

2139-32

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

Terahertz Spectroscopy

Stefano Lupi University of Rome "La Sapienza" Italy

Terahertz Spectroscopy

<u>Stefano Lupi</u>

Department of Physics University of Rome La Sapienza, CNR-IOM and <u>SISSI@Elettra</u> (Italy)

Outline

- THz gap
- Overview of existing and planned THz sources
- THz Science

Electromagnetic Spectrum

Molecular Rotations;

Gaps in semiconductors

The Terahertz gap

 $1\,\text{THz}\sim1\,\text{ps}\sim300\mu\text{m}\sim33\,\text{cm}^{-1}\sim4.1\,\text{meV}\sim47.6^{\circ}\text{K}$

Figure 1. Schematic of the electromagnetic spectrum showing that THz light lies between electronics and photonics.

No electronics, few microwaves generators

THz Science

Condensed Matter Physics

Superconductivity

Energy gap Symmetry of the order parameter Direct determination of the superfluid density Dynamics of Cooper pairs

Low-dimensional effects

Dimensionality crossover Non-Fermi liquid normal states Broken symmetry ground states

Strongly correlated electrons

Kondo problem Heavy fermions

Magnetic Dynamics

Physical and Analytical Chemistry

Polar liquids

Hydrogen bond Van der Waals interactions Acoustic-Optic phonon mixing in water

Solutions

Static and dynamic interactions between solvated ions and solvent

Life Sciences

Macromolecules conformation Secondary and tertiary structure Coherent dynamic development

Metabolism Water distribution Ionic channel dynamics

Imaging

3D tomography of dry tissues Near-field sub-wavelenght spatial resolution

New Technologies

THz technologies Array THz detectors Metamaterials Medical diagnostic Skin cancer detection Industrial production Material inspection Production line monitoring **Defense industry/Homeland security** Detection of explosives and biohazards

Available THz sources

Terahertz Lasers

- Quantum Cascade Lasers (>2 THz),
- Si- and Ge-lasers (>1.5 THz),
- Far-Infrared FELs: FELIX, FELBE,
- Gas-based lasers (only at some given frequency),

Sources based on electron acceleration

Narrow Band

- Stanford (>3 THz),
- ENEA compact FEL (<0.1 THz),
- Far-IR undulator @ FLASH (Hamburg),
- Backward-wave oscillators,

Broad Band

- Laser Amplifiers: plasma and non linear crystals,
- Coherent Synchrotron Radiation @ III Generation Machines,
- LINAC-based Coherent Radiation Sources,

Quantum Cascade Laser

Federico Capasso, Bell Labs

Quantum Wells are periodic potential wells built by semiconductor multilayers

Grown direction of semiconductor multilayers

Through electrons or holes doping electronic states are created in the wells

The energy difference E_1 - E_0 can be engineerized from the THz to the mid-IR region

The relaxation from the excite state E_1 to the ground state E_0 produces in-phase photons which are amplified due to the optical cavity effect induces by the different semiconductors constituting the layers

What makes the QC-laser special?

- Wavelength agility
 - layer thicknesses determine emission wavelength
- · Demonstrated applications in mid/far-IR gas sensing
- High optical power ~ 1W, room-T operation

 cascading re-uses electrons
- Ultra-fast carrier dynamics
 - no relaxation oscillations
- Pure TM-polarization efficient in-plane light coupling
 - Micro-lasers
- Small linewidth enhancement factor
- Intrinsic "design potential"

Table-Top Laser Amplifier

Time-domain and Scanning Techniques

- Based on time domain spectroscopy (TDS)
- Uses recent advances in fs-laser technology.
- Measures intensity and phase of E-field vs time Thz sender
 of a single cycle THz pulse
- Typically 0.2 2.5 THz, depending on fs laser

Coherent Synchrotron Radiation (CSR)

Low- α **mode** IRIS@Bessy-II: U. Schade et al, PRL 2003

Comparing Coherent THz Synchrotron and Conventional THz Sources

Larmor's Formula : Power = $\frac{3e^2a^2}{2c^3}$?⁴ (cgs units) Power $\propto \gamma^4$

Synchrotron

THz Antenna $\gamma = 1$ To compare radiation in the THz region, ~40 MeV electrons will get the critical energy into the IR. So,

$$\gamma \approx 75$$

 $\gamma^4 \approx 10^7!$

Relativistic electrons gain a huge factor in THz power.

Figures of Merit of THz Sources

Dedicated Broad Band Sources	Bandwidth	Pulse Width	Rep. Rate	Average Power	Pulse Energy	Peak E-Field
Linac (BNL) ER-Linac (Jeferson Lab.) Storage Ring (BessyII, Elettra) Table-top Laser	2 THz 2 THz 1 THz 5 THz	300 fs 300 fs 1 ps 100 fs	10 Hz 75 MHz 500 MHz 1 KHz	mW 100 W < W nW to μW	100 mJ μJ <nj nJ to μJ</nj 	1 MV/cm 10 KV/cm < 10V/cm 10 KV/cm
Narrow Band Sources	Op. Range	Pulse Width	Rep. Rate	Average Power	Pulse Energy	Peak E-Field
Stanford FEL UCSB FEL UCSB FEL FELIX ENEA FEL CATS FELBE	3.75 -20 THz 0.88-4.8 THz 0.12-0.88 THz 1.2-100 THz 0.09-0.15 THz 1.5.100 THz	2-10 ps / / 6-100 cycles 50 ps 1-10 ps	11.8 MHz / / 1000/50/25 MHz 3 GHz 13 MHz	<1 W 5-100 mW 5-100 mW <1 W <1 W 50 mW@2THz	μJ / 1-50 μJ 0.5 μJ 0.01-2 μJ	<250 kV/cm <70 kV/cm <20 kV/cm <10 V/cm <10 V/cm 10 kV/cm
Continous wave Sources	Op. Range			Average Power		
Backward Wave Oscillator Gas Lasers (CO2-pumped) Quantum Cascade Lasers	0.1-1.2 THz not cont. tunable 2-10 THz			1 mW@1.2 THz 1 W@2.5 THz 10 mW@3.5 THz		
IV UV-X FEL	Bandwidth	Pulse Width	Rep. Rate	Average Power	Pulse Energy	Peak E-Field
SPARX-FERMI-SPARC (long bunch) SPARX-FERMI (medium bunch) SPARX-FERMI (short bunch)	1 THz 2 THz 10 THz	1 ps 500 fs 50 fs	0-50 Hz 0-50 Hz 0-50 Hz	1-5 mW 2-7 mW >10 mW	100 μJ 150 μJ >mJ	MV/cm MV/cm 10 MV/cm

Data from: Biedron et al 2007; Riemann 2007; A. Perucchi et al 2007

Figures of Merit of THz sources: energy/pulse

Figures of Merit of THz sources: peak power

A. Perucchi et al, 2008

Figures of Merit of THz sources:

average power

A. Perucchi et al, 2008

THz Science

Linear Spectroscopy

Superconductivity today:

- 1. Looking for new materials
 - 1986: High-T_c cuprates
 - 1990: C₆₀ fullerene
 - 2000: MgB₂
 - 2003: $Na_xCoO_2 \cdot 3H_2O$
 - 2004: B-doped diamond
- 2. Understanding new materials

THz spectroscopy plays a role...

... because

Superconductivity is ruled by low-energy electrodynamics:

- Superconducting gap : THz-range
- Spectral weight of condensate and penetration depth:THz-range
 - Mediators of pairing (phonons, etc.): Far-infrared
 - Free-carrier conductivity above T_c: Infrared

Basic optics of Superconductors

Minimum excitation energy: Cooper-pair breaking 2Δ Superconducting gap observed if: •sample in the dirty-limit $(2\Delta < \Gamma)$ •Cooper pairs in s-wave symmetry

 $\int [\sigma_1(\omega, T>Tc) - \sigma_1(\omega, T<Tc)] d\omega = \omega_{ps}^2/8 = n_s e^2/m^* -> \lambda = c/\omega_{ps}$ Ferrel-Glover-Tinkham Rule

Superconducting Diamond

s-wave Dirty-Limit Regime; $2\Delta(2.6 \text{ K})=12\pm1 \text{ cm}^{-1}---> 2\Delta/k_BT_C=3.2\pm0.5$

M. Ortolani, S. L. et al, PRL 97, 097002 (2006)

s-wave Dirty-Limit Regime both along the exagonal plane and along the c-axis:

$$2\Delta_{ab}(0 \text{ K})=19\pm1 \text{ cm}^{-1} \longrightarrow 2\Delta_{ab}/k_{B}T_{C}=3.9\pm0.2$$

$$2\Delta_{c}(0 \text{ K})=23\pm1 \text{ cm}^{-1} \longrightarrow 2\Delta_{c}/k_{B}T_{C}=4.5\pm0.2$$

S. Lupi et al, PRB 2007

Multigap Superconductivity: V3Si

THz transmittance and reflectance demonstrate the presence of two BCS gaps $2\Delta_1=0.71$ THz, $2\Delta_2=1.27$ THz

A. Perucchi et al, PRB 2010

THz Science

Imaging

Imaging vs Penetration

L. Carr et al, 2006

Chemical Pharmaceutic recognition

Fig. 8. Visible image of sample with four pellets containing different chemicals: (1) lactose, (2) aspirin, (3) sucrose, and (4) tartaric acid.

Figure 9.2 The left panel shows a traditional THz transmission image of four pills containing different chemicals (lactose, aspirin, sucrose, and tartaric acid). The right image has color-coded according to the spectral information contained in the full THz trace recorded at each pixel, and is known as "functional imaging". Figure courtesy of Y. Watanabe et al., Yamagata University.

Fig. 10. Solid lines show the average absorption of lactose (top, left), aspirin (top, right), sucrose (down, left), and tartaric acid (down, right) in the sample. The lower curve in each panel shows the absorption of the packaging material. The error bars represent one standard deviation from the mean of typically 20-30 measurements. The indicated frequencies are used for chemical recognition. After [20].

Imaging of Bio-materials, molecular in-vivo imaging of pathogenesis

T. Lffler et al, Optics Express 9, 616 (2001) Ferguson et al, Nature Materials1, 26 (2002) X.-C Zhang Phys. Med. Biol. 47, 3667 (2002)

Fig. 3. (a) Optical image of the sample; (b) and (c): Total loss in transmission, (d) and (e): Loss induced by deflection; (f) and (g): Deflection coefficient. (h) Pulse duration (FWHM) of a low-frequency THz pulse. Click on Fig. 3(b,d,f) to see the data as a function of the frequency. (426 kB QuickTime movie)

THz do not subject a biological tissue to harmful radiation and may provide both imaging and spectroscopic information on biological materials.

Needs of:

- 1. High S/N ratio
- 2. High acquisition rate and resolution
- 3. THz database for biological tissues
- 4. High power to increase sensing and penetration
- 5. Near-field imaging to increase spatial resolution (up to now 1 microns resolution has been obtained)

PROTOTYPE DESIGN OF T-RAY SCIENCE'S COMPACT SKIN CANCER DETECTION SYSTEM

Quality Assurance of Chocolate Products with Terahertz Imaging

Figure 3. Front and back side of a chocolate bar after artificial contamination with a stone, a M2 metal screw and a glass splinter.

THz Science

Linear Spectroscopy in Life Science

Conformational Collective modes of macromolecules

THz Spectra for parallel and antiparallel forms of trialanine show extreme sensitivity to the molecular environment.

Antiparallel Beta Sheet conformation

THz is sensitive to interaction time between a molecule and the surrounding solvent on sub-ps scale

Standard high-frequency time-resolved experiments:

excite in the UV-VIS a soluted molecule ----> probe in the THz the dynamical effects on solvent

Figure 6.2. Static spectrum of chloroform (part a). Absorption spectrum of collective solvent modes near photoexcited dye molecule (part b). Image courtesy of Charles Schmuttenmaer, Yale University.

Pump-Probe Time Resolved Spectroscopy

Pump-Probe Spectroscopy

1) Optical Pump-Optical Probe Spectroscopy Pump and Probe pulses (often at a

- single frequency) fall in the visible (near-IR)
 - High energy excitation;
 - Strong scattering effects;
 - High energy dynamics;
 Extrinsic dynamics

2) Optical Pump-THz Probe Spectroscopy Pump (single frequency) in the visible (near-IR) Probe in the far-IR and THz range;

- Similar inelastic effects in the Quasi-Particle decay like in (1) but investigation of the lowenergy dynamics;
 - 3) THz Pump-THz Probe Spectroscopy Accordable Pump pulses falling in the far-IR and THz;
 Possibility to resonate and/or selectionate several fundamental excitations;
 Intrinsic dynamics

4) THz Pump- IR+VIS SR Probe Spectroscopy

Accordable Pump pulses falling in the far-IR and THz;
Possibility to resonate and/or select several fundamental excitations;
Intrinsic strongly-coupled different energy scale dynamics

FIG. 3. Photoinduced spectral changes for two samples. The laser pulse energies were 1.8 nJ (solid circles) and 0.4 nJ (open circles). Also shown are fits (solid curves) assuming an $\sim 3\%$ and 0.6% reduction in the energy gap, respectively. All other parameters were held fixed at the values determined from the temperature-dependent $\mathcal{T}_S/\mathcal{T}_N$ fits.

New paradigm: THz pump→THz probe

- Use THz pulses as the pump (excitation) source in "all THz" pump probe experiments.
- Study non-linear absorption is a variety of materials, including nanoparticles / quantum dots.
- ★ Induce coherent current excitations
- ★ Move atoms in their local potential wells
- ★ Orient spins in magnetic systems.

High-power half-cycle THz pulses

A 100 μ J, half-cycle THz pulse, focused into a volume of 1 mm³ or less.

- E-field = $[2D_{E} \epsilon_{0}]^{1/2} \sim 10^{8} \text{ V/m} (\sim 1 \text{ MV/cm}).$
- => Use large electric field to displace atoms in polar solids (structural phase transitions, soft modes, ferroelectricity, ...)
- H-field = E/c ~ 0.3 T
- => Use transient magnetic field to create magnetic/spin excitations and follow dynamics on ps time scale (e.g., timeresolved MOKE).

Or, some other shape pulse?

$$\frac{dI(\omega)}{d\omega}_{\text{multiparti cle}} = \left[N + N(N-1)f(\omega)\right]\frac{dI(\omega)}{d\omega} \qquad f(\omega) = \left|\int_{-\infty}^{\infty} e^{i\omega\hat{n}\cdot\vec{r}/c}S(r)dr\right|^2$$

=> shape electron bunch profile to control E-field shape (coll. W/J. Neuman, U. Md.)

Coherent Control of Electronic Properties of Manganites

Matteo Rini¹, Ra'anan Tobey², Nicky Dean², Jiro Itatani^{1,3}, Yasuhide Tomioka⁴, Yoshinori Tokura^{4,5}, Robert W. Schoenlein¹ & Andrea Cavalleri^{2,6}

NATURE Vol 449 6 September 2007

Several exotic materials show a strong interaction between low and high energy degrees of freedom \rightarrow Through the pump of low energy states one can coherently modify the high energy states

а

New Experiment in Superconductivity

Breaking the superconducting state through an electric field exceeding the critical electric field Ec

Magnetic Dynamics with THz pulses

A sub-ps THz pulse associate to an E field of 1 MV/cm a B field of 0.5 T

THz induced magnetic transitions

Conclusion

- Relevant scientific cases for Linear and Pump-ProbeTHz science;
- Relevant technological applications for THz radiation;
- Lack of broad-band ultra-fast sources in the THz range;
- Most of those experiments could be performed through THz radiation produced in LINAC sources;

Acknowledgments

- Andrea Perucchi (<u>SISSI@ELETTRA</u>)
- Michele Ortolani (CNR-IFN)
- E. Karanzoulis (ELETTRA)
- M. Veronese (ELETTRA)
- G. De Ninno (ELETTRA)
- P. Calvani (INFM and University La Sapienza)
- A. Nucara (INFM and University La Sapienza)
- G. Gallerano (ENEA)
- G. Williams (Jefferson Laboratory)
- The Elettra management