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Summary

We will recall briefly the transport equation

The multi-group transport equation and the power and outer
Iteration schemes

The expansion of the scattering kernel in spherical harmonics

The first order and second order spherical harmonics methods
(PN)

The general scheme of the discrete ordinate methods SN

A deeper analysis of the method of characteristics MOC
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The Steady State Neutron Transport Equation

(Q-V+2,(r,E))y(r,E,Q)=[dE" [dO| y(r,E Q)3 (r,E'> E,Q Q) |+

+jdE'p(E'—> E)VZF(E’E') :

L jdcy(r.e Q)} +s.(r.E0)

3. (F,E): Total X-section: neutron interaction probability by unit length

l//(r, E, Q)I Number of neutron crossing the surface unit at the following coordinate

) (?, E'>E,Q" Q): Scattering X-section Pb by unit length of a neutron in (T, E ',Q')to (T, E,Q)
7(E'> E): Fission spectrum: pb. of a fission in E'to lead neutrons in E

v: Number of secondary by fission

¥ (F,E'): Fission X-section: fission pb. by unit length

K:Fundamental eigenvalue (K=1if S_ (F’, E,Q))

S, (?, E,Q): External source
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Operator Definition
Q-V+Z,(r,E))=A[*]: Stremaing-Removal
dE'de'[Z (r.E'>E.Q" Q)} H [*]: Scattering operator
r,E))-JdE'[dQ| Z,(r,E'—> E,Q" Q) |= A[¥]- H[¥]=T[*]: Transport oprator

Q-V+
{ (E'->E)vZ, (F,E )—de} F [*]: Fission operator
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The Inverse Power lteration

* We focus for the moment on the fundamental eigenvalue search.

* The reason is that when we can adjust the composition and the geometry such
as K_ =1 the reactor is self sustained, it is capable to persevere the same
neutron population over time, the homogenous equation has a not null
solution, the transport equation hasoo' solutions.

» The uniqueness of the solution is achieved imposing the total reactor power.
F P-1
e T[ [v ]}

Ko We need to solve the

. KIFly’ following problem for . 1 o
K== - =) | oeb m) Tvl= Flv]

Z each inverse power K
yr =T F [v'] 1teration

- K,
o KaFlv™]
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The Multi-Group Approach

If the solution and the parameters 1n the transport equation could
be considered almost constant within sufficient small energy
steps we could define the following multi-group quantities:

%, (1)=%,(rE) *In practice we apply a little

w,(r.Q)=v(r.E,.Q) more sophisticated treatment: we

z,(r.Q Q)=% (r.E, »E, Q" Q) somehow compute a )

2. =2(E'>E) representative flux ¥(TE,.©) and

5, (F)=3,(.E,) we compute the zero order

5. (r.0)=5, (r.E.0) approximation of the parameters
energy values as follows:

522 B 22 i dEf, (1, E,0)i7(F.E,.0)

g energy index f (F,Q) _ &

| dE(T.E,.0)
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The Multi-Group Transport Equation
(@942, (N, (r0)=[dap(r.a)z,, (r.o o))+

—

£ [adly, (ra)s,.,(ro0) +§z[ £ () | dﬁ%(.—»,@)} +3,.,(r.9)
(Q V+3 (F’)) = A [*]: Streaming-Removal group g
idQ[Z&M (f,f)'- Q)] =H__[*]: Within-group scattering operator
i H,. . [*] Multi-group scattering operator
A [*]-H, ., [*]=T [*]: Within-group transport operator

Z..VZ, | (?)4L [dQ=F  [*]: Group-g'to g fission operator
' T 4

9

> | F, |= F[*]: Fission operator

gl
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The Matrix Multi-Group Structure

* First let’s assume that the have just solved the last power iteration and so we
can define (good to drop the power iteration index from now on):

I ¢ I oom o
S = z[ XV, (F) [ Oy, (r,@)} S...

 In a Matrix (energy discretized) the multi-group equation will look like:

vl S
v| |s
ol s
Jlv.] Ls..

#0 only if H 1is present Always # from 0 Thermal up-scattering
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The Thermal Iterations

* Very simple: Gauss Seidel

(A —H__ 0 . . 0 w1
-H. .. A.-H. . 0 : : W,
0 . —
: : AL —Ho e 0 V.,
| —H.. : . “He o A-H v, |
0 H. . . . H_ Tw.T [S][H. .. H ] -
0o . . : v, S, v
= 0 . : : +| . |+
: : .0 H,__ (v, S, :
o . . . o |lw| |s]|H. .. H |
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The Within-Group Equation

- Finally, we define a source for each groups that takes care
everything happens outside the group and 1s sending neutron in
(the sink 1s already 1n the total)

T<

Sy =S, +3 [0y (r.Q)z,,, (1.0 Q) |+ £ 1dO[pi(r.Q)z,, (1.0 Q)]

=l 4z
+*

®

Q«
« =

* Let’s drop the O and g indexes for the outer and we focus on:
(QV+2, 7))y (r.Q)= jdfz[y/(r,()')zs(r,Q'.Q)}sm(r,Q)

* Energy 1s gone!
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The Angular Scattering Kernel (1)

Under the assumption of isotropic mediumz, (r,Q"Q)=x,(r,x)
We can therefore use an expansion in

Legendre polynomials: Z,(F.Q"Q)= >3, ()P ()
The addition theorem for the Legendre polynomials cos(0) = u
allows: ,(r,Q"Q)=3%, (F)2Y, (Q)Y,,(Q)

[I]<k

The Y..(€') are the real spherical harmonics

The spherical harmonics are a complete set Colli.sion
oint
over the sphere 47 P
2, (Fou) = [duP (1)2,(7, 1)
J.dQY (Q)Ykl (Q) = 5kk5||

J-ld’upk(lu) Pk(/l’l):é‘kk i k.l
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The Angular Scattering Kernel (2)

* Since the spherical harmonics are a complete set 1t holds:
w(r.0)=323v, (MY, (Q)

y,(F)=[dQy (r.Q)Y,, ()
* ...but then...
140y (r.Q)z, (r.000) - de[ S (n) k_,,(Q')ixsk(r)zYk_l(Q')Yk_l(())}:

k=0 <k
=2z (NZwY.(Q)

<k
* ...and finally:
(Q-V+Z, (M) (r.Q)=32,(r)Zy, Y. (Q)+5,(r.Q)
» Usually we are lucky and the expansion could end for k~1, max 5

» k=0 1s the 1sotropic scattering assumption for diffusion
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The Spherical Harmonics Projection (1)

 The scattering term 1s now 1n terms of angular moments, can we
get the all equation 1n 1n angular moments?

* We project the transport equation over the spherical harmonics
and lets see...

777
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The Spherical Harmonics Projection (2)

c Well... = 5(1.(@) ¥.(0) v.(2)
* Then there is a recursion law that express the product Y. (Q)th (2)
Y (@)Y, (Q)= 8. (Q)+ BY...(Q)
Y ()Y, (Q)=rY...(2)+&. Y. ,.(Q) }I o
Y (Q)Y_(Q)=-2Y.,.(Q)+&.Y.,.(Q)
Y (Q)Y,(Q)=-4Y....(Q)+e.Y... (Q)}I 0
Y (Q)Y_ (Q)=7Y...(Q)+&.Y,,.(Q)

» Bottom line we a have system of coupled equations.
» Angle 1s gone, 1n space we can do FEM, DFM, hybrid DFM, or

whatever you like more ©
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The second Order Formulation (1)

* Lets make 1t simpler and use the 1sotropic scattering
approximation:

ldﬁ[w(r,ﬁ')Zs (F. Q2 Q)] =32 (O)Zw. Y, (Q) =2, (P, =2, ()¢
* We write the transport equation for &, -0

{(Q.v +2,(N)w(r.Q)=x (r)g+S,(r.Q)
(-Q-V+2, (7)) (r.-Q)=3 ()¢ +S,(r,-Q)

* Once sum once subtract the two equation

V(w (r.Q) -y (r,-Q))+ 2, (1) (v (r.Q) + (r.-Q)) =22, (r)g, +5,(r.Q) +5,(r,-Q)
Yy (r. Q)+ y/(r,—fz))+ s (r)(w(r,ﬁ)—z//(r,—ﬁ)) =s,(r.Q)-s,(r.-Q)
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The Second Order Formulation (2)
* We define:

* We solve for the even component

<

—QV Q- Vy (r,Q)+Z (Ny (1.Q) =2, (r)¢+S(r.Q)+Q-V——5:(r,Q)

1 ¢
2 (F) " (F) "
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The Second Order Formulation (3)

» To make 1t simpler let’s say the source is 1sotropic, and lets put
back our expansion in spherical harmonics

Qv

* What we did 1s to solve analytic r half of the space of the
solution and so we reduced by half the un

 Last point 1s a good one but this equation 1s not defined 1n void
region!!
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The Second Order Formulation (2)

» The problem 1s not yet over we should still solve for the
moments, we need to perform a projection on the even spherical
harmonics

[ dor, (0 )(Q L ;%(r)vk_,(ﬁ)};(r)% s (r)g+5.(T)
* Once more this terms couple different moments together
» What if X Zv.(F)Y.(?)~¢(r)  then DIFFUSION!

Mk

2, (F)p(F)+S,(r)

<
)
™M
—_~
~
<
S-
—_
-
~
—_~
~
S
—_
-
~
Il
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The Angular Collocative methods First Order SN

Going back to the original problem after the representation of the
scattering kernel 1n spherical harmonics can we do something

different?
(Q-V+Z, () (r.Q)=32,(r)Zy, Y. (Q)+5,(r.Q)

What we really need is to compute the v..(F) up the scattering
order. If we recall its definition we might think of a sort of
angular quadrature (cubature)..

v, (F)= idf) l//(T',Q)Yk,'I, (Q) = ga)nl//(f,f)n )Yk-,.. (Q)

Now the problem is to find the values of v.(F)= v (r.Q,) fore each
direction of the angular cubature

(Q-§+ZT(F'))V/”(F)

32, (M)2w Y., (Q)+S,(r.Q,)

k=0 fi[<k
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The Angular Collocative methods Second Order
SN (1)
* We can start directly from the second order form before the

projection over the even spherical harmonics (isotropic scattering
already assumed)

R A o = O
—Q-VZT(r)Q-Vt// (r.Q)+= (r)y (T,Q):ZS’O(T)¢+Sm(T,Q)+Q-VZT(r)Sm(T,Q)

* Isotropic source assumption (not needed but easier)

1
z.(F)

-Q-V

Qﬁl/ﬁ(r,f)%& (?)l//e(r,ﬁ): z,(r)é

 Lets examine the computation of the scalar flux
dew(F’,Q') = | de(F’,Q')+ jdﬁw(r’,()') =

= [ Oy (r, Q)+ [ dOy (r,-0)=2] dOy (7, Q)
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The Angular Collocative methods Second Order

SN (2)

* Once more we use a quadrature formula to perform the integral
but this time the domain 1s halved

JdQy (r.Q)=2]dQy"(r.Q) =22 oy (1.Q,)

* Once more the problem 1s reduced to the computation of

v (F)=y"(r.Q,)
* By the solution of:

1
z.(F)

T

-0, VO Yy ()42, Py (r) =2, (F)¢

By direction 1s equivalent to the diffusion equation!!
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Scattering lterations for First Order Sn

Let’s write the transport equation for each of the N directions:

(@ -V+2 (N)y, (N =2 (NZXaw, (MY, (2, (2,)+S,.(r)

[I]<k n'=1

Now 1t 1s this term that couple all the N equations together

Well lets just iterate on it...

(@ - V42 () () =32, (NZZow. (MY, (2, (2,)+S,.(F)

[l<k n'=1

The last equation 1s a partial differential equation 1n space only
(the integral 1in angle 1s gone...), so once more pick the solver
that you like more

Form of DFM are probably the most diffused
Usually the equation in space is solved by a sweeping method
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What | did not show you

Methods based on the integral formulation of the transport
equation integrated over angle have been largely used 1n the past
but nowadays are deemed to be too memory intensive for large
calculation

Monte Carlo Methods: are used mainly for reference calculation
due to the long running time
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QUESTIONS?
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Lets Get the Way Cleared First

Lets start back from the scattering source iteration equation
(Q - V42, (M) (N =32, (NZZow. (Y, () (2,)+S..(r)

[l<k n'=1

Lets make 1t simple and assume scattering and source 1sotropic
(Q,-V+2 (M) (1) =2, (N aw. (r)+S,(r)
We define the emission density at iteration 1+1:
Q" (F) = zs,o(r)gwn,w;,(m S, (F)

Iteration index over the scattering source could be dropped
since all quantity are at the same iteration index

(Q,-V+5,(7))y. (F)=Q(F)
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The Characteristics System of Coordinate

1=0(Q,,1)
r L
{Qn»ﬁ:s(?n,r)

Q" =0

S = surface coordinate

S = 2D coordinate on the surface projection
14

is

= distance from S in direction Q"

Q) = angular coordinate
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The Equation Along the Characteristics

* We write first the equation 1n the new coordinate system

(%m (g,g)j% (.5)=0(~5)

° ...or in a mixed way...
0 , =~ #
(&”T(r)j‘”n (4:8)=Q(F)

* Remember the coordinate transformation 1s depended on the
direction: essentially this is a different equation for each
direction.

» Angle and space are combined together to form a new coordinate
system!
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The Space Discretization

The domain is divided into finite elements or “cells’ within
which the cross sections and the source are assumed to be
constant 1n space:

20 (F) % 2.6, (F)24 50
j
0, (F) = characteristc function of domain V, (U V,=V)
j

Usually the cells never cross different material therefore having
the cross section constant in over V; 1s not an approximation as
long as we do not consider burn-up problems.

The approximation so far illustrated involve only the source not
the other terms of the equation
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Integral Form Along the Characteristics

- Lets’ consider a region in space V; and a trajectory !s crossing it.

 The intersection of the region with the trajectory happens for

- Now we integrate along ¢ within this intersection length

Ri,out

-Sj drzp(.5)  glow
- R lin S

v, (RE.S) =y, (RE",S)e * v [ drQ(e,§)e
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The Propagation Equation

* Under the already done assumption that Z; (f S ) and Q(f S ) are
constant withinV,

v (R,S) =y, (RI7,§)e ™ + 12

~3iR]

> Q

T

 This last equation 1s known as the propagation equation.

* Given the incoming flux at (0> S ) with direction €, in to the
domain we will be able to propagate it to the end of the domain
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And What About the Source?

[f the source and the boundary conditions are given we know
how to propagate the solution through the domain.

For the moment lets skip the boundary conditions

As already seen 1n the general scheme for Sn methods the source
for the “scattering iteration” 1s coming from the previous one

Q" (r)==,, ()X (r)+S,(r)

We pose the constant source inside each cell equal to 1ts average
value

] . a1 . 1
2=~ [drQ™ (F) =3 — [dry (F)+—[dFS (F
Q] VJ\'!: Q ( ) s,Oéwn'V-\,!: l//n' ( )+VJ- |n( )

Vi
J J

i i N
Qj 2 - 2sJ,OZa)n

1 . _
—[dry ™' (r)+ S’
-~ 'Vj \'/',- l//n' ( ) in
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The Balance Equation (1)

Now we have to understand how to compute: | dry."(F)

This term 1n reality is nothing more than the average angular for
each direction Q. within each cell V,

We perform our classical change of coordinate and so we can
recast the integral as 1t follows:

fdr= [ ds [ d¢

Vs N,y LG,
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The Balance Equation (2)

* One step at the time, lets start applying I df to the transport
equatlon

out RSJ,OU'[
_j_ df(%+z”jw;“(z,§): | deQy
RI" RJM
Ry

Wri]+1(jo,outjé’)_wrilﬂ(jo,injé’)_l_z_r,j J‘ de;+l(fa§):R§fQ;+l
RN

(RIQ 4 (RES) " (RE.5)
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Now the Integral over the Perpendicular Surface

« We use a spatial 2D quadrature over S,

S.

j nggj dede w;“(z,s” ) _
vV, 1O, R

:L Z (joQ;+l+Wri1+1(jo’inag)_wrl(R§j,OUt’§))

ZT,J‘ t."oV; LQ,

We made it!!
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Better to Summarize...

At iteration | we assume incoming flux known as the source
within each element

We propagate the neutron angular flux for all directions of the
angular quadrature and all trajectories of the surface quadrature
(a different one for each angle)

~5{RJ

wri]+l (jo,out,g) _ Wri]+l (jo,in,g’)e—ZTjRSi N 1—; Q}H

Once all the incoming and outgoing fluxes are known we can use
the balance equation to compute the source for the next iteration

Q' =m S Ly (RQU+yr (RS) -y (RS)) 45,

T,
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Overview First Order PN Methods (1)

* It 1s a polynomial description of the angular dependence of the
angular neutron flux

 Therefore it is suitable only for not too sharp angular gradients

 The angular structure of the matrix tends to become hill
conditioned for high orders

* It 1s not widely used to lower overall performance with respect
the second order form
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Overview First Order PN Methods (2)

¢ The number of angular unknown grows very fast as (N +1)

3000
2500
2000
1500
1000

500

0 10 20 30 40 50 60
PN order
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Overview First Order PN Methods (3)

* Scalability and preconditioning is limited by the growing
bandwidth of the angular structure
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Overview Second Order PN Methods (2)

* It 1s a polynomial description of the angular dependence of the
angular neutron flux

 Therefore it is suitable only for not too sharp angular gradients

* The lesser is the density of the medium the higher is the
instability (undefined for void region)

» Its lower order form (diffusion!!) is the most used
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Overview Second Order PN Methods

* The number of unknown grows very fast as (N+1)N/2
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Overview Second Order PN Methods (3)

* Scalability and preconditioning is limited by the growing
bandwidth of the angular structure
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Overview Second Order Sn Methods (1)

» It does not works 1n void

« Is a discontinuous representation in angle: deal well with
discontinuity

 Neutrons tends to be propagated from the originating point along
the direction of the angular quadrature originating what 1s called
ray effect

* Even 1f scalability is difficult is achievable by angle due to the
diffusion like structure
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Overview First Order Sn Methods (1)

* Works 1n void

« Is a discontinuous representation in angle: deal well with
discontinuity

 Neutrons tends to be propagated from the originating point along
the direction of the angular quadrature originating what 1s called
ray effect

» It 1s very difficult to achieve good scalability and so far, it has
been only for structured meshes
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Overview Quadrature

Quadrature are still an ongoing research subject also because are
needed in many other fields like quantum mechanics

The most effective quadrature 1s the Lebedev-Laikov (number of
point on the sphere / highest degree of polynomial exactly
integrable) but number of points increases to fast

We use other formulas that growth smoother but have negative
weights for higher numbers of point leading to numerical
instability
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Questions??



