

2139-28

School on Synchrotron and Free-Electron-Laser Sources and their Multidisciplinary Applications

26 April - 7 May, 2010

Inelastic VUV Scattering from Synchrotron to FEL

C. Masciovecchio Elettra Synchrotron Tireste Italy

Inelastic VUV Scattering from Synchrotron to FEL

C. Masciovecchio Elettra Synchrotron, Trieste – Italy

- **o** Introduction (Disordered Systems)
- **o** Inelastic VUV Scattering
- **o** Studies on Water and Vitreous Silica
- FEL based Spectroscopy

F. Bencivenga, R. Cucini, F. D'Amico, S. Di Fonzo, A. Gessini, M. G. Izzo,

Why Disordered Systems ?

UNSOLVED PROBLEMS IN PHYSICS

Condensed matter physics

Amorphous solids

What is the nature of the <u>transition</u> between a fluid or regular solid and a glassy <u>phase</u>? What are the physical processes giving rise to the general properties of glasses?

High-temperature superconductors

What is the responsible mechanism that causes certain materials to exhibit <u>superconductivity</u> at temperatures much higher than around 50 <u>Kelvin</u>?

Sonoluminescence

What causes the emission of short bursts of light from imploding bubbles in a liquid when excited by sound?

Turbulence

Is it possible to make a theoretical model to describe the statistics of a turbulent flow (in particular, its internal structures)? Also, under what conditions do <u>smooth solution to the Navier-Stokes equations</u> exist?

Glass is a very general state of condensed matter \rightarrow a large variety of systems can be transformed from liquid to glass

The liquid-glass transition cannot be described in the framework of classical phase transitions since T_g depends on the **quenching rate** \rightarrow one cannot define an **order parameter** showing a critical behaviour at T_g

Density Fluctuation Measurements

The study of Atomic and Molecular **Density Fluctuations** (Vibrational Spectrum, Sound Modes, etc.) is of great importance to understand many physical properties of gases, liquids and solids

Crystals: Heat Capacity, Thermal Conductivity, Superconductivity

In **Disordered Systems** the lack of translational invariance has delayed experimental studies in the **Mesoscopic** region

The presence of **Diffusional** and **Relaxational** processes strongly affects the collective dynamics making experiments even more difficult

The Dynamic Structure Factor $S(Q, \omega)$

The dynamical properties associated to density fluctuations can be studied by means of scattering experiments which allow the determination of the **Dynamic Structure Factor** (Density Fluctuation Spectrum)

$$S(\mathbf{Q}, \omega) = \int_{-\infty}^{\infty} dt \int d\mathbf{r} \langle (n(\mathbf{r}, t) - n)(n(0, 0) - n) \rangle e^{i(\omega t - \mathbf{Q} \cdot \mathbf{r})}$$

$$n(\mathbf{r}, t) \qquad \text{Particle Density Operator}$$

$$\langle (n(\mathbf{r}, t)) \rangle \qquad \text{Thermodynamical average of the Density}$$

In Crystals one can measure $S(\mathbf{Q}, \omega)$ in any **Brillouin Zone** (no kinematic limitations)

This is not the case for disordered systems were the **ill definition** of **BZ** makes impossible detecting phonon-like excitations out from the first **pseudo BZ**

$S(Q, \omega)$ Crystal vs Glass

Inelastic Scattering to measure $S(Q, \omega)$

Available probes to measure the $S(Q, \omega)$

Liquids - Fluids

- Transition from the Hydrodynamic to the Kinetic regime in Simple liquids and fluids.
- Effect of the Local Structure on the Collective Dynamics in Molecular liquids and H-bonded liquids.
- Water-mixtures (peptides, ionic liquids, etc.,..) to study i.e. effect of H-bonds in protein functionality.

Glasses

- Nature of the Vibrational Modes in the Mesoscopic space-time region.
- **Relaxation Processes** in Super-Cooled liquids and their relation to the Glass Transition.
- Vibrational and Relaxational Low Temperature Properties of Fragile and Strong glasses.

Resonant Scattering (Tunability)

- Low **count-rate** experiments.
- Determination of Partial Dynamic Structure Factor in gas and fluid mixtures.
- Resonant Raman on Nanostructures.

Inelastic VUV Scattering

- Incident **Energy** in the 5 11(30) eV range ($\lambda \approx 240 110(40)nm$)
- High incident photon **Flux** on the Sample (> 10^{12} *photon/s*)

The Beamline Design and Construction

The NIM Monochromator

Normal Incidence Monochromator (Czerny-Turner design)

$$\frac{\Delta E}{E} = \frac{\delta \ ctg\theta}{2F} = \frac{50\mu m \ ctg(70^\circ)}{16m} \approx 110^{-6}$$

The Monochromator/Analyzer

The Spectrum

The viscosity η increases by lowering T and presents one of the largest changes of a physical measurable quantity of a material (14 orders of magnitude)

Glass-Forming Systems

Glass-transition mechanism Relaxation processes Thermal anomalies **Excess in the vibrational DOS**

The excess in the vibrational density of states justifies the observed thermal anomalies (like the excess in the specific heat at low T) in glass-forming systems. Nevertheless the origin of this peak (usually called the **Boson peak**) in the V-DOS is still unclear.

Puzzling properties

The Structural Relaxation

Puzzling properties

Glass-transition mechanism **Relaxation processes** Thermal anomalies Excess in the vibrational DOS

Structural Relaxation \rightarrow cooperative processes by which the local structure, after being perturbed by an external disturbance or by a spontaneous fluctuation, rearranges towards a new equilibrium position

The Structural Relaxation

Water exhibits very **unusual** properties:

- Negative volume of melting
- Density maximum in the normal liquid range
- Isothermal compressibility minimum in the liquid

Water exhibits very **unusual** properties:

- Negative volume of melting
- Density maximum in the normal liquid range
- Isothermal compressibility minimum in the liquid
- Increasing liquid fluidity with increasing pressure

Inelastic Scattering applied to Water

Relaxation process in Water is strongly linked to Hydrogen Bonds

IUVS experiment

Cell: Fused Silica Fluorescence standard Cell Momentum Transfer: 0.1 nm⁻¹ **Temperature** range: 343 → 248 K

$$S(Q,\omega) = (2C_o^2 Q^2 / \omega) Im[\omega^2 - \omega_o^2 - i\omega m_Q(\omega)]^{-1}$$

$$\begin{split} m_{Q}(t) &= \omega_{o}^{2}(\gamma - 1) \exp(-D_{T}Q^{2}t) + 2 \gamma_{o} \delta(t) + \\ &+ (Q^{2}\Delta^{2} / \rho) \exp(-t/\tau)^{\beta} \end{split}$$

 $\Delta^2 = \rho [C_{\infty}^2 - C_0^2]$

C. Masciovecchio et al., PRL (2004)

ICTP School on Synchrotron and FEL sources - 2010

The Relaxation Time T-dependence

C. Masciovecchio et al., PRL (2004)

Let's apply Pressure to Water

High **Pressure** Set-up (Up to 4 kbar)

Let's apply Pressure to Water

High **Pressure** Set-up (Up to 4 kbar)

Ш

Relaxation Time vs. Pressure

At fixed T τ decreases with $\rho \neq$ with respect what is commonly observed in liquids

Change of structure (change in **Entropy**) to account for the observed behaviour

Qualitative agreement with LDL-HDL phase transition hypothesis

Acoustic Attenuation in Glasses

Sound Attenuation in Glasses is very different from their Crystalline Counterpart Understanding of Thermal Anomalies (Specific Heat and Thermal Conductivity)

At low Q's Γ exhibit a Q² dependence at (and above) room temperature which **does not** extrapolate to the Q² measured by IXS

Vitreous Silica

Study of the Q – T dependence of the attenuation mechanism in V- SiO_2

C. Masciovecchio et al., PRL 2006

IUVS measurements demonstrate the existence of a ξ' of about 40 nm S(Q) maximum ~ 15 nm⁻¹ \rightarrow ξ' is in the range of 100 particle size **Discriminate** among models describing thermal properties

Simulation of two-dimensional **amorphous** nanometric Lennard Jones systems

FIG. 1. (Color) Representation of the network of quenched stresses in two small quenched Lennard-Jones particle systems in two dimensions: (a) a disk-shaped aggregate of diameter $2R \approx 32a$ containing N = 732 particles (protocol I) on the left and (b) a periodic bulk system with L = 32.9a and N = 1000 (protocol III) on the right-hand side. The line scale is proportional to the tension transmitted along the links between beads. The black lines indicate repulsive forces (negative tensions), while the red links represent tensile forces between the verticies. Both shown networks are very similar despite different symmetries and quench protocols. They are strongly inhomogeneous and resemble the pattern seen in granular materials. Zones of weak attractive links appear to be embedded within the strong skeleton of repulsive forces. *A. Tanguy et al.*, *PRB* (2002)

Existence of a **characteristic** length ξ below which the classical mechanical approach becomes **inappropriate**. ξ is about 30 particle sizes.

Dynamics of Water and the Hydration Shell

Change of Dynamics from pure Acetic Acid to water content >> than the hydration shell.

There is a **characteristic** T around 325 K which marks a crossover:

- At low temperatures hydration shell HB are stronger than bulk water ones.

- At higher temperatures hydration shell HB start to be weaker.

Loss of protein physiological functions

Needs to go to **higher Q** values in order to determine the HB activation energy.

F. D'Amico et al., submitted

Can we fill the Gap in the Kinematic Region?

YES ! with FEL based **Transient Grating Spectroscopy**

TIMER TIME-Resolved spectroscopy of mesoscopic dynamics in condensed matter

The Technique in Detail

Delayed Probe Pulse (Phase Matching)

Standing Wave Periodicity $\implies \xi = 2\pi/Q$ $Q = 2k_0 \sin \theta_s/2$ Density Modulation Amplitude Monitored in Time by the Probe Pulse \implies

⇒ F(Q, t)

Optical absorption \rightarrow Temperature Grating \rightarrow Time-dependent Density Response

(driven by thermal expansion)

Typical Infrared/Visible Set-Up

Challenge: Extend and modify the set-up for UV Transient Grating Experiments

Other Possible Experiments

Heat Transport, Diffusion phenomena, Flow Studies, Concentration Grating, Electronic **Energy Transfer**, Photochemical Reactions, Optical Damage

H. J. Eichler et al., J. Appl. Phys. 44, 5455 (1973)

Dynamics of Energy Transport in Molecular Crystals: The Picosecond Transient-Grating Method

J. R. Salcedo and A. E. Siegman Department of Electrical Engineering Stanford Uninersity Stanford California 94305

REPORTS 30 MAY 2003 VOL 300 SCIENCE www.sciencemag.org

Diffusion of Nonequilibrium Quasi-Particles in a Cuprate Superconductor

N. Gedik,¹ J. Orenstein,¹* Ruixing Liang,² D. A. Bonn,² W. N. Hardy²

We report a transport study of nonequilibrium quasi-particles in a hightransition-temperature cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at a photon energy of 1.5 electron volts) was used to introduce a spatially periodic density of quasi-particles into a high-quality untwinned single crystal of YBa₂Cu₃O₆₅. Probing the evolution of the initial density through space and time yielded the quasi-particle diffusion coefficient and the inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurements of quasiparticle dynamics not only in cuprate superconductors but in other electronic systems as well.

TG can excite Spin Waves using orthogonal polarization

VOLUME 76, NUMBER 25 PHYSICAL REVIEW LETTERS

17 JUNE 1996

Spin Gratings and the Measurement of Electron Drift Mobility in Multiple Quantum Well Semiconductors

A. R. Cameron,* P. Riblet, and A. Miller

The J. F. Allen Research Laboratories, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, Scotland, United Kingdom (Received 15 September 1995)

A direct optical measurement of electron drift mobility in multiple quantum well semiconductors is achieved by creating electron spin gratings in time-resolved degenerate four-wave mixing measurements. Grating decay rates are measured for spin and concentration gratings in a GaAs/AlGaAs sample at room temperature, giving an in-well electron diffusion coefficient $D_e = 127 \text{ cm}^2/\text{s}$ compared with an ambipolar coefficient $D_a = 13.3 \text{ cm}^2/\text{s}$. [S0031-9007(96)00465-6]

Letter

Nature **437**, 1330-1333 (27 October 2005) | <u>doi</u>:10.1038/nature04206; Received 29 April 2005; Accepted 2 September 2005

Observation of spin Coulomb drag in a two-dimensional electron gas

Spin Diffusion and Relaxation in a 2-dim. Electron Gas

```
C. P. Weber<sup>1</sup>, N. Gedik<sup>1,2</sup>, J. E. Moore<sup>1</sup>, J. Orenstein<sup>1</sup>, J. Stephens<sup>3</sup> and D. D. Awschalom<sup>3</sup>
```


HHG in a Gas Jet

PRL 100, 143903 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 APRIL 2008

High-Order Harmonic Transient Grating Spectroscopy in a Molecular Jet

Y. Mairesse,^{1,2} D. Zeidler,^{1,3} N. Dudovich,^{1,4} M. Spanner,⁵ J. Levesque,¹ D. M. Villeneuve,¹ and P. B. Corkum¹

The harmonic signal encodes structural information on the orbital \rightarrow full reconstruction

"......High harmonic transient grating spectroscopy can be extended to all forms of molecular excitation and to weak resonant excitation......"

TIMEX TIme-resolved studies of Matter under EXtreme and metastable conditions

The Sample Side

Short pulses with very high peak power $\Delta t \sim 100 \text{ fs}$; Peak Power $\sim 5 \text{ GW}$; E $\sim 100 \text{ eV}$

What happens to the **Sample?** Non-equilibrium distribution of electrons

Converge (electron-electron & electron-phonon collisions) to equilibrium (Fermi-like)

During this complex dynamics atoms go through a relaxation process due to the dramatic changes of the potential energy surface

The intensity of the FEL pulses will determine the process to which the sample will undergo: simple heating, structural changes, ultrafast melting or ultrafast ablation

EIS beamline - TIMEX

Use the FEL **Tunability** to measure a XANES spectrum

