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Summary
• We will recall briefly the transport equation

• The multi-group transport equation and the power and outer 
iteration schemes

• The expansion of the scattering kernel in spherical harmonics

• The first order and second order spherical harmonics methods 
(PN)

• The general scheme of the discrete ordinate methods SN

• A deeper analysis of the method of characteristics MOC



The Steady State Neutron Transport Equation
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Total X-section: neutron interaction probability by unit length

Number of neutron crossing the surface unit at the following coordinate

Scattering X-section Pb by unit length of a neutron in                  to

Fission spectrum: pb. of a fission in      to lead neutrons in     
Number of secondary by fission

Fission X-section: fission pb. by unit length

Fundamental eigenvalue (K=1 if                    )

External source
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Operator Definition
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The Inverse Power Iteration
• We focus for the moment on the fundamental eigenvalue search.
• The reason is that when we can adjust the composition and the geometry such 

as              the reactor is self sustained, it is capable to persevere the same 
neutron population over time, the homogenous equation has a not null 
solution, the transport equation has      solutions.

• The uniqueness of the solution is achieved imposing the total reactor power.
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The Multi-Group Approach
• If the solution and the parameters in the transport equation could 

be considered almost constant within sufficient small energy 
steps we could define the following multi-group quantities:
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•In practice we apply a little 
more sophisticated treatment: we 
somehow compute a 
representative flux                 and 
we compute the zero order 
approximation of the  parameters 
energy values as follows:
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The Multi-Group Transport Equation
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The Matrix Multi-Group Structure
• First let’s assume that the have just solved the last power iteration and so we 

can define (good to drop the power iteration index from now on):
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The Thermal Iterations
• Very simple: Gauss Seidel
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The Within-Group Equation
• Finally, we define a source for each groups that takes care 

everything happens outside the group and is sending neutron in 
(the sink is already in the total)
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The Angular Scattering Kernel (1)
• Under the assumption of isotropic medium
• We can therefore use an expansion in

Legendre polynomials:
• The addition theorem for the Legendre polynomials

allows:
• The            are the real spherical harmonics
• The spherical harmonics are a complete set

over the sphere 
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The Angular Scattering Kernel (2)
• Since the spherical harmonics are a complete set it holds:
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The Spherical Harmonics Projection (1)
• The scattering term is now in terms of angular moments, can we 

get the all equation in in angular moments?
• We project the transport equation over the spherical harmonics 

and lets see…
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The Spherical Harmonics Projection (2)
• Well… ( ) ( ) ( )( )1, 1 1,1 1,0
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The second Order Formulation (1)
• Lets make it simpler and use the isotropic scattering 

approximation:
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The Second Order Formulation (2)
• We define:
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The Second Order Formulation (3)
• To make it simpler let’s say the source is isotropic, and lets put 

back our expansion in spherical harmonics
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• What we did is to solve analytically for half of the space of the 
solution and so we reduced by half the unknown.

• Last point is a good one but this equation is not defined in void 
region!!



The Second Order Formulation (2)

• The problem is not yet over we should still solve for the 
moments, we need to perform a projection on the even spherical 
harmonics
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The Angular Collocative methods First Order SN
• Going back to the original problem after the representation of the 

scattering kernel in spherical harmonics can we do something 
different?
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• What we really need is to compute the          up the scattering
order. If we recall its definition we might think of a sort of 
angular quadrature (cubature)..
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The Angular Collocative methods Second Order 
SN (1)
• We can start directly from the second order form before the 

projection over the even spherical harmonics (isotropic scattering 
already assumed)

• Isotropic source assumption (not needed but easier)

• Lets examine the computation of the scalar flux
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The Angular Collocative methods Second Order 
SN (2)
• Once more we use a quadrature formula to perform the integral 

but this time the domain is halved

• Once more the problem is reduced to the computation of  

( ) ( ) ( )/ 2
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e e
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d r d r r
π π

ψ ψ ωψ
+ =
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( ) ( ),e e

n nr rψ ψ= Ω

• By the solution of:
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r r φψ ψ−Ω ⋅∇ Ω ⋅∇ + Σ Σ
Σ

=

• By direction is equivalent to the diffusion equation!!



Scattering Iterations for First Order Sn
• Let’s write the transport equation for each of the N directions:

( )( ) ( ) ( ) ( ) ( ) ( ) ( ), ' ' . ' . ,
0 ' 1

N

n T n s k n n k l n k l n in n
k l k n

r r r r Y Y S rψ ωψ
∞

= ≤ =
Σ Ω Ω∑ ∑∑Ω ⋅∇ + Σ = +

• Now it is this term that couple all the N equations together
• Well lets just iterate on it…
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• The last equation is a partial differential equation in space only 
(the integral in angle is gone…), so once more pick the solver 
that you like more

• Form of DFM are probably the most diffused
• Usually the equation in space is solved by a sweeping method



What I did not show you
• Methods based on the integral formulation of the transport 

equation integrated over angle have been largely used in the past 
but nowadays are deemed to be too memory intensive for large 
calculation

• Monte Carlo Methods: are used mainly for reference calculation 
due to the long running time



QUESTIONS?



Lets Get the Way Cleared First
• Lets start back from the scattering source iteration equation
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• Lets make it simple and assume scattering and source isotropic
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• We define the emission density at iteration i+1:
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• Iteration index over the scattering source could be dropped 
since all quantity are at the same iteration index
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The Characteristics System of Coordinate
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The Equation Along the Characteristics
• We write first the equation in the new coordinate system

( ) ( ) ( ), , ,T nS S Q Sψ∂⎛ ⎞+ Σ =⎜ ⎟∂⎝ ⎠

• …or in a mixed way…

( ) ( ) ( ),T nr S Q rψ∂⎛ ⎞+ Σ =⎜ ⎟∂⎝ ⎠

• Remember the coordinate transformation is depended on the 
direction: essentially this is a different equation for each 
direction.

• Angle and space are combined together to form a new coordinate 
system!



The Space Discretization

• The domain is divided into finite elements or “cells” within 
which the cross sections and the source are assumed to be 
constant in space:

( ) ( ) ( ) ( )
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∑

∪
• Usually the cells never cross different material therefore having 

the cross section constant in over        is not an approximation as 
long as we do not consider burn-up problems.

• The approximation so far illustrated involve only the source not
the other terms of the equation

Vj



Integral Form Along the Characteristics
• Lets’ consider a region in space      and a trajectory     crossing it.
• The intersection of the region with the trajectory happens for

• Now we integrate along      within this intersection length
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The Propagation Equation
• Under the already done assumption that               and        are 

constant within
( ) ( ), , 1, ,

j j
T Sj j

T S

R
Rj out j in

n n jjS S
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eR S R S e Qψ ψ
−Σ

−Σ −
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( ), STΣ ( ),Q S
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• This last equation is known as the propagation equation.

• Given the incoming flux at          with direction        in to the 
domain we will be able to propagate it to the end of the domain

( )0, S
n

Ω



And What About the Source?
• If the source and the boundary conditions are given we know 

how to propagate the solution through the domain.
• For the moment lets skip the boundary conditions
• As already seen in the general scheme for Sn methods the source 

for the “scattering iteration” is coming from the previous one
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,0 ' '
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• We pose the constant source inside each cell equal to its average 
value
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The Balance Equation (1)
• Now we have to understand how to compute:
• This term in reality is nothing more than the average angular for 

each direction        within each cell
• We perform our classical change of coordinate and so we can 

recast the integral as it follows:
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The Balance Equation (2)
• One step at the time, lets start applying             to the transport 

equation:
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Now the Integral over the Perpendicular Surface
• We use a spatial 2D quadrature over
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We made it!! 



Better to Summarize…
• At iteration i we assume incoming flux known as the source 

within each element
• We propagate the neutron angular flux for all directions of the 

angular quadrature and all trajectories of the surface quadrature
(a different one for each angle)
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• Once all the incoming and outgoing fluxes are known we can use 

the balance equation to compute the source for the next iteration
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Overview First Order PN Methods (1)
• It is a polynomial description of the angular dependence of the 

angular neutron flux

• Therefore it is suitable only for not too sharp angular gradients

• The angular structure of the matrix tends to become hill 
conditioned for high orders

• It is not widely used to lower overall performance with respect 
the second order form



Overview First Order PN Methods (2)

• The number of angular unknown grows very fast as 
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Overview First Order PN Methods (3)

• Scalability and preconditioning is limited by the growing 
bandwidth of the angular structure 
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Overview Second Order PN Methods (2)
• It is a polynomial description of the angular dependence of the 

angular neutron flux

• Therefore it is suitable only for not too sharp angular gradients

• The lesser is the density of the medium the higher is the 
instability (undefined for void region)

• Its lower order form (diffusion!!) is the most used 



Overview Second Order PN Methods

• The number of unknown grows very fast as ( )1 / 2N N+
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Overview Second Order PN Methods (3)

• Scalability and preconditioning is limited by the growing 
bandwidth of the angular structure 
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Overview Second Order Sn Methods (1)
• It does not works in void
• Is a discontinuous representation in angle: deal well with 

discontinuity
• Neutrons tends to be propagated from the originating point along

the direction of the angular quadrature originating what is called 
ray effect

• Even if scalability is difficult is achievable by angle due to the 
diffusion like structure



Overview First Order Sn Methods (1)
• Works in void
• Is a discontinuous representation in angle: deal well with 

discontinuity
• Neutrons tends to be propagated from the originating point along

the direction of the angular quadrature originating what is called 
ray effect

• It is very difficult to achieve good scalability and so far, it has 
been only for structured meshes



Overview Quadrature
• Quadrature are still an ongoing research subject also because are 

needed in many other fields like quantum mechanics
• The most effective quadrature is the Lebedev-Laikov (number of 

point on the sphere / highest degree of polynomial exactly 
integrable) but number of points increases to fast

• We use other formulas that growth smoother but have negative 
weights for higher numbers of point leading to numerical 
instability



Questions??


