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X-ray microscopy: method characteristics

SPEM actual performances
Spatial resolution Overall energy resolution

Best resolution:
~100nm (ZonePlates ltd) 

Best transmission:
8% (ZP ltd.)

Energy resolution: ~180meV
Standard conditions
Room Temperature
Photon Energy: 500 eV

Photon energy range: 350 eV (min) – 800 eV (actual, undulator transmission)

Beamline Layout and SPEM setup
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Outline:
Ingredients of a Scanning Photoemission Microscope 

(SPEM) based on Zone Plates

•Vacuum chambers
•Sample and optics manipulators
•Sample holders
•Electron analyzers
•Electron detectors
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Vacuum chambers

• No standard geometry
• Dimensions depends mainly from the size of the manipulators
• Large flanges for the manipulators (>CF200)
• Geometry limits the possibility of in-situ experiments
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Manipulators
Sample Optics (ZP+OSA)

• Large scanning range (>1mm)
with large steps (1-100 μm)

• Small scanning range (<3mm)
with small steps (10-50 nm)

• The most common choice is to 
use two kind of motors: stepper 
(for large scans) and piezo (for
small scans)

• Compact design to improve the 
stability

• 6-axis needed: 3 for the ZP and

3 for the OSA 

• Typical range: 10 - 15 mm

• Movement resolution of 1-3 μm
• Only one type of motors needed

(stepper or inchworm)

• Compact design to improve the 
stability
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1 axis coarse
translation

stage

x-ray
beam

OSA

ZP

x-y piezo stages
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Sample holders

• Cabling used for the contacts (heating, grounding, potentials, etc.)
must not interfere with the scanning motion.

• Cooling needs special design
• In most of the cases sample  holders are home designed (or modified
from standard designs)

50
 m

m
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Electron analyzers
• The most used type of electron analyzer is the Hemispherical Electron 

Analyzer (HEA)
• Due to geometrical constrains the detection in mainly grazing 
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Electron detectors

• Single channeltron
• Single Au plated anode
• Not very diffused

Single channel Multi channel

• Array of channeltron (low number
of channels)

• Multi Au plated anodes
(100 channels)

• 2D-CCD detectors
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The Microchannel Plate (MCP) consists of millions of very-thin, conductive
glass capillaries (4 to 25 micro meters in diameter) fused together and 
sliced into a thin plate. Each capillary or channel works as an independent
secondary-electron multiplier to form a two-dimensional secondary-electron
multiplier. 

Electron detectors based on micro channel plates

Electron

High potential drop MCP1

MCP2

Anode plate

Single e-

Detectable current
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Electron Detector Electronics
• Discriminators
• Preamplifiers
• Counters

Vacuum
compatible
condensor
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Final layout of the experimental chamber
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Start-up of an experiment
1. Optics alignment 

ZP OSA

2. Sample on the x-ray focus

mfD
rDOF δ

=

Typical: 5-15μm

MCP

Out-of-focus
plane
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3. Analyzer adjustment

Electron
Analyzer

4. Data acquisition

e-

• Images: electron analyzer set to a fixed energy and sample rastered
• Photoemission Spectra: sample fixed and energies scanned 
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Image analysis 

•Nature of the contrast in the images
•Getting the chemical information out of the artefacts
•Multichannel detection
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• Chemical inhomogeneity

Ni islands on Si Image on Ni

Image on Si

Si substrate
Ni island

16 μm

Au patch on Rh(110)

Rh(110)
Au

Image on Rh

Image on Au

6 μm
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Si2p

• Other sources of contrast

charging

• Topography



Multichannel detection
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64 μm
6.4 μm

Ru 3d maps
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Conventional Scanning
Spectroscopy (48 points - 70 sec)
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Getting the chemical information out of the artefacts

1. Topography
2. Beam induced effects:

3. Background level

Artefacts

• C deposition (residual gases)
• O2 reduction
• Charging
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C growth

O2 reduction

60 μmSiOx sample
Si2p maps

Points irradiated (>10 min)

RuOx sample Each spectrum every 1 min
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SPEM experiments: main topics

•Bulk-adlayer interfaces: metal/metal metal/semiconductor

•Silicide formation (Ni, Co, Pd, Pt, Ag, Au)

•Surface alloying and alloying (Ni/Pd, Au/Rh, Rh/Au)

•Catalysts&catalysis

•Size gap

•Model reactions (Rh, Pt, Ru)

•Nano and micro clusters properties

•Material characterization

•Organic and inorganic NT and nanostructures
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Ni silicides on Si(111): nucleation of 2D and 3D heterogeneous phases

•Deposition of 2ML of Ni on Si(111)-7x7 and thermal activation of the silicide formation

32 µm
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Ni silicides on Si(111): intermediate phases
2D

phases
NiSi2 NiSi

2 ML of Ni

bulk Si

bulk Si

bulk Si

Probing
depth

Probing
depth

Probing
depth

5 μm

5 μm

1

2

3
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Compositional and electronic study of TCO nano and microtubes
by Photoelectron Microscopy (in collaboration with A. Cremades UCM)

•Catalyst free growth of TCO structures (SnxOy/InxOy/InxNy,GexOy,etc.)
D. Alina Magdas et al. APL 88, 113107 (2006)

•SPEM characterization of morphological complex structures difficult with other PEM

•Charging due to differences in the electronic structure
•Mapping of the charging with the multichannel acquisition

Local chemical composition of the structures

SEM

64 μm

10 μm

SPEM images

Electronic behaviour of a single structure

•Heterogeneous elemental distribution locally defined
•Fine chemical analysis

10 μm

30 μm

ΔE=3eV



Degradation of light emitting diodes: a SPEM analysis
(in collaboration with P. Melpignano CRP, R. Zamboni CNR-ISMN)

OLED exposed to 
atmospheric moisture: 

failure due to light emission

Al

In

P
E

 I
nt

en
si

ty
 (

ar
b.

 u
ni

ts
)

-448 -446 -444 -442

Binding Energy (eV)

Pristine ITO

= metallic indium!

Cathode
near hole

In3d5/2

Al

increasing voltage and operating time

64 μm

•Decomposition
of ITO

Dark spot in OLED

“Clean” experiment: OLED 
growth and operated in the 
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Operating SOFC: mass transport
(in collaboration with M. Backhaus- Corning Inc. - USA)

•Real samples
•High T = 650-700°C
•pO2=1x10-6 mbar
•Applied potentials

-2V<U<+2V
•Surface sensitive
technique

•High lateral resolution

Surface composition change with bias

Elemental distribution at electrolyte/LSM interface

•Strong current increase under negative bias when Mn spreads on electrolyte
•Mn2+ electrolyte surface enrichment→electrolyte surface conductivity → direct oxygen incorporation
into electrolyte

•Oxygen incorporation extends under bias from TPB to the entire electrolyte surface

Observation and explanation of electrochemical cathode activation

Strongly constraining experimental setup

M. Backhaus et al. Solid State Ionics 179 (2008) 891–895 , M. Backhaus et al. Advances in Solid Oxide Fuel Cells III 28 (4), 2007



Gas phase oxidation of MCNT

O1s

CNT

7 μm
Increasing oxygen dosage

•Gas phase oxidation with atomic oxygen
•Advanced oxidation stages
•Investigation of the formation of oxygenated functional

groups and morphological changes
•Non linear consumption of the CNT   

Atomic arrangement

A. Barinov et al. Adv. Mat. 21 (19) 1 (2009)



Imaging and spectroscopy from single MWCNT with SPEM

Nanostructure width lower
than 50 nm !

•Ag, Au, Pd adsorbate interaction
•PLD deposition of catalytic

nanocluster

CNT

X-ray beam spot

Research Topics

20
 μ

m
High density Low density

•Confined patches on a single CNT
•Investigation of mass transport, surface

and bulk diffusion, etc.
C

Au

NEW

1.5 μm



Compositional and electronic study of TCO nano and microtubes
(in collaboration with A. Cremades - UCM - Spain)

•Catalyst free growth of TCO structures (SnxOy/InxOy/InxNy,GexOy,etc.)

•SPEM characterization of morphological complex structures difficult with other PEM

•Charging due to differences in the electronic structure
•Mapping of the charging with the multichannel acquisition

Local chemical composition of the structures

SEM

64 μm

10 μm

SPEM images

Electronic behaviour of a single structure

•Heterogeneous elemental distribution locally defined
•Fine chemical analysis

10 μm

30 μm

ΔE=3eV

D. A. Magdas et al. Superlat. and Microstr. 45 (2009) 429-434 , D. Maestre et al. Journ. of Appl. Phys. 103, 093531 (2008)  



Chemical and electronic characterization of nanosensors
(in collaboration with A. Kolmakov – Souther Illinois Uni. - USA)

•Chemical & electronic characterization under working conditions
•SnO2, VOx, …
•Sensing properties vs oxygen, hydrogen, …

3 μm

•Addressing the 
electron transport in a 
workin device
(temperature, close
biasing, etc.)
•Surface stoichiometry, 
coordination, oxidation
state, etc.

1 μm
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No charging of the substrate because of the 
low thickness, XPS and SPEM are possible

‘Material’ gap: from model crystalline materials to metal nano-
particles on metal oxide. In situ PLD particle deposition

PLD from a Pt50Rh50 target

3 μm

Pt

64 μm
Nano-cluster of 

average size < 10 nm
Low density of micron 

sized particles

SPEM

SEM

1.5 μm 0.7 μm

•Poly-crystalline nature of the particles
•Size effects during chemical reaction
•Proximity effects
•Simple model reaction: O2 (+H2)
•Unconventional procedure for particle 
generation (thermodynamics) 

M. Dalmiglio et al. J. Phys. Chem.  submitted



‘Material’ gap: from model crystalline materials to metal nano-
particles on metal oxide. In situ PLD particle deposition

Reference crystal
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How to correlate chemical
reactivity to structural changes?

SEM to LEEM

SPEM SEM
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Structural changes of a PtRh particle upon oxidation: LEEM and 
μ-LEED 

Increasing the oxidation time we 
have less defined contrast between 
the facets and at the end we lose all 
the information on the long range 
order of the crystal surface 

195’

715’



‘Material’ gap: from model crystalline materials to metal nano-
particles on metal oxide. In situ PLD particle deposition

Rh on MgO/W(110) PLD species are 
highly-defected due to non-thermic 

evaporation

>1 ML

Nanofilm

2 
μm

AFM

Microparticle

<1 ML2 
μm

Nanoparticles
10 nm

AFM

SEM

SPEM Rh3d maps

64
 μ

m

2 μm

•The nanoparticles/nanofilm possess  different oxidation/reduction ability than the microparticle
•Reducing rate: Micro-part.> Nano-crystalline film > Nano-particles
•Micro-particles of similar sizes show variation in the reactive properties: different structure, local environ.

Oxidation/reduction reactions
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