 22

1 1 3 2
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If fluorescence yield � FY

FY = probability of radiative
decay � x-ray emission)

1 - FY = probability of non-radiative
decay � Auger electron emission

“X-Ray Data Booklet”
Section 1.3



2p3/2
2p1/2

2s1/2

1s
1 (

2s
2p

)6

1s
1 (

2s
2p

)5

1s
1 (

2s
2p

)4

1s
1 (

2s
2p

)3

3s1/2

3p1/2,3/2K�

1s1/2

1s
1 (

2s
2p

)6

Mg K series of x-rays:
atomic no. = 12
Fluorescence Yield � 0.03

� Eb(Mg 1s) - Eb(Mg 2p1/2,3/2)
= 1303.0 - 49.7 = 1253.3 eV

“Basic Concepts of XPS”
Figure 2

K�



The Soft X-Ray Spectroscopies

Core

VB
EF

CB

e-
e-

XAS

Valence PE

PE = photoemission = photoelectron spectroscopy
XAS = x-ray absorption spectroscopy
AES = Auger electron spectroscopy
XES = x-ray emission spectroscopy

REXS/RIXS = resonant elastic/inelastic x-ray scattering

h%

h%

RIXS

h%”

h%

Photon-out:
“bulk”,
deeper
interfaces

Electron-out:
surface
sensitive

h%

e-
2

Core PE

REXS

XES

e-
1 e-

3

AES

h%

h%’



hv
hv’=
hv- �E�m(N)

�i(N)
�f(N)

�E

& Resonant inelastic x-ray scattering:

MATRIX ELEMENTS IN THE SOFT X-RAY SPECTROSCOPIES:
RESONANT EFFECTS
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X-ray
absorption
spectroscopy
(XAS)

Resonant
inelastic

x-ray
scattering

(RIXS)
and

Resonant
elastic

x-ray
scattering

(REXS)

X-ray
fluorescence

spectroscopy
=X-ray

emission
spectroscopy

(XES)

Mn 2p3/2

2p1/2

NON-RESONANT

!10.0 eV

2p3/2
2p1/2

3s
3p
3d

Vac.

R
IX

S
R

EX
S

XE
S

Butorin et al., Phys. Rev.
B 54, 4405 (’96)



=1s

=2s1/2

=2p1/2

=2p3/2

=3s1/2
=3p3/2
=3d5/2

=4s1/2
=4p3/2
=4d5/2
=4f7/2

X-Ray
Nomenclature
(from “X-Ray
Data Booklet”)

See Section
1.2 in “X-Ray
Data Booklet”

nl
nlj=l+1/2
nlj=l-1/2

Spin-
orbit

In general:

N6N4N2

M4M2

�j=0,±1



Electron binding energies

Diff. = 11.2

Diff. = 11.4



“X-Ray Data Booklet”
Section 3.1

The five ways in
which x-rays
Interact with
Matter:
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