

2139-34

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

IR spectroscopy and microscopy in material science Electrodynamics at high pressures of strongly correlated electron systems

> A. Perucchi *Sincrotrone Trieste ITALY*

IR spectroscopy and microscopy in material scienceElectrodynamics at high pressures of strongly correlated electron systems

A. Perucchi

Outline - Selected applications of IRSR in solid state physics

- \bullet IR light and IR synchrotron radiation
- \bullet Basics of IR spectroscopy in condensed matter physics
	- 1. From Reflectivity to Optical Conductivity
	- 2. The Lorentz-Drude Model
- •High-pressure measurements
- \bullet Strongly Correlated Electron Systems
	- 1. Pressure-Induced Insulator to Metal Transition in $\rm VO_{2}$
	- 2. The complexity of V_2O_3
	- 3. Pressure vs Alloying effects in NiS2
	- 4. Tuning a CDW instability in RE dichalchogenides

Electromagnetic Spectrum

The "Terahertz gap", Collective Excitations in Macromolecules and exotic electronic materials

IR Units: 200 cm-1=300 K= 25 meV = 50 μ**m = 7 THz**

Advantages of IRSR

Brightness gain

•Small samples •Extreme experimental conditions (high pressure, high magnetic field) •Spatial resolution (microscopy)

Flux gain in the THz range $\bullet \approx 10$ with incoherent IRSR \bullet > 10⁴ with coherent IRSR (CSR) *lecture by S. Lupi on May 7*

 \bullet Time resolved spectroscopy (\approx 10 ps) •Pump-probe

Basics of infrared spectroscopy in condensed matter physics

Refractive index and Optical constants

 γ

 ω

N = *n* + *ik* $\tilde{}$ Complex refractive index

Real refractive index (Snell's law, dispersion)

Extinction coefficient (absorption)

$$
\tilde{N} = \sqrt{\tilde{\varepsilon}(\omega)} \qquad \varepsilon_1 = n^2 - k^2,
$$

\n
$$
\tilde{\varepsilon}_2 = 2nk
$$

\n
$$
\tilde{\sigma} = i \frac{\omega}{4\pi} (1 - \tilde{\varepsilon}) \qquad \sigma_1 = \frac{\omega \varepsilon_2}{4\pi},
$$

\n
$$
\sigma_2 = (1 - \varepsilon_1) \frac{\omega}{4\pi}
$$

Complex dielectric constant

Complex optical conductivity

Absorbance, Optical Density and the Lambert-Beer's law

Optical Reflectivity

From Maxwell to Fresnel equations

$$
\hat{t}_{\perp} = \frac{E_{0t}}{E_{0i}} = \frac{2\mu_1 \cos \psi_i}{\mu_1 \cos \psi_i + \sqrt{\hat{N}^2 - \sin^2 \psi_i}} \qquad \hat{t}_{||} = \frac{E_{0t}}{E_{0i}} = \frac{2\mu_1 \hat{N} \cos \psi_i}{\hat{N}^2 \cos \psi_i + \mu_1 \sqrt{\hat{N}^2 - \sin^2 \psi_i}}
$$

$$
\hat{r}_{\perp} = \frac{E_{0r}}{E_{0i}} = \frac{\mu_1 \cos \psi_i - \sqrt{\hat{N}^2 - \sin^2 \psi_i}}{\mu_1 \cos \psi_i + \sqrt{\hat{N}^2 - \sin^2 \psi_i}} \qquad \hat{r}_{||} = \frac{E_{0r}}{E_{0i}} = \frac{\hat{N}^2 \cos \psi_i - \mu_1 \sqrt{\hat{N}^2 - \sin^2 \psi_i}}{\hat{N}^2 \cos \psi_i + \mu_1 \sqrt{\hat{N}^2 - \sin^2 \psi_i}}
$$

By normal incidence

… and at vacuum interface

$$
\tilde{r} = \frac{\tilde{N}' - \tilde{N}}{\tilde{N}' + \tilde{N}}
$$
\n
$$
R(\omega) = \left| r(\omega) \right|^2 = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}
$$
\n
$$
R(\omega) = \frac{I_s(\omega)}{I_0(\omega)}
$$
\n
$$
R(\omega) = \frac{S_{\text{amp}}(\omega)}{I_0(\omega)}
$$

Kramers-Kronig Transformations

Following causality principle, the real and imaginary part of any linear response function are univocally determined through Kramers-Kronig Transformations

$$
\tilde{r}(\omega) = \sqrt{R(\omega)} \exp[i\vartheta(\omega)] \longrightarrow \chi(\omega) = \ln\left(\tilde{r}(\omega)\right) = \ln\sqrt{R(\omega)} + i\vartheta(\omega)
$$

$$
\vartheta(\omega) = -\frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\ln\sqrt{R(\omega')}}{\omega'^2 - \omega^2} d\omega'
$$

To this aim one should measure $R(\omega)$ over the broadest energy range: Extrapolation procedures are also used both at high and low frequencies

The Lorentz-Drude model

Diamond Anvil Cell (DAC)

 TI_{T} / I_0 $Op.D. = -ln(T) = \alpha d$

 $\rm R_{dia/sam}\rm =\rm I_R$ / $\rm I_0$

Infrared measurements at high pressure

both electronic and phononic excitations over a broad energy range

With n_d =2.43 being the diamond refractive index

The full determination of the optical constants can be achieved through:

- Simultaneous measurement of R and T
- Lorentz-Drude fitting
- Kramers-Kronig Transformations

Electrodynamics at high pressures of strongly correlated electron systems

Band insulators

The band theory is properly defined in the one-electron approximation, i.e. when W is much larger than other electronic energy scales

 $W \gg U,e-ph$

Mott-Hubbard insulators

U prevents double on-site occupancy. the opening of a gap in the spectra of excitations is induced

$$
H = -t \sum_{\langle i,j \rangle, \sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow}
$$

Electron-electron interaction and insulator tometal transition (MIT)

Electronic correlation: failure of band model Hubbard model

Pressure may increase the W/U ratio inducing a MIT

W: bandwidth or kinetic energy (strongly dependent on atomic distances) U : coulomb repulsion

Strongly correlated electron systems

 $5/8$

 \mathbf{co}

AFI

 0.6

doping

 PI

 $7/8$

 0.8

CAF

Mott insulators (V203, Bechgaard salts, NiS2)

Manganites

 $3/8$

CMR

 0.4

FM

Temperature

 $x=1/8$

 ∞

 \mathbf{O}

 0.2

 $4/8$

P-Induced Insulator to Metal Transition in Vanadium Dioxide - VO₂

The metal-insulator transition in VO $_{\rm 2}$

High Pressure may disentangle the two mechanisms Chosen techniques: IR and Raman so to monitor independently electronic and structural changes Strong Interplay between electron-lattice and electron-electron interactions **Driving MIT mechanism Hubbard or Peierls?**

P-dependent reflectance and transmittance of VO $_{\rm 2}$

 $\rm{VO}_{_2}$ slab

Simultaneous measurements of reflectance andtransmittance at 300 K in the M1 monoclinicinsulating phase on a thin $VO₂$ sample KBr pellet

Optical conductivity of VO $_{\rm 2}$ under high pressure

 ω (cm⁻¹)

Raman spectroscopy on VO $_{\rm 2}$

 $V - O$ $V-V$ 19.1 GPa Intensity (arb,un.) 15.1 GPa 13.1 GPa 8.3 GPa 4.4 GPa 0.2 GPa 200 600 800 400 Raman shift (cit)

•M1 phase: 18 Raman active modes. . R phase: 4 broad band

Raman spectroscopy is a good technique to study structural transition in VO₂

Monoclinic phase is stable up to 19 GPa (up to 39 GPa from XRD, L. Malavasi et al, unpublished)

> **Anomalous** behaviour of low frequency modes

Subtle rearrangement of V-V chains **New Monoclinic** metallic structure?

 12

 $P(GPa)$

0

4

16

Raman spectroscopy on VO₂ under high pressure

Insulator to metal transition and monoclinic to rutile transition aredecoupled at high pressure

> Metallization process in a new Mx monoclinic structure

Electron correlation is the main localization mechanism (at least at high-P) in $\rm VO_{2}$

E. Arcangeletti et al, PRL98, 196406 (2007) C. Marini et al, PRB 2008

The complex phase diagram of Vanadium Sesquioxide - V₂O₃

Vanadium Sesquioxide - V $_{\mathbf{2}}\mathbf{O}_{\mathbf{3}}$

Pressure vs Alloying effects in Nickel Disulfide - NiS₂

Se increases bandwidth while expanding the lattice! Surprising similarities in the T-x, T-P phase diagrams

Coherent vs Incoherent excitations in $\mathbf{Nis}_{2\text{-} \textsf{x}}\mathbf{Se}_{\textsf{x}}$

Mott-Hubbard

Bandwidth vs CT controlled transition

Two different MITs: 1) under pressure, W $/\Delta$ = const. and W /U decreases, triggering the MIT; 2) Se alloying: W /U = const. whereas W $/\Delta$ increases inducing the MIT;

Tuning a CDW instability in Rare-Earth Dichalchogenides

Nesting wavevectors and the Peierls transition

Hydrostatic pressure vs. chemical pressure

With increasing P, $R(\omega)$ increases between 2000 and 5000 cm-1

The same kind of behavior is observed by applying chemical pressure (substitution of the Rare Earth ion).

A. Sacchetti *et al*., PRL **98**, 026401 (2007)

Optical conductivity

A. Sacchetti *et al*., PRL **98**, 026401 (2007)

The optical conductivity is recovered through a fitting of the reflectivity data.

It is then possible to give an estimate for the single particle-gap energy.

Single-particle gap

The high pressure measurement permits to study the evolution of the SP gap as a function of the lattice parameter **by using one single sample.**

Pressure vs. Alloying

$\mathbf{VO}_{\mathbf{2}}$

Cr-doping changes structure within the insulating phase but does not affect electronic properties. Independently on the level of Cr-doping Pressure drives a metallic monoclinic phase

$\mathbf{V}_2\mathbf{O}_3$

Besides expanding the lattice, Cr-doping induces phase separation. Pressure drives a more homogeneous metallic phase but does not completely restore the pristine $\rm V_2O_3$ homogeneous metallic state. Pressure vs doping scaling does not hold

${\rm NiS}_2$

Se expands the lattice contrary to Pressure Se drives metallicity through a reduction of Δ : merging of Ni-e_g and chalchogen pp σ bands Pressure increases bandwidth of Ni-e_g

CeTe 3

Pressure and Rare Earth substitution have the same effect on CDW: Reduced nesting because of increased 3-D character

•Review on T- and P-induced MITs on vanadium oxide compounds: *Journal of Physics: Condensed Matter 21, 323202 (2009)*

 \bullet VO₂ and Cr-doped VO₂: *Phys. Rev. Lett. 98, 196406 (2007); Phys. Rev. B 77, 235111 (2008)*

• T-dependence of pure V_2O_3 (Cr-V₂O₃ still unpublished): *Phys. Rev. Lett. 75, 105 (1995); Phys. Rev. B 77, 113107 (2008)*

 \cdot NiS₂ as a function of alloying and pressure *Phys. Rev. B 80, 073101 (2009)*

•Pressure dependence of RE chalchogenides *Phys. Rev. Lett. 98, 026401 (2007); Phys. Rev. B 77, 165132 (2008); Phys. Rev. B 79, 075117 (2009)*

Acknowledgements

P. Calvani and **A. Nucara,** IRS Group, University of Rome "La Sapienza"

M. OrtolaniCNR-IFN**U. Schade**Synchrotron BESSY II Berlin **P. Postorino**HP Group, University of Rome "La Sapienza"

L. Degiorgi ETH Zurich**L. Malavasi**Dip. di Chimica, Università di Pavia **M. Marsi**CNRS-LPSU, France **V.A. Sidorov**Institute for High Pressure Physics Troitsk, Moscow Region Russia

and many others…….