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HighHigh TemperatureTemperature GasGas ReactorReactor (HTGR)(HTGR) conceptconcept originatedoriginated
inin thethe latelate 19501950ss

DevelopedDeveloped andand testedtested inin aa numbernumber ofof criticalcritical experimentsexperiments
(for(for exampleexample inin thethe KAHTERKAHTER facilityfacility inin Germany)Germany)

TestTest reactors,reactors, likelike thethe 2020 MWMW DRAGONDRAGON reactorreactor inin England,England,
thethe 115115 MWMW PeachPeach BottomBottom reactorreactor inin thethe USA,USA, andand thethe 4646
MWMW AVRAVR pebblepebble bedbed reactorreactor inin GermanyGermany

Later,Later, twotwo largerlarger prototypeprototype reactorsreactors werewere builtbuilt:: aa prismaticprismatic
blockblock typetype HTRHTR inin FortFort StSt.. VrainVrain (Colorado,(Colorado, USA)USA) ofof 842842 MWMW
andand thethe THTRTHTR--300300 inin UentropUentrop--SchmehausenSchmehausen (Germany),(Germany), aa
pebblepebble--bedbed typetype HTRHTR ofof 750750 MWMW

INTRODUCTION TO AGCRsINTRODUCTION TO AGCRs
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ACACIA,ACACIA, aa 4040MWMW pebblepebble--bedbed reactorreactor designdesign projectproject inin thethe
NetherlandsNetherlands

TheThe HTRHTR--1010 inin ChinaChina isis aa smallsmall HTRHTR ((1010 MW)MW) andand isis thethe onlyonly
pebblepebble--bedbed reactorreactor inin operationoperation todaytoday

TheThe firstfirst criticalitycriticality ofof thethe JapaneseJapanese HTTRHTTR ((3030 MW)MW) (of(of
prismaticprismatic core)core) waswas attainedattained inin NovemberNovember 19981998..

TheThe USUS DepartmentDepartment ofof EnergyEnergy hashas identifiedidentified VeryVery HighHigh
TemperatureTemperature GasGas CooledCooled ReactorReactor SystemSystem (VHTR)(VHTR) asas aa
candidatecandidate forfor bothboth hydrogenhydrogen productionproduction andand electricityelectricity
generationgeneration..

InIn SouthSouth Africa,Africa, advancedadvanced designdesign workwork hashas beenbeen performedperformed
ofof aa modularmodular HTRHTR thethe PBMRPBMR..

INTRODUCTION TO AGCRsINTRODUCTION TO AGCRs
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InterestInterest inin thethe HTGRHTGR isis thethe resultresult ofof itsits enhancedenhanced
safetysafety characteristics,characteristics, thusthus::

TheThe useuse ofof coatedcoated particlesparticles whichwhich retainsretains fissionfission productsproducts upup
toto aa fuelfuel temperaturetemperature ofof 1600160000C,C, asas confirmedconfirmed byby experimentsexperiments

UseUse ofof graphitegraphite asas bothboth moderatormoderator forfor neutronsneutrons andand asas
constructionconstruction materialmaterial

TheThe useuse ofof heliumhelium asas coolantcoolant

TheThe lowlow powerpower densitydensity ((22 toto 66 MW/MW/ mm33,, comparedcompared toto atat leastleast 5050
MW/mMW/m33 forfor aa LWR)LWR)

AA continuouscontinuous fuelfuel supplysupply inin casecase thethe corecore consistsconsists ofof
sphericalspherical fuelfuel elements,elements, limitinglimiting thethe excessexcess reactivityreactivity inin thethe
corecore toto aa minimumminimum..

Introduction to AGCRsIntroduction to AGCRs
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Next Generation Nuclear Plant (NGNP): Enables Nuclear
Energy to Enter Other Markets Beyond Electricity

INTRODUCTION TO AGCRsINTRODUCTION TO AGCRs
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Two pre-conceptual designs for NGNP:

INTRODUCTION TO AGCRsINTRODUCTION TO AGCRs
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PHYSICS OF AGCRsPHYSICS OF AGCRs

NominalNominal reactorreactor controlcontrol isis achievedachieved withwith controlcontrol
rodsrods insertedinserted intointo thethe reflectorreflector

LoadLoad followingfollowing isis alsoalso achievableachievable throughthrough
manipulationmanipulation ofof thethe heliumhelium inventoryinventory ofof thethe
primaryprimary looploop

UseUse ofof graphitegraphite asas moderatormoderator hashas bothboth
advantagesadvantages andand disadvantagesdisadvantages

low absorption cross-section = higher moderating ratio but
crystalline properties = a need for detailed treatment of the
scattering law in physics calculations
low parasitic absorption rate in the overall core and
reflector allows = high fuel burnup at low fuel cost but
requires a higher total heavy metal loading.
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PHYSICS OF AGCRsPHYSICS OF AGCRs

HigherHigher moderatingmoderating ratioratio (moderator(moderator atomatom perper fuelfuel atom)atom) ==
moremore neutronneutron absorptionsabsorptions byby thethe fuelfuel inin thethe thermalthermal
energyenergy rangerange ((8585%% vsvs.. 7070%% inin aa PWR)PWR)..

CalculationalCalculational methodsmethods forfor HTGRsHTGRs placesplaces greatergreater
importanceimportance ofof detaileddetailed spectrumspectrum calculationscalculations (it(it isis
necessarynecessary toto taketake aa largelarge numbernumber ofof energyenergy groups)groups)

TheseThese designsdesigns areare susceptiblesusceptible toto transporttransport effectseffects duedue toto
controlcontrol rodrod positioningpositioning inin thethe sideside reflectorsreflectors andand thethe
presencepresence ofof thethe cavitycavity atat thethe toptop ofof thethe pebblepebble--bed,bed, wherewhere
diffusiondiffusion theorytheory breaksbreaks downdown



DOUBLE HETEROGENEITY

Heterogeneity in the fuel kernel

UO2

Outer Pyrolytic Carbon

Inner Pyrolytic Carbon

Double 
heterogeneity is 
encountered 
on: 

a) microscopic 
level (kernel) 
and

b) macroscopic 
level (fuel 
pebble)

SiC



Heterogeneity in the pebble

Graphite region

Fuel region

DOUBLE HETOROGENEITY  
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PHYSICS OF AGCRs    PHYSICS OF AGCRs    

O-16 T=300 K from ENDF/B-6.0 mat 825  - red

C-nat. T=300 K from ENDF/B-6.1 mat 600 - green

Si-nat. T=300 K from ENDF/B-6.0 mat1400 - blue

He-4 T=300 K from ENDF/B-6.0 mat 228 - purple



DATA PROCESSINGDATA PROCESSING

Two classes of computational methods to solve neutron 
transport equation: deterministic and Monte Carlo

The energy discretization procedure is common to all 
deterministic computational methods: the multi-energy-
group approximation

Continuous energy treatment

Exact 3-D geometry modeling

Solves the exact model statistically

Neutron Transport Theory 

Monte Carlo Methods Deterministic Methods 
Energy discretization

Spatial discretization

Angular discretization

Solutions of the approximated 
representation of the model
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In the United States, the national responsibility for all 
information about nuclear cross sections is the National Cross 
Section Center (NCSC) at the Brookhaven National Laboratory 
(BNL) in Upton, New York. 

Cross-section data obtained either by calculation, or experiment, 
or by a combination of the two anywhere in the country are 
collected at the NCSC for evaluation. 

There is a team of experts called the Cross Section Working 
Evaluation Group whose sole and continuous function is to 
evaluate cross section data for nuclear reactions of neutrons, 
gammas, and charged particles.

Similar teams work in Europe (JEFF) and Japan (JENDL) 
developing similar sets of data

DATA PROCESSING
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At BNL, all the information about nuclear cross sections is 
stored in a huge computer-data library known as the 
Evaluated Nuclear Data Files (ENDF). 

There are two types of files, file type A and file type B. 

The data in file A are, generally, incomplete in terms of their 
evaluation, and for this reason the information contained 
there and known as ENDF/A is used only by the specialists 
who evaluate the cross sections. 

File B contains the evaluated cross-section data known as 
ENDF/B, the data used by all persons involved in reactor 
physics calculations.  

DATA PROCESSING
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> The evaluated nuclear data files (such as ENDF, JEFF and 
JENDL) are developed utilizing information from experimental 
cross-section data; integral data (critical assemblies); and 
nuclear models and theory. 

> Review, compilation, processing, and analysis of uncertainty 
data for neutron induced reactions available in the most recent 
different internationally distributed nuclear data libraries have 
been performed. 

> Although the evaluation of nuclear cross sections is a 
continuous process, for practical reasons, evaluated data are 
not released to the users on a continuous basis. 

> Instead, every few years a new complete version is released for 
general use. 

DATA PROCESSING
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The last evaluated nuclear data files available in 
NEA/OECD and RSICC ORNL are:

> ENDF/B-VI.8 (2001) and ENDF/B-VII.0 (2007)

> JEFF-3.1 (2005)

> JENDL-3.3 (2002) – coming soon JENDL-4.0 

DATA PROCESSING
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Data files Number of 
materials

Number of 
cross-sections

ENDF/B-VI.8 44 400

JEFF-3.1 34 350

JENDL-3.3 20 160

AVAILABLE COVARIANCE DATA 
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The official release of ENDF/B-VII.0 has been released at 
the end of 2006. (National Nuclear Data Center –
www.nndc.bnl.gov). 

ENDF.B-VII library contains 14 sub-libraries (2-new, 7 –
many improvements and updates, 5 – unchanged). 

It is the largest library – it contains data for 393 materials 
(390 isotopes + 3 elements). 

For comparison the JEFF-3.1 library contains 381 materials, 
and the JENDL-3.3 contains 337 materials.

DATA PROCESSING
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There are major improvements in the ENDF.B-VII library as 
compared to the previous versions/releases:

Significant advances in actinide cross-sections

Fission products completely updated.

Includes resonances (resolved and unresolved) in modern 
representation. 

DATA PROCESSING
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The following type of information is contained in ENDF/B for 
more than 200 isotopes, some molecules, and some special 
mixtures (e.g., some fission products are lumped together as 
single pseudo-materials) for all known nuclear reactions:

1. the decay constant;
2. type of decay; 
3. cross-section values, as a function of neutron energy, 

from very low energies up to 20 Me V, as well as 
scattering cross section values, as a function of the 
scattering angle, for the same energy range;

4. resonance parameters;
5. fission product yields;
6. secondary neutron energy and angular distribution (for 

fission neutrons, this is the value of        , the fission 
neutron energy spectrum).

DATA PROCESSING
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In the ENDF/B, the cross sections are represented as 
a combination of tabulated cross sections and 
resonance parameters. 

To solve the transport equation in any 
approximation, cross sections must be defined at all 
energies. 

In energy regions where the cross sections are not 
tabulated, the required cross-section values are 
obtained with the help of interpolation schemes. 

The ENDF/B library provides the five interpolation 
schemes shown in the Table

DATA PROCESSING
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Table - ENDF Interpolation Schemes

Option Function

Constant

Linear-linear

Linear-log

Log-linear

Log-log

AE =)(σ
BEAE +=)(σ

)ln()( EBAE +=σ

)exp()( BEAE =σ
BEAE ⋅=)(σ

DATA PROCESSING
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Experience has shown that the choice of the interpolation 
law is important because the use of the wrong scheme may 
produce cross sections that lead to erroneous results when 
they are subsequently utilized for neutronic calculations. 

The errors are reduced if linearization schemes are used to 
represent the cross sections within a range where a 
particular interpolation law has been used.  

The resonance parameters are used to reconstruct the cross 
sections in the energy range where the resonance occurs.

DATA PROCESSING
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This reconstruction is not a trivial matter.

It may lead to significant errors if performed incorrectly. 

The person who performs this task should take into account 
if at any particular energy region,

there is only one isolated resonance;

there are many, but resolved, resonances;

there are many, but unresolved, resonances.

In each of the cases mentioned, the treatment of the 
resonances is different and, therefore, the resulting cross-
section values are also different.

DATA PROCESSING
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Another problem associated with resonances is the so-called 
"self-shielding." 

The term self-shielding is used to describe the following 
phenomenon: at the resonance energy, where the value of the 
cross section is extremely high, the neutron flux is depressed. 

Since the flux is depressed, the number of reactions at that 
energy also decreases, thus "shielding" the resonance from 
the neutron flux. 

The treatment of self-shielding is complicated by the fact that 
the phenomenon is spatially dependent (it depends on 
geometry and even on direction).

DATA PROCESSING
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The user of ENDF/B should remember that the values of 
cross sections are given under the assumption that neutrons 
collide with stationary nuclei. 

In reality, the nuclei have a thermal motion that is important, 
particularly in the case of resonances. 

Then, the Doppler effect comes into play and the absorption 
rate depends on temperature.

Since the transport equation describes the neutron 
population in the laboratory frame of reference and for 
elevated temperatures, care should be exercised to use the 
proper cross sections for its solution.

DATA PROCESSING
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The ENDF/B library constitutes a tremendous volume of 
data. 

For the average user utilizing the nuclear cross section data 
for a reactor physics calculation, starting with ENDF/B 
represents a monumental task that is not always necessary. 

The overwhelming majority of calculations is performed by 
applying the multi-group formalism, which does not require 
all the detail contained in ENDF/B. 

DATA PROCESSING
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For this reason, the common approach taken is to develop 
sets of group constants for a certain number of groups ( ~ 
40 – 400) that apply to a whole class of problems (e.g., for 
LWRs, for fast reactors, for AGCRs, etc.). 

To perform a specific calculation, one would choose the 
cross section set that applies best to the problem and 
either uses the group constants directly, in a multi-group 
calculation or, most frequently, produces constants for a 
smaller number of groups using a process called "cross-
section collapsing."

DATA PROCESSING
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The development of group constants from the ENDF/B 
follows these steps:

1. The transport equation is solved for the neutron 
energy spectrum     

2. Using the spectrum       , a set of group constants is 
computed over a superfine- or fine-group structure. At 
this step, the number of groups is more than a 
thousand. The latest Westinghouse fine-group library 
contains 6000 groups

3. The group constants obtained in step 2 are used for 
the generation of new constants over a broad-group 
structure (~40 - 400 groups). 

)(Eφ
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The transport equation, in terms of the energy variable 
alone, takes the form (for a homogeneous medium):

The summation               is over all the isotopes present 
in the medium. The source is, for a reactor 
without external sources:
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The solution of this equation is the neutron flux as a function of 
energy in an infinite homogeneous medium at steady state. 

The properties of the medium enter through the cross sections, 
the atom concentrations, and the constants

where     is the atomic weight of isotope .

In reality, the codes that solve this equation keep a "mild" 
space dependence through a buckling     , but that detail is not 
important for our discussion here. 

2)]1/()1[( +−= jjj AAα

jA

2B
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For a heterogeneous medium, the equation for            
takes a different form because the flux           is 
different in the separate media involved and 
neutrons may travel from one medium to another. 

As a result, the transport equation is transformed 
into coupled equations. 

Consider, for example, the usual case of two 
separate media - fuel and moderator. 

The two equations for the fuel and moderator are:

)(Eφ
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where
VF = volume of fuel;

VM = volume of moderator;

= probability that a neutron of 
energy escapes from the fuel without a 
collision in the fuel;

and the rest of the symbols have their usual 
meaning.

)(0 EP MF→
E
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All the cross sections necessary for the solution of 
these equation are taken directly from ENDF/B. 

The solution is achieved by numerical techniques. 

It is not a very difficult problem, but it is not a trivial 
one either. 

Since the energy spans seven decades, one has to 
consider the variation of the cross sections over that 
same range, which means that the resonances have to 
be treated properly. 

DATA PROCESSING
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In modeling a reactor for these equations, it is 
not necessary to consider the whole core. 

Normally, one chooses a unit cell, which may be 
regarded as the smallest repeating unit of a 
reactor core that has the properties of a critical 
assembly. 

The use of the unit cell simplifies the calculation 
considerably, since the alternative would be to 
model each fuel rod separately. 

DATA PROCESSING
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Configurations of typical unit cells: (a) plane, (b) square, (c) 
hexagonal, and (d) cylindrical

DATA PROCESSING
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After the neutron energy spectrum        is obtained, 
multi-group constants are computed based on the 
equation

for all isotopes and cross-section types. 

A set of multi-group constants is known as an input  
"cross section library" to be used in lattice physics 
calculations.
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The group structure at this stage is a "fine" one. It 
is not unusual for H to be equal to a thousand or 
more groups. 

As mentioned earlier, most reactor calculations 
are performed with a smaller number of groups, in 
which case there is a need for new group 
constants corresponding to the new group 
structure. 

This task, called cross section collapsing, is 
accomplished in the following manner. 

DATA PROCESSING
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Consider H fine groups with energy group 
boundaries                and a new "broad"-group 
structure consisting of G groups with energy 
group boundaries

A basic requirement in going from H to G group 
constants is that the energy boundaries of the G
groups must coincide with boundaries of the H 
groups
The system under study is modeled in one 
dimension and the transport equation is solved 
in H groups, thus providing the fluxes

HhEh ,1=

GgEg ,1=

DATA PROCESSING
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Any cross section in the broad-group 
structure is then obtained by

and                          

The summation over covers all the h
groups whose energy boundaries lie within 
those of that group –
The group constants obtained by the above 
equation constitute the collapsed set. 
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The fine (H-group) and broad (G-group) structure. Boundaries of the G-group 
structure should coincide with boundaries of the H-group structure.

DATA PROCESSING
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The G-group set is used for lattice physics 
calculations. 

Frequently, this broad-group set consists of ~ 40 to 
400 groups. 

If it was derived based on a model of an reactor 
type of average composition, it may subsequently 
be used with a more detailed lattice physics model 
of the particular reactor under study to produce yet 
another set of group constants for a much smaller 
number of few groups (anywhere from 2 to ~30). 

DATA PROCESSING
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What is the optimum number of groups one 
should use? 

There is no unique answer to that question. 

The number of groups depends on the 
objective of the calculation, the reactor type 
(thermal or fast), the accuracy desired, and the 
amount of computer time for which one is 
willing to pay.

Later we will discuss a methodology for 
selection optimal group structures for given 
type of reactor and particularly for AGCRs 

DATA PROCESSING
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As mentioned before there exist in the world several 
sets of evaluated nuclear data which have been both 
checked for consistency and benchmarked 
extensively in the calculation of experiments designed 
for data testing. 
Representation of the cross section data in such data 
files is generally as follows:

1. are tabulated point-wise in energy at low energies below 
the resonance region.

2. Resolved resonance parameters and background cross 
sections in the resolved resonance region. 

3. Unresolved resonance statistical parameters and background 
cross section in the unresolved resonance region. 

4. are tabulated point-wise in energy at energies above the 
resonance region.

5. Scattering transfer functions                 are tabulated point-wise 
in energy and either point-wise in angle            or as Legendre 
coefficients. 

)( iEσ
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The scattering transfer function - the 
probability that a neutron will undergo a 
scattering event which changes its direction 
from direction    to direction  

( ) and its energy from to - is 
represented as

)',(),()()()',( EEgEpEEmEE sssss →=→ μμσμσ

'ΩΩ

'Ω⋅Ω=sμ E 'E
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where             for elastic and inelastic 
scattering, 2 for       ,     for fission;          
is the angular distribution for scattering of a 
neutron of energy   ; and                        is the 
final energy distribution of a neutron at 
energy E which has scattered through 

When the scattering angle and energy loss 
are correlated, as they are for elastic 
scattering, .

1)( =Em
)2,( nn ν ),E(p sμ

E )',( EEg s →μ

sμ

))',(()',( EEEEg ss μμδμ −=→
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Otherwise,                 is tabulated. The 
angular distribution may be tabulated as 

,or the Legendre components may 
be tabulated point-wise in energy

Where     is the Legendre polynomial. 
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There are a number of codes, 
which directly process the 
evaluated nuclear data files to 
prepare multi-group cross 
sections such as NJOY (called 
as processing codes)

For example the SCALE package 
from ORNL has its own 
processing capability

These codes numerically 
calculate integrals of the type

DATA PROCESSING
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for a specified weighting function,       , which 
may be a constant:      ,        , and so on. 

These codes are used to calculate fine-group 
cross sections in a few hundred groups for 
thermal reactors or ultra-fine-group cross 
sections in a few thousand groups for fast 
reactors. 

These fine- or ultra-fine-group structures are 
chosen such that the results of calculations 
using the fine- or ultra-fine-group cross sections 
are essentially independent of the choice of 
weighting function,           , used in the cross-
section preparation.

)(EW
E/1 )(Eχ
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Once the fine- or ultra-fine group cross sections are 
prepared, a fine- or ultra-fine group spectrum        is 
calculated for a representative medium. 

The unit cell heterogeneous structure of the region 
must be taken into account in collapsing the cross-
sections 

Resonances must be treated specially. 

This fine- or ultra-fine group spectrum can then be 
used to weight the fine- or ultra-fine group cross 
sections to obtain multi-group group cross sections 
for lattice physics analysis 

)( gφ
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The notation         indicates that the sum is 
over all fine or ultra-fine groups g within few or 
many group k.
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The few-group cross sections may be calculated for several 
different large regions in  a reactor.  

They are then used in a few- group diffusion or transport 
theory calculation of the entire reactor to determine the 
effective multiplication constant, power distribution, and so 
on.  

Because many such calculations must be made, a number of 
parameterizations of few- and many-group cross sections 
have been developed to avoid the necessity of making the 
fine- or ultra fine-group spectrum calculation numerous 
times.
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The MultiThe Multi--group Equationsgroup Equations
The discretization of the energy variable with the multi-group 
approximation may proceed from one of several starting 
points

The time-dependent fixed source problem, the k eigenvalue 
equations, or the kinetics equations are all suitable points of 
departure depending on the application under consideration

We choose, for our examples, the time-dependent fixed 
source equation, since it is applicable to both non-
multiplying and subcritical systems, while at the same time it 
can be simply modified by setting qex = 0 and replacing v by 
v/k to obtain the multiplication eigenvalue form

These two forms of the equations account for the vast 
majority of transport calculations



The MultiThe Multi--group Equationsgroup Equations

For our starting point, then we choose the following equation:

where                   is the scalar flux
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The MultiThe Multi--group Equationsgroup Equations
To derive multigroup equations we first divide the energy
range into G intervals as shown in the Figure, where EG = 0
and E0 is sufficiently large that the number of particles at
higher energies is negligible:

The particles in group g are taken to be just those with
energies between Eg and Eg-1; hence the group number
increases as the energy decreases



The MultiThe Multi--group Equationsgroup Equations
Our objective now is to obtain an approximation to the 
transport equation in terms of the group angular flux

where for brevity we employ the shorthand notation

We proceed by dividing the energy integrals into the 
contributions for each energy group 

and integrating between Eg and Eg-1 to obtain (next slide)
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The MultiThe Multi--group Equationsgroup Equations

To express this equation in terms of the group fluxes we 
may proceed in one of two ways

We may either assume that the angular flux is separable in 
energy, or we may use the more elegant treatment of Bell, 
Hansen, and Sandmeir

We discuss the flux separability approximation first
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

Suppose that within each energy group the angular flux can 
be approximated as the product of a known function of 
energy f(E) and the group              :

where the energy-dependent spectral weighting function f(E)
is normalized by the definition of the group flux to 

To proceed, we substitute and obtain:
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

If we define the multigroup cross-sections as:

and let

(next slide)
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

We arrive to the conventional multigroup form:

The boundary conditions to be used in conjunction with the 
foregoing multigroup equations are the same as those 
described for continuous energy, with exception that                 

is replaced by 

Before proceeding to other forms of the transport equations 
we note that we may obtain a multigroup balance equation, 
analogous to the continuous energy form
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

To obtain this balance condition we integrate the last 
equation over angle to yield

We define the group current as

and the group external source as
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

The bracketed integral on the right of the equation is just 
equal to the group-to-group scattering cross-sections:

Hence we may express the balance equation as

If we assume that Fick’s law is a reasonable approximation,

where           are group diffusion coefficients, then the 
balance condition leads to the multigroup diffusion 
equations (next slide)
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The Multigroup Equations The Multigroup Equations -- Energy Separability Energy Separability 

Just as this an approximation to the multigroup transport 
equations we must derive approximations to the boundary 
conditions on  

It is left as an exercise to show that Fick’s law implies that 
on a reflective boundary                   , where     is normal to 
the boundary, and on a vacuum boundary

Analogous to the continuous energy forms of the transport 
equation, the differential scattering cross-section appearing 
in the scattering term of the multigroup equation is 
frequently expressed as a Legendre expansion
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

Thus inserting the equation 

into

we obtain

where the orthogonality properties of the Legendre 
polynomials allow us to write
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

The Equation 

is the multigroup analog to the continuous energy form
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

The multiplication eigenvalue form of the multigroup 
equation, obtained by setting the external source to zero and 
replacing v by v/k, for example, becomes

Similarly, the multigroup neutron kinetics equation may be 
shown to be
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The MultiThe Multi--group Equations group Equations -- Energy Separability Energy Separability 

and for six groups of delayed neutrons

In the former equation, it is assumed that

and thus
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MultiMulti--group crossgroup cross--section evaluation section evaluation 

Before multigroup transport calculations can be carried out, 
values of the multigroup cross-sections must be available

However, the evaluation of group cross-sections require that 
both the detailed energy dependence of the cross-sections 
and the spectra; weighting function f(E) be known

The energy dependence of the microscopic cross-sections 
is becoming available with ever increasing accuracy through 
evaluated data files, such as ENDF for neutrons.

The evaluation of f(E) is a more subtle matter, for it depends 
a great deal on characteristics of the system under analysis, 
and in particular on the analytical and/or computational 
models that are available for description of that system



MultiMulti--group crossgroup cross--section evaluation section evaluation 

The details of cross-section evaluations are treated 
extensively in texts on shielding and reactor physics

In many cases the techniques are similar whether the 
multigroup equations are employed in the transport equation 
or its diffusion approximation

While the evaluation of cross-sections was discussed in 
previous slides, the general remarks that follow may be 
instructive in summarizing some of the considerations that 
typically arise in generating multi-group cross-sections for 
transport calculations



MultiMulti--group crossgroup cross--section evaluation section evaluation 

If an exceedingly fine-energy-group structure can be used, 
analytic or semi-analytic approximations for f(E) may be 
adequate

The simplest of these is to take f(E) to be constant,

where                          assures that the normalization 
condition is met

Then                                            and the group cross-sections

depend only on the energy-dependent cross-sections
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MultiMulti--group crossgroup cross--section evaluation section evaluation 

For cross-sections with smooth energy dependence, 
weighing factors in which                                             can be 
more easily justified on analytical ground

Where the cross-section has the resonance structure of the 
neutron cross-section, the foregoing recipes are most often 
inadequate even for very fine energy group discretization

In these cases the flux depression called energy self-
shielding through the resonance energy must be taken into 
account trough more sophisticated methods, such as the 
narrow and wide resonance methods

More sophisticated methods are also necessary to take into 
account the effects of thermalization in neutron transport, of 
Compton edges in gamma ray calculations, and of other 
phenomena
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Infinite mediumInfinite medium

The expense of solving multigroup transport problems often 
precludes the use of a number of energy groups that is large 
enough for the semi-analytic modeling of f(E) to be adequate

As a result it is common to first perform an infinite medium 
fine-energy-group calculation in which the spatial 
dependence is eliminated

From the result of such a calculation, an approximation for 
f(E) within each of the coarser energy groups can be 
obtained

The coarser energy group cross-sections are then obtained 
by appropriately collapsing the fine-group results



MultiMulti--group crossgroup cross--section evaluation section evaluation -- Infinite mediumInfinite medium

To illustrate, let us assume that the neutron flux is in an 
infinite medium and has no spatial or angular dependence

The scattering term then vanishes, and we can integrate 
over all angles to obtain infinite medium multigroup 
equations in terms of the scalar flux:

where

We hereafter use the subscript jj’ to denote the fine-group 
indices and the superscript * to denote the fine-group 
quantities of the problem
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Infinite mediumInfinite medium

Since we need only the relative magnitudes of the fine-group 
fluxes, we are not interested in the values of k or F

Thus we can take F/k = 1 creating a fixed source problem, 
and allowing the previous equation to solve for the

Then within the broader energy group we can define f(E) as 
the normalized step function

where          includes only those fine groups lying within the 
broad group g; i.e., for which  
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Infinite mediumInfinite medium

With f(E) known, the fine-group cross-sections can be 
collapsed to broader group cross-sections

For example, the equation  

is approximated by
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Lattice CellLattice Cell

There are at least two important situations where the use of 
fine-group infinite medium calculations for the generation of 
broader group cross-sections is inadequate

The first of these arise frequently in reactor lattice 
calculations

Such a calculation may have as its spatial domain many 
units cells, each consisting of fuel and coolant in separated 
regions and arranged in a periodic array

Two simplified two-region unit cell configurations are 
depicted below



MultiMulti--group crossgroup cross--section evaluation section evaluation -- Lattice CellLattice Cell

In most cases the computational cost of treating the 
heterogeneous structure of each cell explicitly within a 
larger many-cell problem would be prohibitive

Thus the cell cross sections are homogenized to cell-
averaged values

In case where the cell dimensions are small in mean free 
paths, simple volume averages may be acceptable

Often, however, the true flux may exhibit sufficiently large 
spatial variation between the regions of the cell that it must 
be accounted for in the homogenization procedures



MultiMulti--group crossgroup cross--section evaluation section evaluation -- Lattice CellLattice Cell

The most common procedure for accounting for cell flux 
variation in group cross-sections may be illustrated in terms 
of the simple two-region cells 

Calculations are based on an infinite lattice problem in 
which reflective conditions are imposed at all of the cell 
boundaries

These provide fine energy mesh values of      and      , the 
volume-averaged flux values in each of the cell regions

A wide variety of methods have been applied for such 
purposes ranging from semi-analytic approximations for the 
flux ratios to the use of numerical transport methods
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Lattice CellLattice Cell

Knowing the flux value and the fine-group region cross-
sections,       and        , homogenized cross-sections, 
averaged over fine groups, may be obtained

For example, the group total cross-section is
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Buckling CorrectionsBuckling Corrections

A second situation where the use of fine-group infinite 
medium calculations for evaluation of multigroup cross-
sections may arise is when the overall dimensions of the 
system are not large, for large net leakage of neutrons may 
then cause a significant distortion of the infinite medium 
fine-group distribution

For homogeneous media this leakage may ne roughly 
accounted for by assuming the approximation

where             is the buckling familiar from elementary 
reactor theory
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MultiMulti--group crossgroup cross--section evaluation section evaluation -- Buckling CorrectionsBuckling Corrections

The buckling is chosen to be the lowest eigenvalue of the 
Helmholtz equation 

where          on the extrapolated boundaries and          within 
the reactor

Hence B increases and the leakage correction becomes 
larger as the size of the system decreases
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MultiMulti--group crossgroup cross--section generationsection generation

The multi-group cross sections are very important 
data for the nuclear reactor analyses 

Standard cross-section generation techniques involve 
three major steps

The first one is to generate a fine-group cross-section 
library from the ENDF/B data using a piecewise linear 
energy weighting function generated from theoretical 
spectrum approximations



MultiMulti--group crossgroup cross--section generationsection generation

The cross sections are processed with the appropriate 
resonance treatment method

Second, infinite array unit cell calculations using the 
fine-group library are performed to get the spatial flux 
distribution

These weighting flux functions are used to collapse the 
fine-group library to a broad-group library

The third step involves spatial homogenization of the 
unit cell in the framework of the broad group structure



MultiMulti--group crossgroup cross--section generationsection generation

The NJOY code is used for cross section processing 
followed with the AMPX module from the SCALE code 
package for post-processing of cross sections. 

The standard cross section generation procedure 
contains several steps as follows: 

Step 1: NJOY generates multi-group cross section in Group-wise 
Evaluated Nuclear Data Format (GENDF) format.

Step 2: SMILER converts the NJOY (GENDF) files to the AMPX master 
library format



MultiMulti--group crossgroup cross--section generationsection generation

Step 4: BONAMI performs resonance self-shielding effect with 
Bondarenko factors

Step 5: NITAWL converts AMPX master library to AMPX working 
library format

Step 6: ALPO converts AMPX working library format to standard 
ANISN format

Step 7: GIP generates mixture cross-section library.

Step 8: Utilize the multi-group cross section library with a 
transport code



MultiMulti--group crossgroup cross--section generationsection generation

TRANSPORT CODE

AMPX MASTER LIBRARY 

AMPX MASTER LIBRARY  

AMPX MASTER LIBRARY (self‐shielding XS

                                    for selected region)

AMPX WORKING LIBRARY  

NJOY

SMILER

AJAX

BONAMI

NITAWL

ALPO

GIP

Fine group XS  

ANISN FORMAT 

Mixture XS  



MultiMulti--group crossgroup cross--section generationsection generation

The accuracy of a set of multi-group constants is 
determined by the selected energy group structure and 
the utilized weight function. 

It is necessary to have a weight function that represent 
as accurate as possible the flux distribution as a 
function of energy in the nuclear reactor core of 
interest. 

GROUPR in NJOY provides the in-code built weight 
functions that represent a few typical nuclear systems 
including the thermal reactor spectrum. 



MultiMulti--group crossgroup cross--section generationsection generation

The later weight function combines a thermal 
Maxwellian at low energies, a 1/E function at 
intermediate energies, and a fission spectrum at high 
energies. 

In GROUPR, user has freedom to choose the 
temperatures of the Maxwellian and fission parts and 
the energies where the spectra join.

For example the cutoff energies between spectra can be 
determined by using the Maxwell-Boltzmann distribution 
function for low energies and a 1/E function for 
intermediate energies



MultiMulti--group crossgroup cross--section generationsection generation

As a result, the function consists of:
A Maxwellian spectrum (peak at 0.07eV) from 10-5 to 0.3 eV

An 1/E spectrum from 0.3 eV to 20.0 keV

A fission spectrum from 20.0 keV to 20 MeV.
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MultiMulti--group crossgroup cross--section generationsection generation

One of the most important issues to be considered in criticality 
calculations is the energy self-shielding in the resonance region for 
multi-group cross sections

The method utilized for treatment of energy self-shielding is one of 
the factors in a multi-group cross-section generation that may have 
a significant impact on the multiplication factor and also on the 
absorption reaction rate predictions, mostly in the epithermal 
region.

In the “resonance energy” region, from roughly 1 eV to 100 keV, the 
main absorption of neutrons by heavy nuclei takes place at 
pronounced peaks or resonances of cross section 



MultiMulti--group crossgroup cross--section generationsection generation

The shielding effects are presented in this region 
because of the flux dip at resonances

The resonance structure can be separated into two 
regions, resolved and unresolved

In resolved resonance region, the resonances are wide 
when compared to the scattering ranges for the 
mixtures in a particular configuration

It is in the range of eV up to a few keV. This region is 
significant for thermal reactors. 



MultiMulti--group crossgroup cross--section generationsection generation

In the unresolved resonance region, the resonances are 
not able to achieve adequate resolution of the individual 
resonances

The neutron absorption in this region is important for 
fast reactors

An appropriate treatment of the resonance absorption is 
needed in order to obtain more accurate solutions

Three methods for resonance shielding treatment are 
explained 



MultiMulti--group crossgroup cross--section generationsection generation

Flux Calculator

The narrow resonance approach is quite useful for 
practical fast reactor problems. 

However, for nuclear systems sensitive to energies from 1 
to 500 eV, there are many broad- and intermediate-width 
resonances, which cannot be self-shielded with sufficient 
accuracy using the Bondarenko approach. 

The flux calculator option of GROUPR module in NJOY is 
designed to solve such problems.



MultiMulti--group crossgroup cross--section generationsection generation

The infinite-medium neutron spectrum equation is expressed 
as:

where the term on the left hand side of the Equation 
represents the collision, the integral on the right hand side is 
the scattering source, and S(E) the external source.

Next, the Equation is written considering a homogeneous 
medium consisting of two materials: an absorber and a 
moderator, represented by A and M

∫
∞

+Φ→Σ=ΦΣ
0

)()'()'(')()( ESEEEdEEE st



MultiMulti--group crossgroup cross--section generationsection generation

Elastic scattering cross sections that are isotropic in the center 
of mass are used

Neutron slowing down in a single resonance of the absorber 
material is assumed

where     and      are the moderator and absorber collision 
parameters, respectively, defined as:

 
)'(

')1(
)'(

')'(
')1(

)'(
')()(

//

E
E

E
dEE

E
E

dEEE
A

A
s

E

EM

M
s

E

E
t

AM

Φ
−
Σ

+Φ
−
Σ

=ΦΣ ∫∫ αα

αα

  Mα   Aα

  2

1
1
⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
A
Aα



MultiMulti--group crossgroup cross--section generationsection generation

The following approximations are introduced

The moderator scattering cross-section is assumed to be constant and equal 
to the potential scattering cross-section: i.e. 

The moderator absorption cross-section is assumed to be negligible; i.e. 

The narrow resonance approximation is used for the moderator. 

This states that the resonance width is very small compared to the energy 
loss from scattering with the moderator nucleus. scattering cross sections 
that are isotropic in the center of mass are used

Neutron slowing down in a single resonance of the absorber material is 
assumed
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MultiMulti--group crossgroup cross--section generationsection generation

This states that the resonance width is very small compared to the 
energy loss from scattering with the moderator nucleus. 

Therefore, the flux distribution is the moderator integral is assumed to 
have an asymptotic form. In general, the moderator integral is assumed 
to be a smooth function of energy represented as C(E).

The moderator is assumed to represent all nuclides other than the 
absorber. 

This enables the inclusion of the dilution microscopic cross-section of 
the absorber, σo

The dilution (or background) cross section of an isotope i is defined to 
be all cross sections representing isotopes other than the isotope i. 



MultiMulti--group crossgroup cross--section generationsection generation

The dilution cross-section is a measure of energy self-shielding

It determines the significance of a resonance compared to other cross 
sections. If the dilution cross-section (σo) is small, it indicates that the 
resonance has a significant impact on the flux and a large self-shielding 
effect exists

If σo is very large (infinite dilution), the cross sections of the absorber 
do not affect the flux spectrum, and the flux may be represented as a 
smooth function of energy.
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MultiMulti--group crossgroup cross--section generationsection generation

Where i and j represent isotope indexes and ρ is atomic density.  

The above Equation is the simplest form used in NJOY for computing 
the flux with the flux calculator option

In NJOY, several dilution cross sections are provided as input. 

Depending on a system of interest, the cross sections corresponding to 
the appropriate dilution cross-section are used.
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The Bondarenko Method

The Bondarenko method is obtained by using the narrow resonance 
approximation in the absorber scattering integral , which is derived from 
neutron slowing down equation

The practical width of a resonance of the absorber is considered to be much 
smaller than the energy loss due to a collision with the absorber

This enables the absorber integral to be represented as a smooth function 
of energy. Therefore, the flux is represented by:
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The Bondarenko Method

If is larger than the tallest peaks in , the weighting flux φ is approximately 
proportional to the smooth weighting function C(E)

This is called infinite dilution; the cross section in the material of interest 
has little or no effect on the flux. 

On the other hand, if is small with respect to , the weighting flux will have 
large dips at the locations of the peaks in , and a large self-shielding effect 
will be expected. 

This treatment is good for the unresolved region (high energy resonances) 
since resonance width in this region is very small. 
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CENTRM

CENTRM (Continuous Energy Transport Module) is the new method existing 
in SCALE 5.0/SCALE 6.0 

It computes continuous-energy neutron spectra in zero- or one-dimensional 
systems, by solving the Boltzmann Transport Equation using a combination of 
point-wise and multi-group nuclear data.

Several calculation options are available, including discrete ordinates in slab, 
spherical, or cylindrical geometry; collision probabilities in slab or cylindrical 
coordinates; and zone-wise or homogenized infinite media.

In SCALE, CENTRM is used mainly to calculate problem-specific fluxes on a 
fine energy mesh (>10000 points), which may be used to generate self-shielded 
multi-group cross section for subsequent criticality or shielding analysis.
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CENTRM avoids many of the inherent assumptions by 
calculating a problem-dependent flux profile, thus making it a far 
more rigorous cross-section treatment

Effects from overlapping resonances, fissile material in the fuel 
and surrounding moderator, and inelastic level scattering are 
explicitly handled in CENTRM

Another advantage of CENTRM is that it can explicitly model 
rings in a fuel pin to more precise model the spatial effect on the 
flux and cross sections 

CENTRM enables problem-dependent multigroup cross sections 
to have the flexibility and accuracy of pointwise-continuous-
energy cross sections for criticality analyses.



Resonance Scattering Model Resonance Scattering Model 
In today’s formulation of the transport equation the scattering is 
divided into two parts, thermal range (usually below few electron-
volts) and epithermal range

At thermal range the interaction of neutrons with matter is modeled 
taking into account thermal agitation of the atoms and their chemical 
binding effects

In thermal range, neutrons will lose or gain energy after collision 
with atoms: slowing-down and up-scattering effects

For light isotopes such as hydrogen in water, a quantum mechanics 
model is usually used, that leads to well known transfer kernel 
scattering matrices S(α, β)



Resonance Scattering Model Resonance Scattering Model 
In epithermal range, model used in existing codes simply assumes an 
elastic scattering with no binding effect derived from the classical 
mechanics kinematics collision theory
Leads to an asymptotic scattering transfer kernel that is where  is the 
initial energy of the neutron before the collision 
Classical model assumes neutron energy is far greater than atom’s 
chemical binding energy that can be neglected – supposes target atoms 
are at rest
In early 90s, a new physical phenomenon that occurs during the neutron 
slowing down process was discovered

Revealed possibility of neutrons to gain energy during scattering with heavy 
resonant isotopes in resonance energy range – in the epithermal range

A model, called Resonance Scattering Model (RSM) was proposed –
since then, many other researchers have proved its theoretical soundness



Resonance Scattering Model Resonance Scattering Model 
RSM Revealed Three Important Facts: 

1. Strong dependence of shape of transfer kernel on the resonance scattering 
cross-sections profile, i.e. shape is far from being asymptotic when the initial 
neutron energy is in the vicinity of the resonance peak, 

2. Possibility of neutron up-scattering even at high energy, 
3. Strong dependency on temperature of scatters target, i.e. fuel

This model has never been used in deterministic core simulations
Implementation in a Monte Carlo code has been attempted, but application was 
limited to an isolated one pin cell or using continuous Monte Carlo without full 
implementation of the model for all isotopes, except 238U

In a joint PSU/INL project the focus is on changing the kernel of the 
neutron transport equation solved to predict neutron flux in the 
reactor core to account for this phenomenon and evaluate its effect on 
innovative new AGCRs and Deep Burn HTR designs
Implementation is accomplished using deterministic transport solution 
and multi-group method 



Resonance Scattering Model Resonance Scattering Model 

The nuclides of interest include each of the fissile/fissionable 
nuclides used as fuel in the AGCRs and HTR Deep Burn concept 
as well as other heavy nuclides that result from the high burn-up 
levels achieved in the reactor and in the feed

Heavy nuclides, such as the U, Pu and minor actinide nuclides, will 
be present in the AGCRs and Deep Burn type reactor in quantities 
substantially larger than those expected in light water reactors 

Generated data will allow proper accounting of physical properties 
of nuclides leading to high-fidelity modeling



Resonance Scattering Model Resonance Scattering Model 

For the heavy isotopes such as the actinides, a free gas model is 
used in conjunction with a corrected temperature that takes into 
account the crystal solid structure of the fuel
Model changes the way neutrons are interacting with fuel isotopic 
composition – as a result changes flux spectrum in core that in 
turn affects absorption and production of neutrons in fuel 
assemblies
New differential scattering cross-section kernel was derived using 
free-gas model with Maxwellian velocity distribution taking into 
effect dependency on energy of scattering cross-section for heavy 
isotopes  
Formulation of scattering kernel becomes a convolution (in 
mathematical sense) of two distributions: the Maxwellian 
distribution and the scattering cross-section



Resonance Scattering Model Resonance Scattering Model 
Recently published experimental results demonstrate that the Free 
Gas model is experimentally proven to be sufficiently accurate and 
captures major effects
Experiment proved that free gas model is good at low temperatures
At high temperatures (reactor conditions) the model is expected to be 
even more accurate because at such conditions the neutrons behave 
more like a free gas
These facts are very important and show that this model can be used 
for production calculations, i.e. it is ready to be implemented in 
design codes – no need for complex solid state models
After implementation of Free Gas model different approximations to 
treat solid state effects in neutron-crystal interactions will be studied 
for further improvement of the RSM
The will be used to generate scattering matrices for different 
anisotropic scattering degrees for multi-group transport calculation



Resonance Scattering Model Resonance Scattering Model 

New Resonance Scattering Model (RSM) model is developed:
Equations of new differential scattering cross-section transfer kernel for multi-
group applications are derived
Challenge is treatment of angular variable (anisotropic scattering) to generate 
anisotropic scattering kernel
Numerical aspect to compute and store matrices is addressed 
Program code is designed to implement the Resonance Scattering Model (RSM) 
model
New module will be implemented in the NJOY code

Modeling tools: 
ENDF-B/VI-8 and ENDF-B/VII-0, and NJOY99 nuclear data processing system 
Cross-section generation codes COMBINE-7 and DRAGON-4
PSU core simulator NEM (has three core modeling options in 3-D geometry –
Cartesian, Hexagonal-Z – for HTR prismatic design, and Cylindrical – for HTR 
pebble bed design)
MCNP5 and the PSU coupled Monte Carlo based depletion code system PSU-
MCOR



Resonance Scattering ModelResonance Scattering Model

The first step was to develop the equations in details of the new 
differential scattering cross-section transfer kernel (as shown below 
for anisotropic scattering):
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Where β = (A + 1)/A, A – nucleus mass/neutron mass



Resonance Scattering ModelResonance Scattering Model
In order to verify the scattering kernel formulations derived in the previous 
slide, neutrons were started at various energies and temperatures and the 
corresponding scattering kernels were plotted. 
A  program has been written to test the formulations derived in the 
previous section.  
Cross-section values  for         were generated by NJOY99.161 and 
interpolated from a linear piecewise continuous tabulation. 
The following Figures illustrate the result of the transfer kernel for 238U 
(A=238.050785) at 1000 K near the scattering resonances at 6.67 and 
36.67eV. 
In each figure the scattering transfer kernels before and after the resonance 
was calculated. 
In all of the figures it can be seen that the resonance modifies the shape of 
the transfer kernel with an increase in probability for upscattering for 
energies at higher temperature. 
This means an increase in absorption which has a direct effect on the 
reactivity of  a reactor.



Resonance Scattering ModelResonance Scattering Model

Effective transfer kernel of 238U at 1000K near the 6.67 eV 
resonance or neutrons of energy 6.52 eV



Resonance Scattering ModelResonance Scattering Model

Effective transfer kernel of 238U at 1000K near the 6.67 eV 
resonance or neutrons of energy 7.2 eV. 



Resonance Scattering ModelResonance Scattering Model

Effective transfer kernel of 238U at 1000K near the 36.67 eV 
resonance or neutrons of energy 36.25 eV. 



Resonance Scattering ModelResonance Scattering Model

Effective transfer kernel of 238U at 1000K near the 36.67 eV 
resonance or neutrons of energy 37.2 eV. 



Selection of Group StructureSelection of Group Structure
Examine a new fine group structure (for cross-section generation) 
optimized for compositions expected in the NGNP 

Well-known multi-group structures exist for different applications 

General Atomic 193-energy group structure (used mostly for 
prismatic AGCR applications)

VSOP 98-energy group structure (used mostly for pebble-bed AGCR 
applications)

SHEM 281-energy group – developed for UOX and MOX LWR 
applications

Refined SHEM 361-group structure



Selection of Group StructureSelection of Group Structure

Comparison and analysis of energy group structures of existing fine 
group (multi-group) cross-section libraries of spectrum/cell codes 
utilized for beginning-of-cycle and end-of-cycle studies of prismatic 
HTR, or for equilibrium core PBR HTR analyses 

New library will be based on the SHEM group structure and subject it 
to the same sensitivity study 

Considerations that stem from massive presence of graphite, very high 
burn-up and presence of large inventories of actinides will be included

SHEM group structure is optimized for light water reactor 
applications, addressing fuel components as well as structural 
materials expected to be present



Selection of Energy StructureSelection of Energy Structure

The reference fine energy group structure that forms the basis for this 
study is the SHEM group structure – based on optimization of 
isolated resonances in different energy ranges in order to avoid the 
special resonance self-shielding procedures:

Thermal energies (0-0.25eV)

Epithermal energies (0.25 - 4eV)

Large resonances (4 -23eV)

Resonances above 23eV



Selection of Energy Structure Selection of Energy Structure 



Selection of Energy Structure Selection of Energy Structure 

Large 
resonances 
(4-23eV)

Epithermal energies (0.25-4eV)

Thermal energies (0-0.25EV)



Selection of Energy Structure Selection of Energy Structure 

Resonances above 23eV



Selection of Group StructureSelection of Group Structure

Examine a new fine group structure (for cross-section generation) 
optimized for compositions expected in the NGNP
Optimization will be carried out further to produce a finalized 
coarse-group structure (for core calculations) that takes advantage 
of the newer fine group structure
The reference fine energy group structure that forms the basis for 
this study is the SHEM group structure of Santamarina and 
Hfaiedh
Examine the potential shortcoming of SHEM, and if deemed useful 
and necessary, propose appropriate modifications to the group 
structure to cover all NGNP and Deep Burn-related physical 
phenomena



Selection of Group StructureSelection of Group Structure

The SHEM group structure was verified for both Uranium and 
Mixed Oxide fuels 
In addition, it does address actinides extensively in that resonant 
reactions are well covered by the structure
May imply that SHEM structure might be applicable to NGNP 
and Deep Burn applications without further modification
Uncertain whether it addresses all actinides that arise in the case 
of very high burn-up applications, such as those contemplated for 
NGNP and DB-NGNP 
SHEM structure does not give any particular attention to graphite 
Although the graphite cross sections appear very smooth (with no 
resonance structures) at all energies below about 2 MeV, the 
absence of special consideration of graphite may imply an 
inadequate coverage of the NGNP and Deep Burn physical 
situations



Selection of Energy Group StructureSelection of Energy Group Structure

“Starting” multi-group libraries are being generated using:
Latest version of ENDF/B-VI (ENDF/B-VI.8) and ENDF/B-VII.0
NJOY cross-section processing code
General Atomic 193-energy group structure, the SHEM 281-energy group 
structure, and the refined SHEM 369-group structure. 

Division of these energy group structures into three major ranges 
of energy: Fast, Epithermal and Thermal 
Correlating the group structure to the predominance of selected 
reactions and reaction rates
Accuracy of multi-group cross-section depends on selected energy 
group structure and utilized weight function 



Selection of Energy Group StructureSelection of Energy Group Structure

Weight function may consists of:
A Maxwellian spectrum (peak at 0.07eV) from 10-5 to 0.3 eV
An 1/E spectrum from 0.3 eV to 20.0 keV
A fission spectrum from 20.0 keV to 20 MeV
 

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Fl
ux

 p
er

 u
ni

t l
et

ha
rg

y

Maxw ellian 
Spectrum 1/E Spectrum Fission 



Selection of Energy Group StructureSelection of Energy Group Structure

Two target criteria are used for obtaining a fine group structure 
First criterion is 10 pcm relative deviation of Δk/k and the second 
criterion is 1% relative deviation of objective nuclear reaction 
rates 
Objective reaction rates are different for each range of energy:

In terms of reaction and isotope of interest
Depending on the most important HTR physical phenomena being 
modeled in a given energy range  



Selection of Energy Group StructureSelection of Energy Group Structure
Intent is to find the “best” energy group structure defined as the 
structure that minimizes the difference between objective functions 
(power distribution, reactions rates, reactivity prediction …) 
between multi-group models and MCNP reference continuous 
energy model 
Differences between this “best” group structure and the reference 
information may meet, exceed or fall short of the target criteria, 
depending on physics difficulties present in the model problem at 
hand (or the absence hereof)
Methodology has been proven to work in terms of consistent 
development of effective cross section fine- and broad- group 
structures for a given reactor type calculation
Example for TRIGA applications – N. Kriangchaiporn, ”Transport 
Model based on 3-D Cross-Section Generation for TRIGA Core 
Analysis”, Ph.D. Thesis, The Pennsylvania State University, 2006



Selection of Energy Group StructureSelection of Energy Group Structure

The CPXSD Methodology                                                               
(Contribution and Point-wise Cross-Section Driven)

Used to construct fine- and broad-group structures

Considered two criteria
1) Importance of groups

2) Point-wise cross sections of an isotope/material of interest

Mark L. Williams, “Generalized Contributon Response Theory”, 
Nuclear Science and Engineering, Vol 108, pp. 355-385, 1991



Selection of Energy Group StructureSelection of Energy Group Structure

Contributon Theory and Contributon Equation

Used to construct fine- and broad-group structures
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Selection of Energy Group StructureSelection of Energy Group Structure

1. Select an initial group structure

2. Process the cross sections

3. Calculate the group importance 

4. Identify the group that has max. imp.

5. Refine the group that has max. imp.

6. Refine the other groups

7. Generate the cross section library 
with the new group structure

8. Calculate objectives and compared
with the previous library, if not in 
criterion, repeat step 3 through 8

Fine Group Generation Procedure



Selection of Energy Group Structure Selection of Energy Group Structure 

1. Select an initial group structure

2. Fine-group cross sections are
collapsed to broad-group

3. Calculate the group importance

4. Identify the group that has max. imp.

5. Refine the group that has max. imp.

6. Repeat step 2 through 5 until 
the criterion is satisfied 

Fine to Broad- Group 
Generation Procedure



Selection of Energy Group StructureSelection of Energy Group Structure

The objective reaction rates: 

Fast energy range: the 238U(n,νΣf) 
Epithermal energy range: the down-scattering reaction rates of 
Graphite
Thermal energy range: the 235U(n,νΣf) and the thermal up-
scattering reaction rates of Graphite

The criteria for considering fine group structure:

10 pcm  relative deviation of eigenvalues
1% relative deviation of objective reaction rates
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Selection of Energy Group StructureSelection of Energy Group Structure
Software tools (codes) and data (libraries):

The libraries are:  
ENDF/B-VI.8 (Release 8) and ENDF/B-VII.0 (Release 0)

The codes are: 
NJOY99 nuclear data processing system
MCNP Version 5 1.51 and MCOR (Coupled MCNP with KORIGEN) 
DRAGON Release 4.0.2 and COMBINE-7 lattice physics codes
Implementation of the “contributon” method with DRAGON is under way – includes 
development of additional routines to calculate necessary quantities and to automate 
optimization process

Benchmark problems for the fine–group (cell analysis) optimization
Problem 1 - Unit elementary HTR (NGNP) fuel cell
Problem 2 - Extended hyper-cell model will be developed to account for shadowing 
effects
Problem 3 - Locally homogenized cells that avoid the differences caused by different 
treatments of shadowing by adjacent fuel particles or elements

MCNP5 models for these problems to provide continuous energy reference 
solutions
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ENDF B / VI-8.0
ENDF B / VII.0
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− ⎫

⎬− ⎭ MCNP5 

Develop models 

• Pebble (grain, pebble-1D, 
pebble-3D) 

• Prismatic 

Generate reference solution 

NJOY 

Develop multi‐group cross sections (in progress) 

DRAGON 

COMBINE 



 

 

MCNP5 
Pebble (Fuel 
Element) 1D 
Model

MCNP5 Pebble (Fuel Element) 3D ModelMCNP5 Pebble (Fuel Element) 3D Model



MCNP5 
Prismatic 
Lattice 
Model

MCNP5 Grain (Coated Particle) ModelMCNP5 Grain (Coated Particle) Model



Model
No Of 

Histories Cycles Keff Std Dev

CP/Grain 5000 500 1.63054 0.00032

Pebble1D 5000 500 1.53969 0.00026 

Pebble3D 5000 500 1.53933 0.00025
Prismatic 
assembly 5000 500 1.66750 0.00031

MCNP5 Results for Different ModelsMCNP5 Results for Different Models



ConclusionsConclusions

Comparison and analysis of energy group structures of existing 
fine group (multi-group) cross-section libraries of spectrum/cell 
codes utilized for beginning-of-cycle and end-of-cycle studies of 
prismatic HTR, or for equilibrium core PBR HTR analyses 
New library will be based on the SHEM group structure and 
subject it to the same sensitivity study 
Considerations that stem from massive presence of graphite, very 
high burn-up and presence of large inventories of actinides will be 
included
SHEM group structure is optimized for light water reactor 
applications, addressing fuel components as well as structural 
materials expected to be present



ConclusionsConclusions
Perform a sensitivity study on the broad-group (few-group) 
energy structure for HTR coupled core steady-state analysis 
using the CPXSD method utilizing the optimal fine-group 
libraries 

Outcome will include a new optimized coarse group structure

Extend the sensitivity study on the broad-group (few-group) 
energy structure to HTR coupled core transient analysis

Extend the sensitivity study on the broad-group (few-group) 
energy structure to HTR Xenon oscillations.


