

2141-12

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

Processing and Utilization of Nuclear Reaction Data for Advanced Gas Cooled Reactor (AGCR) Applications

> Ivanov K. *IAEA* Vienna AUSTRIA

Department of Mechanical and Nuclear Engineering Reactor Dynamics and Fuel Management Group

Processing and Utilization of Nuclear Reaction Data for Advanced Gas Cooled Reactor (AGCR) Applications

Lecture 2 - Exercises on multi-group cross-section generation

K. Ivanov, F. Puente Espel, P. Tholakele

The Pennsylvania State University

IAEA/ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

ICTP, Trieste, Euler Lecture Hall, 3-7 May, 2010

>Introduction

Overview of the NJOY code

Example

PENNSTATE

Fuel specification

Model

- *** Coated Particle**
- Pebble (1D and 3D)
- Prismatic assembly

Execution command

- ✓ The NJOY code is a nuclear data processing system which produces pointwise and group wise cross sections from the Evaluated Nuclear Data File (ENDF).
- The code converts the evaluated nuclear data into libraries useful for application calculations in nuclear engineering problems.
- ✓ The data is converted from the ENDF format to the Pointwise Evaluated Nuclear Data File (PENDF) format and Groupwise Evaluated Nuclear Data File (GENDF) format.

- The ENDF data is freely obtainable from various source such as national laboratories and data banks. In this work, the ENDF data was downloaded from the Los Alamos National Laboratory website.
- The NJOY code consists of a number of modules. Each module operates as a separate computer program, processing a welldefined task.
- This feature makes it possible to choose only the modules that are relevant to a specific problem. The modules are linked by input and output files.

NJOY methodology for multi-group xs

- The RECONR module reconstructs resonance cross sections from ENDF resonance parameters.
- It also reconstructs the cross sections from nonlinear interpolation schemes.
- It reads the ENDF-format tape and produces a common energy grid for all neutron reactions such that all cross sections can be obtained (within a specified tolerance) by interpolation.
- ✓ The output is written onto a PENDF tape.


```
*---INPUT SPECIFICATIONS (FREE FORMAT)-
* CARD 1
    NENDF
             UNIT FOR ENDF/B TAPE
    NPEND
             UNIT FOR PENDF TAPE
* CARD 2
    LABEL.
              66 CHARACTER LABEL FOR NEW PENDE TAPE
              DELIMITED WITH *, ENDED WITH /.
* CARD 3
              MATERIAL TO BE RECONSTRUCTED
     MAT
              NUMBER OF CARDS OF DESCRIPTIVE DATA FOR NEW MF1
     NCARDS
              (DEFAULT=0.)
              NUMBER OF USER ENERGY GRID POINTS TO BE ADDED.
     NGRID
              (DEFAULT=0.)
 CARD 4
              FRACTIONAL RECONSTRUCTION TOLERANCE USED WHEN
     ERR
              RESONANCE-INTEGRAL ERROR CRITERION (SEE ERRINT)
              IS NOT SATISFIED.
              RECONSTRUCTION TEMPERATURE (DEG KELVIN)
     TEMPR
              (DEFAULT=0.)
            NO. SIGNIFICANT DIGITS (DEFAULT=7)
     NDIGIT
             FRACTIONAL RECONSTRUCTION TOLERANCE USED WHEN
     ERRMAX
              RESONANCE-INTEGRAL ERROR CRITERION IS SATISFIED
              (ERRMAX.GE.ERR, DEFAULT=20.*ERR)
              MAXIMUM RESONANCE-INTEGRAL ERROR (IN BARNS)
     ERRINT
              PER GRID POINT (DEFAULT=ERR/10000)
              (NOTE: THE MAX CROSS SECTION DIFFERENCE FOR
               LINEARIZATION, ERRLIM, AND FOR RECONSTRUCTION,
               ERRMIN, ARE ALSO TIED TO ERRINT. TO GET MAXIMUM
               ACCURACY, SET ERRINT TO A VERY SMALL NUMBER.
               FOR ECONOMICAL PRODUCTION, USE THE DEFAULTS.)
+ CARD 5
     CARDS
              NCARDS OF DESCRIPTIVE COMMENTS FOR MT451
              EACH CARD DELIMITED WITH *, ENDED WITH /.
* CARD 6
     ENODE
              USERS ENERGY GRID POINTS
        CARDS 3, 4, 5, 6 MUST BE INPUT FOR EACH MATERIAL DESIRED *
        MAT=0/ TERMINATES EXECUTION OF RECOND.
```


Figure 1: A typical cross section reconstructed from an ENDF/B evaluation using RECONR. The smooth, resolved, and unresolved energy regions use different representations of the cross sections. This is the total cross section for 235 U from ENDF/B-V.

- ✓ The BROADR module reads the PENDF tape from RECONR, and Doppler-broadens the thin pointwise resonance cross sections.
- This module uses the kernel broadening method, also known as the SIGMA1 method, but modified for better behavior at high temperatures and low energies.
- ✓ The output is written onto a new PENDF tape.

BROADR

INPUT SPE	CIFICATIONS (FREE FORMAT)	-
* .		*
* CARD 1		*
* NIN	INPUT PENDF TAPE	*
* NOUT	OUTPUT PENDF TAPE	*
* CARD 2		*
* MAT1	MATERIAL TO BE PROCESSED	*
* NTEMP2	NUMBER OF FINAL TEMPERATURES (MAXIMUM=10)	*
ISTART	RESTART (O NO, 1 YES, DEFAULT O)	*
* ISTRAP	BOOTSTRAP (O NO, 1 YES, DEFAULT O)	*
* TEMP1	STARTING TEMPERATURE FROM NIN (DEFAULT=0.K)	*
* CARD 3		*
* ERRTHN	FRACTIONAL TOLERANCE FOR THINNING	*
* THNMAX	MAX. ENERGY FOR BROADENING AND THINNING	*
*	(DEFAULT=1 MEV)	*
* ERRMAX	FRACTIONAL TOLERANCE USED WHEN INTEGRAL CRITERION	*
*	IS SATISFIED (SAME USAGE AS IN RECONR)	*
*	(ERRMAX.GE.ERRTHN, DEFAULT=20*ERRTHN)	*
* ERRINT	PARAMETER TO CONTROL INTEGRAL THINNING	*
*	(USAGE AS IN RECONR) (DEFAULT=ERRTHN/10000)	*
•	SET VERY SMALL TO TURN OFF INTEGRAL THINNING.	*
* (A GOD	D CHOICE FOR THE CONVERGENCE PARAMETERS	*
* ERRTH	N. ERRMAX, AND ERRINT IS THE SAME SET OF	*
* VALUE	S USED IN RECONR)	*
* CARD 4	······································	*
* TEMP2	FINAL TEMPERATURES (DEG KELVIN)	*
* CARD 5		*
* MAT1	NEXT MAT NUMBER TO BE PROCESSED WITH THESE	*
*	PARAMETERS. TERMINATE WITH MAT1=0.	*
•		*

- ✓ The UNRESR module computes the effective self-shielded pointwise cross sections for resonance reactions in the unresolved resonance region.
- ✓ The unresolved range begins at the energy where it is difficult to measure individual resonances. It extends to the energy where the effects of fluctuations in the resonance cross sections become unimportant.
- The UNRESR module averages the values of resonance widths and spacings together with distribution functions for the widths and spacings.
- This representation is converted into effective cross sections. The module uses the ENDF tape and the PENDF tape from BROADR as input. The computed effective cross sections are written onto a new PENDF tape.

UNRESR

+	INPUT S	PECIFICATIONS (FREE FORMAT)	•
*			*
٠	CARD 1		*
*	NENDF	UNIT FOR ENDF/B TAPE	*
٠	NIN	UNIT FOR INPUT PENDF TAPE	*
*	NOUT	UNIT FOR OUTPUT PENDF TAPE	*
*	CARD 2		
*	MATD	MATERIAL TO BE PROCESSED	*
٠	NTEMP	NO. OF TEMPERATURES (MAX. NO. ALLOWED=9)	٠
*	NSIGZ	NO. OF SIGMA ZEROES (MAX. NO. ALLOWED=8)	*
*	IPRINT	PRINT OPTION (O=MIN, 1=MAX) (DEFAULT=0)	*
*	CARD 3		٠
*	TEMP	TEMPERATURES IN KELVIN (INCLUDING ZERO)	*
*	CARD 4		*
*	SIGZ	SIGMA ZERO VALUES (INCLUDING INFINITY)	*
*	CAR	DS 2, 3, 4 MUST BE INPUT FOR EACH MATERIAL DESIRED	*
٠	MAT	D=0/ TERMINATES EXECUTION OF UNRESR.	٠
*			*
\$:	*******	***************************************	***

- The HEATR module generates pointwise heat production cross sections for specified reactions.
- ✓ Neutron heating arises from the kinetic energy of the charged products of a neutron-induced reaction. It is proportional to the local neutron flux.
- ✓ The module uses the ENDF tape and the PENDF tape from UNRESR as input. The output is written onto a new PENDF tape.

*	INPUT SPE	CIFICATIONS (FREE FORMAT)	*
+			*
٠	CARD 1		*
٠	NENDF	UNIT FOR ENDF/B TAPE	٠
*	NIN	UNIT FOR INPUT PENDF TAPE	*
٠	NOUT	UNIT FOR OUTPUT PENDF TAPE	+
٠	CARD 2		*
٠	MATD	MATERIAL TO BE PROCESSED	*
٠	NPK	NUMBER OF PARTIAL KERMAS DESIRED (DEFAULT=0)	*
٠	NQA	NUMBER OF USER Q VALUES (DEFAULT=0)	*
٠	NTEMP	NUMBER OF TEMPERATURES TO PROCESS	*
٠		(DEFAULT=0, MEANING ALL ON PENDF)	*
٠	LOCAL	0/1=GAMMA RAYS TRANSPORTED/DEPOSITED LOCALLY	*
٠		(DEFAULT=0)	*
٠	IPRINT	PRINT (O MIN, 1 MAX, 2 CHECK) (DEFAULT=0)	٠

- ✓ The THERMR module generates pointwise neutron scattering cross sections in the thermal energy range.
- It produces inelastic cross sections and energy-to-energy matrices for free atoms or bound scatterers.
- ✓ THERMR module uses the ENDF tape and the PENDF tape from UNRESR as input. The output is written onto a new PENDF tape.

THERMR

*-	INPUT SPECI	FICATIONS (FREE FORMAT)	٠
*			F.
*	CARD 1	•	•
*	NENDF	ENDF/B TAPE FOR MF7 DATA	E .
*	NIN	OLD PENDF TAPE	•
*	NOUT	NEW PENDF TAPE	•
*	CARD 2	•	•
*	MATDE	MATERIAL DESIRED ON ENDF TAPE	*
*	MATDP	MATERIAL DESIRED ON PENDF TAPE	*
*	NBIN	NUMBER OF EQUI-PROBABLE ANGLES	*
*	NTEMP	NUMBER OF TEMPERATURES	*
*	IINC	INELASTIC OPTIONS	
*		O NUNE	
*		1 CUMPUTE AS FREE GAS	
*		2 RESERVED	·
*		3 RESERVED	٠
*		4 READ S(A,B) AND COMPUTE MATRIX	٠
*	ICOH	ELASTIC OPTIONS	٠
*		O NONE	٠
*		1 GRAPHITE	•
*		2 BERYLLIUM	*
*		3 BERYLLIUM OXIDE	•
*		11 POLYETHYLENE	•
		12 H(ZRH)	*
		13 7P(7PH)	*
Ξ	FATON	NUMBER OF DETHCIDAT ATOMS	
	MALON	NUMBER OF FRINCIPAL RIGHS	
	TODINT	MI FUR INCLASSIC REACTION (201-200 UNLI)	-
	IPRINT	PRIAT UPTIDA (U-HIAIMON, 1-RAAIMON,	
*		2=MAX. NURRAL + INTERMEDIATE RESULTS)	
*		(DEFAULT=0)	•
*	CARD 3	· · · · · · · · · · · · · · · · · · ·	*
*	TEMPR	TEMPERATURES (KELVIN)	*
*	CARD 4	1	*
٠	TOL	TOLERANCE	*
*	EMAX	MAXIMUM ENERGY FOR THERMAL TREATMENT	*
*		(FOR TEMPERATURES GREATER THAN 3000,	*
*		EMAX AND THE ENERGY GRID ARE SCALED BY	٠
*		TEMP/300. FREE GAS ONLY.)	*
*			*

- ✓ The GROUPR module generates self-shielded multi-group cross sections and group-to-group neutron scattering matrices.
- ✓ This module uses the ENDF tape and the PENDF tape from THERMR as input. The output is written onto a GENDF tape.

*INPUT SI	PECIFICATIONS (FREE FORMAT)+
*	*
* CARD1	*
* NENDF	UNIT FOR ENDF/B TAPE *
* NPEND	UNIT FOR PENDF TAPE *
* NGOUT1	UNIT FOR INPUT GOUT TAPE (DEFAULT=0) *
* NGOUT2	UNIT FOR OUTPUT GOUT TAPE (DEFAULT=0) *
* CARD2	*
* MATB	MATERIAL TO BE PROCESSED *
*	MATE LT O IS A FLAG TO ADD MTS TO AND/OR REPLACE *
*	INDIVIDUAL MTS ON NGOUT1. *
* IGN	NEUTRON GROUP STRUCTURE OPTION *
* IGG	GAMMA GROUP STRUCTURE OPTION *
* IWT	WEIGHT FUNCTION OPTION *
* LORD	LEGENDRE ORDER *
* NTEMP	NUMBER OF TEMPERATURES *
* NSIGZ	NUMBER OF SIGMA ZEROES *
* IPRINT	LONG PRINT OPTION (0/1=MINIMUM/MAXIMUM) *
*	(DEFAULT=1) *
* CARD3	*
* TITLE	RUN LABEL (UP TO 80 CHARACTERS DELIMITED BY *, *
*	ENDED WITH /) (DEFAULT=BLANK) *
* CARD4	*
* TEMP	TEMPERATURES IN KELVIN *
* CARD5	*
* SIGZ	SIGMA ZERO VALUES (INCLUDING INFINITY) *
*	*
* 1	IF IGN=1, READ NEUTRON GROUP STRUCTURE (6A AND 6B) *
* CARD6A	*
* NGN	NUMBER OF GROUPS *

- The MODER module converts the data from formatted mode (e.g. ASCII) to blocked-binary mode, and vice versa (from blocked-binary to formatted mode).
- A formatted file has a positive unit number, while a binary file has a negative unit number.
- MODER was used in this study, however it is not a requirement.
 Users may prefer to work with binary data since the execution time is faster and the size of files are relatively smaller.

*	INF	UT SPECI	FICATIONS (FREE FORMAT)	*
*			•	ŧ
*	CARD	1	UNIT NUMBERS	ŧ
*		NIN	INPUT UNIT	*
*		NOUT	OUTPUT UNIT	*
*				*
*	A PC	SITIVE U	UNIT IS CODED (MODE 3).	*
*	A NE	GATIVE U	JNIT IS BLOCKED BINARY (NJOY MODE).	*
*				*
*	NOT	E: ABS(N)	(N) GE 1 AND LE 19 IS A FLAG TO SELECT VARIOUS	*
*		MATER	TALS FROM ONE OR MORE INPUT TAPES, WITH OR	*
*		WITHOU	JT MODE CONVERSION. THE KIND OF DATA TO BE	*
*		PROCES	SSED IS KEYED TO NIN AS FOLLOWS:	*
*		1	IN=1, FOR ENDF OR PENDF INPUT AND OUTPUT,	*
*			2, FOR GENDF INPUT AND OUTPUT,	*
*			3, FOR ERRORR-FORMAT INPUT AND OUTPUT.	*
*				*
*		CARDS 2	AND 3 FOR ABS (NIN) GE 1 AND LE 19 UNLY.	* *
	CADD	2		*
:	CARD	ע דים דה	TAPETD FOR NOUT 66 CHARACTERS ALLOWED	*
		1110	(DELIWITED WITH *, ENDED WITH /)	*
*	CARD	3		•
*	9 M M	NIN	INPUT UNIT	*
*			TERMINATE MODER BY SETTING NIN=0	*
*		MATD	MATERIAL ON THIS TAPE TO ADD TO NOUT	*
*	*****	*******	*****	*

Table 1: Coated particle specification

Item	Units	Value
UO ₂ fuel density	g/cm ³	10.4
Uranium enrichment (by mass ²³⁵ U/(²³⁵ U+ ²³⁸ U)	%	8.2
Fuel natural boron impurity by mass	ppm	1
Outer coated particle radius	mm	0.455
Fuel kernel radius	mm	0.25
Coated material	-	C/C/SiC/C
Coated thickness	mm	0.09/0.04/0.035/0.04
Coated densities	g/cm ³	1.05/1.9/3.18/1.9

Table 2: Material specification

Material	Nuclide	Atoms per barn cm
UO ₂ fuel	U-238	2.12877e-02
	U-235	1.92585e-03
	0	4.64272e-02
	B-10	1.14694e-07
	B-11	4.64570e-07
Inner low density carbon kernel coating	C (natural)	5.26449e-02
Pyro carbon kernel coating (inner and outer)	C (natural)	9.52621e-02
Silicon carbide kernel coating	C (natural)	4.77240e-02
	S (natural)	4.77240e-02
Pebble/Compact carbon matrix	C (natural)	8.77414e-02
	B-10	9.64977e-09
	B-11	3.90864e-08
Pebble outer coating/Prismatic block (note:	C (natural)	8.77414e-02
fuel grain has the same packing)	B-10	9.64977e-09
	B-11	3.90864e-08
Helium Coolant	He-3	3.71220e-11
	He-4	2.65156e-05

Table 3: Fuel Grain Lattice Data

Item	Units	Value
Unit cell grain square array pitch (cubical outer boundary)	cm	0.16341
Unit cell grain outer radius (spherical outer boundary	cm	0.10137
Grain outer radius	ст	0.0455
Packing fraction of coated particles	%	9.043
Graphite matrix density	g/cm ³	1.75
Graphite matrix natural boron impurity by mass	ppm	0.5
UO ₂ fuel mass	g	6.806e-04

Table 4: Pebble Bed Fuel Lattice Data

Item	Units	Value
Unit cell pebble square array pitch (cubical	cm	6.0
outer boundary)		
Unit cell coolant outer radius (spherical outer	cm	3.53735
boundary		
Pebble radius	cm	3.0
Radius of fuel zone	ст	2.5
Pebble outer coating thickness	ст	0.5
Pebble outer carbon natural boron impurity	ppm	0.5
by mass		
Number of coated particles	-	15,000
Packing fraction of coated particles	%	9.043
Graphite matrix density	g/cm ³	1.75
Graphite matrix natural boron impurity by	ppm	0.5
mass		
Pebble outer carbon coating density	g/cm ³	1.75
UO ₂ fuel mass per pebble	g	10.210

Table 5: Prismatic fuel lattice data

Item	Units	Value
Triangular pitch (coolant channel-rod channel and rod channel-rod channel	ст	1.880
Fuel channel diameter	cm	1.270
Coolant channel diameter	cm	1.588
Fuel compact (centered in fuel channel) diameter	ст	1.245
Compact height	cm	4.93
Number of coated particles per compact	-	3,000
Packing fraction of coated particles	%	19.723
Graphite matrix density	g/cm ³	1.75
Graphite matrix natural boron impurity by mass	ррт	0.5
UO ₂ fuel mass per pebble	g	2.042

Models

Figure 1 Pebble 3D

Models

Figure 2: Pebble 1D

Models

Figure 3: Fuel grain

Figure 4: Prismatic assembly

Monte Carlo Results

✓ Monte Carlo continuous energy results

Model	No of histories	cycles	keff	std dev
CP/Grain	5000	500	1.63054	0.00032
Pebble1D	5000	500	1.53969	0.00026
Pebble3D	5000	500	1 53933	0.00025
Prismatic assembly	5000	500	1.66750	0.00031

✓ Write in the DOS prompt command:

MCNP5 Command Prompt	— — X	
04/26/2010 03:24 PM <dir> 04/16/2010 02:44 PM 3,178 inputU235 06/19/2007 10:26 AM 4,960,300 njoy99_161.exe 04/12/2010 06:03 PM 22,994,194 tape20 3 File(s) 27,957,672 bytes 2 Dir(s) 411,294,228,480 bytes free</dir>		*
C:\Users\Fedex VDP\Desktop\Temporal_fedex\Package_mg_iaea\Package\END ies\U235>dir Volume in drive C is Windows Volume Serial Number is A865-34A7 Directory of C:\Users\Fedex VDP\Desktop\Temporal_fedex\Package_mg_ia ENDF7\193Energies\U235	F7\193Energ ea\Package\	
04/26/2010 03:24 PM <dir> 04/26/2010 03:24 PM <dir> 04/16/2010 02:44 PM 3,178 inputU235 06/19/2007 10:26 AM 4,960,300 njoy99_161.exe 04/12/2010 06:03 PM 22,994,194 tape20 3 File(s) 27,957,672 bytes 2 Dir(s) 411,294,228,480 bytes free</dir></dir>		
C:\Users\Fedex_UDP\Desktop\Temporal_fedex\Package_mg_iaea\Package\END ies\U235>njoy99_161.exe_ <inputu235_< td=""><td>F7\193Energ</td><td>Ŧ</td></inputu235_<>	F7\193Energ	Ŧ

- The cross sections are generated using a system of three codes:
 - NJOY
 - MICROR
 - MICROX-2
- The ENDF/B-VII (Evaluated Nuclear Data Files) are used

To run MICROX type the following at the DOS prompt:

microx_<_ninp</pre>

(_ indicates the space)