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Abstract: Basic components of the statistical theory of nuclear reactions are reviewed in the 
lectures. The relations used for the analyses of resonance structure of neutron-induced reactions are 
briefly discussed. Special attention is spent to approximations requiered for a description of the 
cross sections averaged over resonances. Main nuclear models used in the analysis of various 
reaction channels are considered together with the corresponding experimental data. The sets of 
theoretical model parameters recommended for practical applications are briefly commented.  
 
1 Resonance structure of neutron cross sections 

Nuclear reactions induced by neutrons relate to the most studied nuclear processes. Intensive 
researches of neutron interaction with atomic nuclei have been going on over more than 70 years 
since the discovery of the neutron. Extensive experimental information about the neutron induced 
reactions has been collected which was very important for both the evolution of fundamental 
concepts of nuclear physics and development of nuclear power and nuclear technology.  
 Since the exploration of specific features of neutron induced reactions by the Fermi group [35A] 
their investigations have been developed by many laboratories and have resulted in the creation of 
fundamental concepts of nuclear reaction theory. 
 In order to explain observed strong changes of neutron reaction cross sections at narrow energy 
intervals, N.Bohr has proposed the model of compound nucleus [36B1]. In accordance with this 
model the excitation energy carried in a nucleus by the neutron shares out quickly enough over 
many nucleons. Because the probability of concentration on one nucleon of an essential part of the 
energy that is required for an escape from nucleus is rather small, the formed excited nucleus will 
exist during a significant time undergoing a myriad of collisions between nucleons until its decay 
occurs by the emission of a nucleon or electromagnetic radiation. The long lifetime of an excited 
nucleus permits to present the nuclear reaction as proceeding in two stages: the formation of the 
compound nucleus by the collision of the projectile with a target nucleus and the compound nucleus 
decay into possible pairs of reaction products. The hypothesis about the independence of a 
compound nucleus decay from its formation was used as the principal idea in many works devoted 
to the development of the nuclear reaction theory [36B2, 38K, 47W, 58L]. 
 According to the formal theory of scattering the cross section of a nuclear reaction may be 
described by means of the scattering or S-matrix, the elements Sab of which define the asymptotic 
amplitude of the outgoing wave in channel b induced by the plane wave of unit amplitude in 
channel a [52B2, 58L]. The cross section integrated over angles for the reaction A(.a,b)B can be 
written as 
 22

ababaaab Sg −= δπσ    , (1.1) 

where a is the length of a wave for the incoming channel; ga=(2J+1)/(2sa+1)(2Ia+1) is the 
statistical weight factor connected with the total angular momentum J and the spins of the incident 
particle sa and the target nucleus Ia . Here the subscripts a and b specify the complete set of 
quantum numbers needed for the description of the initial and final states of the projectile, the 
target, the reaction products and also their relative motion.  
 The important properties of S-matrix are its symmetry 
 baab SS =      , (1.2) 
that reflects the invariance of the scattering system to time inversion, and its unitarity 
 ∑ =∗

b
accbabSS δ     , (1.3) 

reflecting the total flux conservation in the reaction. 
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 Using (1.3), we can express the total interaction cross section σt  and the total reaction cross 
section σr via the elements of the elastic scattering channel alone 
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If observed cross sections are formed by a superposition of many entrance and exit channels Eqs. 
(1.4) should be summed over nonfixed quantum characteristics of all channels. 
 For the low-energy neutrons a rather good approximation for the S-matrix elements is the single-
level Breit-Wigner formula [36B2] 
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where Εr  is the resonance energy of a excited compound nucleus, Δr  is the energy shift due to 
decay channels, ϕa  is the potential-scattering phase and fra  is the partial width amplitude connected 
with the corresponding partial widths Γra and the total widths Γr  of resonances by the relations 
 ,2
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The resonance dependence of the scattering matrix proceeds from a very general physical 
consideration of the energy distribution for quasi-stationary states of a quantum system [52B2, 
58L]. The amplitudes fra and phases ϕa are real numbers for the isolated resonances. The total width 
Γr in this case defines the lifetime of a corresponding quasi-stationary state τr = /Γr . So, from an 
analysis of the resonance structure of neutron cross sections we obtain direct information on the 
lifetime of a compound nucleus. 
 Substituting (1.5) into (1.1) one gets the well-known Breit-Wigner formula for the reaction cross 
section  
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where the energy shift is included into the corresponding resonance energy. In the same approach 
the elastic scattering cross section can be written as 
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For the elastic scattering the resonance peak is overlaid on the slowly changing background of the 
potential scattering, and the interference of the potential and resonance scattering distorts the 
resonance shape. Applying the Breit-Wigner formulae we should bear in mind that both the partial 
widths and resonance shifts are energy dependent in a common case. These dependencies are not 
important, as a rule, near resonance energies but they must be taken into consideration at energies 
far from a resonance.  
 It is convenient for many applications to write the resonance widths as 
 )()( EPE l

l
rnrn Γ=Γ    , (1.9) 

where the last multiplier describes the penetrability of the centrifugal barrier, which prevents the 
neutron to escape from a nucleus, and Γra

(l) is called the reduced neutron width. The energy 
dependence of the centrifugal barrier penetrability Pl , the potential scattering phase ϕl  and the level 
shift Δl  are usually calculated for the neutron scattering on an impenetrable sphere [52B2, 58L]. 
For the lowest values of an orbital angular momentum these functions are given in Table 1. As a 
rule, in calculations of the penetrability the “standard” estimation is used for the nuclear radius: R = 
(1.23 A1/3 + 0.8) fm. This convention is not extended, however, on the radius definition for the 
potential scattering phases which is usually chosen from an analysis of experimental data or from 
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calculations of the potential scattering of neutrons within the framework of the optical model (see 
below). As a result, the effective  scattering radius Rs can differ substantially from the value of R 
and can vary for different orbital momenta. 
 
Table 1. Centrifugal barrier penetrability Pl  , potential scattering phase ϕl  and level shift Δl  for an 
impenetrable sphere with radius R*) 
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 At very low energies the cross sections of neutron reactions are determined by neutrons with the 
orbital momentum equal to zero (so-called the s-wave neutrons). As the neutron widths are 
proportional to √ E and the wave length n  is conversely proportional to √ E , then for Ei << Er  Eq. 
(1.7) can be transformed to 
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It is evident from this formula that at low energies the neutron reaction cross sections obey the 1/v 
law where v is the neutron velocity. The elastic scattering cross section for low energy neutrons can 
be written as 
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Since Γr  << Er  the elastic scattering cross section approaches to the asymptotic limit that is defined 
by the value of the effective potential scattering radius Rs. 
 Eqs. (1.5)...(1.11) display the simplest example of the one-level description of neutron reaction 
cross sections. In reality the observed cross sections are formed by the contribution of many 
resonances. If the resonance widths are much smaller than the spacing between resonances, the 
resultant cross section may be presented as a superposition of contributions from all isolated 
resonances, i.e. as the sum of the resonance terms of Eqs. (1.7) and (1.8). 
 A description of contributions from many resonances can be improved on the basis of the multi-
level Breit-Wigner formula for the S-matrix  
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The relations for the elastic scattering and reaction cross sections may be written in this case as 
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where the following functions are used: 
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The latter function describes the resonance interference which improves essentially the description 
of the elastic scattering and of the total neutron cross sections for energies between resonances, 
where background cross sections are determined by “tails" of many resonances. 
 Both the one-level and multi-level Breit-Wigner formulas are correct for rather small overlap of 
resonances only. If resonance widths become comparable with resonance spacing, correlations 
between partial widths of different resonances arise and they play a dominant role in the origin of 
interference effects. In such cases more general multi-level formulas should be used for the analysis 
of neutron cross sections [38K, 47W, 58L]. The fairly complete discussion of such formulas can be 
found in Refs.[68L, 80M]. 
 In most practical applications of resonance formulas it is necessary to take into consideration the 
finite resolution of neutron spectrometers and Doppler broadening, caused by the thermal motion of 
target nuclei. It is usually assumed that the distribution of target nuclei velocities obeys the Maxwell 
distribution with the effective temperature Teff. The distribution of relative kinetic energies E’ of 
target nuclei may be written as 

 EdEEEdEEf ′⎥
⎦

⎤
⎢
⎣

⎡
Δ

′−
−

Δ
=′′ 2

2)(exp1),(
π

 (1.16) 

where Δ = 2 [TeffE/(1.A+1)]1/2 is called the Doppler width. To take into account some difference 
between the velocity distribution of target nuclei and the Maxwell distribution of velocities in an 
ideal gas, the temperature Teff  is chosen, as a rule, a little higher than the real temperature of a 
target. It is common practice to estimate this temperature excess in the framework of the Debye 
model for the vibrational spectra of target atoms [39L].  
 Averaging the cross sections in the center of mass system over the distribution (1.16) one gets 
the following formula for the cross sections in the lab-system 
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Using the Breit-Wigner formulas here one obtains the previous relations (1.13), but the following 
functions should be substituted into them instead of functions (1.14): 
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where x = 2(E-Er)/Γr  and β = 2Δ/Γr . Functions (1.18) are applied widely not only in nuclear 
physics, but also in the theory of atomic spectra. These functions can be connected with the 
probability integral from a complex argument and fast computer codes are available for their 
calculations [76C]. Analyzing the functions (1.18) it is not difficult to show that the thermal motion 
of target nuclei results in an additional broadening of resonances. Because integrals from functions 
ψr(x) and χr(x) do not depend on temperature, the area under a resonance curve remains unchanged. 
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 The Doppler broadening plays a relatively small role in the analysis of wide s-wave resonances 
of light and medium nuclei, but it should be certainly taken into consideration in the description of 
very narrow p- and d-wave-resonances of these nuclei. For heavy nuclei the Doppler broadening is 
important also for most s-wave resonances. The broadening of resonances due to the finite 
resolution of neutron spectrometers could be described in the same way as the Doppler broadening. 
The value of Δ in this case is defined by the resolution of a spectrometer. 
 Nowadays the numerous experimental data on neutron resonance parameters are obtained by 
efforts of many laboratories. A most complete compilation of available data is given in Refs. [81M, 
84M]. A distinctive feature of resonance parameters is strong fluctuations of the neutron resonance 
widths reflecting a complex structure of excited nuclear states.  
 For  isolated resonances the partial widths are defined as the squares of real amplitudes (1.6) 
which determine the overlap of the wave function of the compound nucleus with the wave function 
of residual nucleus and the emitted particle. Due to the complex structure of compound nucleus 
states the product of their wave functions and channel wave functions oscillates so strongly that the 
positive and negative contributions almost cancel each other. The overlap integral for such 
functions will be close to zero, and for various states it can deviate with approximately equal 
probability both on the positive and on the negative side. It is natural to suppose in these conditions 
that the distribution of reduced resonance amplitudes should have the gaussian-form 
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where the angular bracket indicates averaging over resonances. Assuming the distribution (1.19) as 
a hypothesis, Porter and Thomas derived the distribution for the reduced partial widths [56P] 
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In Fig. 1 this distribution is shown in comparison with experimental data on neutron widths of s-
wave resonances observed in the 238U + n reaction. Similar results currently are available for many 
nuclei [72C, 72L]. 
 The Porter-Thomas distribution assumes that partial widths relate to the same decay channel. If 
several channels contribute to observed resonance widths, then their distribution should be found as 
a convolution over distributions of partial widths. If the average partial widths for v independent 
channels are equal, then the distribution for the corresponding total widths will be described by the 
χv

2 - distribution for v degrees of freedom 
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The fluctuation of widths corresponding to this distribution may be characterized by the width 
dispersion 

 ( ) 22 2
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It is evident that the dispersion is maximal for the single-channel distribution (1.20) and decreases 
with the growth of the number of decay channels.  
 Together with the width distribution significant interest is evoked by the statistical regularities of 
the spacings between resonances. The basic problem in a description of spacing distributions is the 
account of a residual interaction responsible for the well-known effect of the level repulsion. 
Analyzing this repulsion on the basis of a rather simple model, Wigner obtained the nearest-
neighbour spacing distribution for levels with a given spin and parity [51W1] 
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where D  is the mean level spacing. 
 To study the statistical consequences of the level repulsion more deeply, Wigner suggested to 
consider the Hamiltonian of the system as random matrices [51W1]. The main idea of such an 
approach is the replacement of matrix elements of a complex residual interaction of physical 
systems by the random variables with a simple statistical distribution. At first the so-called 
Gaussian orthogonal ensemble was investigated [65P] which consists of real symmetric matrices 
with statistically independent elements and has the distribution of eigen values invariant relative to 
a rotation in Hilbert space. For such an ensemble with the matrices of 2×2 dimension the spacing 
distribution of two eigen values coincides with the distribution (23). For the matrices of higher 
dimensions some difference of distributions arises but it is rather small. 
 The problem of the level spacing distribution was put on a more rigorous formal basis by Dyson 
[62D]. He exposed the hypothesis of statistical independence of matrix elements to criticism and 
introduced the circular orthogonal ensemble, which permits to study the eigen values distribution 
for random matrices without consideration of the level density energy dependence. Using the 
analogy with electrostatics Dyson demonstrated the physical sense of level repulsion, specified the 
level spacing distribution for large spacings, and explored high order correlations in the level 
distributions. 
  To reconcile the statistical properties of levels with the shell model conceptions, the two-body 
random ensembles were explored [75B2, 81B]. The configuration spaces in such approaches are 
constructed on the basis of the realistic level schemes of the shell-model and only the matrix 
elements of residual two-body interaction are regarded as random variables. This statistical 
extension of the shell model seems much more physical than the orthogonal ensemble model, but 
the spacing distributions obtained for both models are very similar. 
  In the past years the spectral distributions of neutron resonances have been analyzed by many 
authors [65P, 72C, 81B]. As an example the spacing distribution between the nearest s-wave 
resonances observed in the reaction 238U + n is shown in Fig. 2. The analysis of such distributions 
requires a reliable identification of resonances to separate weak s-wave resonances from numerous 
p-wave resonances. For high quality experimental data the resonance spacing distributions agree 
quite well with the predictions of the random ensemble models. 
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Fig. 1. Distribution of the reduced neutron widths 
for s-wave resonances in the reaction 238U + n 
(histogram), the solid curve corresponds to the 
Porter-Thomas distribution. 
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Fig. 2. Nearest-neighbour spacing distribution for 
s-wave resonances in the reaction 238U + n 
(histogram), the solid curve corresponds to the 
Wigner distribution. 
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 Only a brief consideration of some most important applications of the random ensemble theory 
was given above. The study of such ensembles created in fact a new direction of statistical research 
with its own specific methods and problems. More complete discussions of these problems as well 
as many applications of the theory may be found in monographs [67M1, 68L, 81B]. 

2 Statistical description of average neutron cross sections  

With an increase in the neutron energy the widths of resonances grow and the resonance spacings 
decrease. As a result the resonances begin to overlap and observed cross sections are determined by 
the contribution of many resonances. A similar result is obtained for neutron spectrometers with a 
bad resolution, when measured cross sections are formed by the cumulative effect of many isolated 
resonances. The methods of description of such cross sections may be considered using the example 
of reactions induced by s-wave neutrons. 
 Let us average the matrix elements (1.12) over the energy interval ΔE  that includes a large 
number of resonances 
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where we use a bar to indicate an energy average and angular brackets to indicate an average over 
many resonances. It is assumed implicitly in this expression that the phases of potential scattering 
and average resonance parameters do not change on the interval considered. If the amplitudes of 
resonances fluctuate in a random way, then for a ≠  b we may expect <fafb> = 0 and the averaged S-
matrix has to be diagonal 
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With a similar averaging of the squares of matrix elements we find: 
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 On the basis of these formulae the average cross sections of the elastic scattering, the reactions 
and the total interaction can be expressed as  
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 In accordance with the definition given by Feshbach, Porter and Weiskopf [54F] we will refer to 
the cross sections expressed through the averaged elements of S-matrix as the optical ones and the 
cross sections determined by the dispersion of matrix elements as the fluctuating ones: 
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It was shown in the framework of the time dependent scattering theory that the optical cross 
sections define the probability of elastic or inelastic scattering of a particle wave package during its 
transmission through a nucleus, whereas the fluctuating cross sections define the probability of 
particle emission delayed by the lifetime of a compound nucleus [55F]. So σs

opt  determines the cross 
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section of the direct elastic scattering of a particle on a nuclear potential, while σs
fluc  determines the 

cross section of the elastic scattering through the intermediate stage of a compound nucleus.  
 The cross section of compound nucleus formation may be written with the help of Eqs. (2.4) and 
(2.5) in the form of 
 aa
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sc T2πσσσ =+=      , (2.6) 

where the transmission coefficient Ta is defined as  
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The diagonal elements of the average scattering matrix are usually approximated by means of the 
optical model [54F]. Some basic components of the optical model and its application to an 
experimental data analysis will be considered below. 
 The average reaction cross section may be written in the form of 
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where Fàb is the width fluctuation correction that determines the difference between the averaged 
ratio of fluctuating widths and the ratio of the average widths: 
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If the second term in the transmission coefficient estimation (2.7) can be neglected, Eq. (2.9) may 
be written in the form of 
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This expression is usually called the Hauser-Feshbach formula that was primarily derived without 
the width fluctuation correction [51W2, 52H]. 
 An explicit relation for the width fluctuation correction (2.9) can be found rather simply if the 
distributions of fluctuating widths are known. Applying the Porter-Thomas distribution to the 
neutron widths of resonances and assuming that the radiative widths do not fluctuate, one can obtain 
the fluctuation corrections for the elastic and inelastic neutron scattering [64M] 

 ( ) ( )
( )( ) ( )∑ ∫ ∏

∞

≠

+++

−
+=

c
c

cba
cabab tTtTtT

dttT
TF

0
2/1212121

exp
21

γ

γδ    . (2.11) 

The correction for the radiative neutron capture has the form  
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where the transmission coefficient for the radiative capture is defined as Tγ = 2πΓγ /D. The sums in 
Eqs. (2.11) and (2.12) include all competing channels of a compound nucleus decay, while the 
products in the denominators of (2.11) and (2.12) include all channels except the radiative one. 
 The width fluctuation correction increases the compound elastic scattering cross section and 
reduces the inelastic scattering cross sections. Taking into account such corrections is essential for a 
small number of open channels. For example, the fluctuation corrections reduce the neutron 
inelastic scattering cross sections on the low-lying levels at near threshold energies by almost 50% 
as compared with the simple Hauser-Feshbach formula [64M]. The effect of fluctuation corrections 
on inelastic scattering cross sections decreases with the growth of the number of open channels, 
while the correction for the compound elastic scattering cross section increases and it can reache an 
almost maximum value of 3. 
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 With the increase in energy the resonances begin to overlap and interference effects start to play 
an increasingly important role. As before, we are interested in the description of cross-sections 
averaged over the energy interval containing many resonances. In the region of isolated resonances 
the average cross sections were formed as a sum of independent contributions from each of the 
excited states of a compound nucleus. By contrast to this, in the case of strong resonance 
overlapping many excited states lying within the resonance width interval take part in the reaction 
and this fact introduces new aspects into the description of average reaction cross sections. 
 The general expression for the elements of the scattering matrix in the overlapping resonance 
range can be written in the following form  

 ∑ Γ+−
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where, unlike the isolated resonance case, the channel resonance amplitudes gra may be complex, 
while Sab

opt  values determine the non-diagonal elements of the scattering matrix which are weakly 
dependent on energy . The averaged elements of the S -matrix, as well as the average reaction cross 
sections can be found in a way similar to Eqs. (2.2)-(2.5). However, in these calculations we should 
take into account the correlation of amplitudes for overlapping resonances, the important role of 
which was shown in Refs. [67M2, 74W, 74T, 75M]. 
 Let us consider the relation of the resonance parameters and the elements of the averaged S-
matrix for the case  Sab

opt = 0. Proceeding from the unitary condition (3) we can obtain a certain 
“sum rule” for the resonance amplitudes 

 aaaaa SSg
D

−= ∗−122π     . (2.14)  

As the diagonal elements of the averaged S-matrix are described by the optical model, we can use 
the definition of the transmission coefficients (2.7) and rewrite (2.14) in the form 

 aaa TTg
D

−= 12 2π     . (2.15) 

On the other hand, we can obtain the connection between the transmission coefficients and partial 
resonance widths  
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exp1
π

    . (2.16) 

The latter equation for the average resonance width can also be written as 

 ( ) 11ln2 −∑ −=Γ
a

aT
D
π      . (2.17)  

The above formulas show that when Ta  approaches unity,  the average partial and total widths tend 
to infinity, while the absolute values of amplitudes squared grow exponentially as compared to 
partial widths [67M2]. 
 Let us return to the analysis of the average cross sections. For fluctuating cross sections in the 
overlapping resonance range we get 
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where 

 ( )∑
≠
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−−=

rs srsr
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ababab iEE
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D

iSSM
2

22
2 π     . (2.19) 

The first term of (2.18) is similar to the Hauser-Feshbach formula, however, its notation through the 
transmission coefficients depends to a large extent on the correlation properties of the resonance 
amplitudes gra . These properties are not well known. Nevertheless, we can assume that ⏐gra ⏐2 
values are proportional to the partial widths Γra  and the proportion coefficient is independent of the 
channel index 
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 12 >>=Γ rrara Ng     . (2.20) 
Based on this assumption Moldauer [67M2] introduced the effective transmission coefficients 

 ∑Θ=Θ=Θ
a

rarrarra gN
D

,  2 2π     , (2.21) 

which are related to the optical transmission coefficients through the following equations  

 ∑∑
≠≠

−Θ=−=
ab

aba
ab

fluct
aba MST

2
1     , (2.22) 

and with the help of which the reaction cross section (2.18) can be written in the form  
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 If the coefficients θa  are expressed via optical transmission coefficients, in the general case we 
get a rather complicated formula for the fluctuating cross sections. However, for the overlapping 
resonances the correlations of θra values seem to be very significant for different channels [74W, 
74T, 75M]. These correlations could lead to an effective cancellation of terms with different Mab 
and, thus, to a certain simplification of the description of average cross sections. If we assume that 
such “M-cancellation” is a common property of the overlapping resonances, we obtain the former 
Hauser-Feshbach formula for the reaction cross section with a correction factor for width 
fluctuations (2.10). However, this correction factor should be defined in view of the difference 
between the overlapping resonance widths distribution and a similar distribution in the isolated 
resonance range. The growth of Γa /D is expected to bring an increase in the effective number of the 
degrees of freedom v for partial widths from 1 to the limiting value of 2. The distribution of widths 
in this case will be described by the corresponding χv

2  - distribution. Using (1.21), we obtain the 
following equation for the width fluctuation correction in the elastic and inelastic scattering 
channels  
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Similar changes will be introduced in the width fluctuation correction (2.12) for the radiative 
neutron capture. An increase in v leads to a certain decrease in the influence of width fluctuation 
corrections. In particular, a maximum increase in the elastic scattering cross section through a 
compound nucleus for va = 2 will reach a factor 2 only, while in the isolated resonance range this 
increase would reach 3. 
 A rather simple approximation to the Hauser-Feshbach formula was proposed in Ref. [74T]. 
Instead of introducing the correction factor the authors suggested to use the modified transmission 
coefficients determined as  
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It was proved  by the statistical modeling of the average cross sections that this approximation is 
good enough when the total number of open reaction channels is not small [74T, 75M]. In Ref. 
[75H] more precise though more complex definitions of the modified transmission coefficients were 
discussed. An empirical formula for the effective number of channels based on a computational 
modeling of average cross sections in the region of overlapping resonances was found 
 2/11 aa T+=ν     . (2.26) 
Though the formula is not very precise, it nevertheless reflects the general trends of changes of 
width fluctuation effects for the overlapping resonances. 
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 The above analysis is based on the assumption about the diagonal form of the S-matrix, that is 
equivalent to the assumption about the absence of any direct nuclear reactions for inelastic 
channels. Non-resonance non-diagonal elements of the S-matrix correspond to direct transitions, an 
introduction of which should lead to additional correlations between the partial widths of different 
decay channels of a compound nucleus. These correlations, in turn, can lead to an increase in the 
fluctuating component of the average reaction cross sections. The nature of this effect is the same as 
the increase of the elastic scattering cross section through a compound nucleus due to width 
fluctuations. The general methods of the analysis of the fluctuating cross sections taking account of 
direct processes were developed in Refs. [74W, 75M]. It was proved that in this case the average 
cross sections of the reaction through a compound nucleus can be written in the form of the Hauser-
Feshbach formula with the modified width fluctuation corrections and transmission coefficient 
determined with an allowance for direct transitions. With direct processes included the intensity of 
the fluctuating component of cross sections grows due to partial width correlations in the channels 
linked by direct transitions only when the number of open channels is rather small. As the number 
of open channels increases, the correlation effects weaken and simple superpositions of the cross 
sections of direct reactions and reactions through a compound nucleus take place.  
 For a relatively large number of channels the sum of the transmission coefficients in the 
numerator and denominator of the Hauser-Feshbach formula (2.10) should be replaced by integrals 

 ∑ ∫∑ =
Ijl

U

clj
c

c dUIUETT
,, 0

max

),()( ρ     , (2.27) 

which contain the level densities of residual nuclei. The sum in (2.27) is taken over all combinations 
of the angular momenta and spins of the reaction products possible for given quantum 
characteristics of the compound nucleus. With an increase in the number of channels the level 
density plays an increasingly important role in the correct description of reaction cross sections 
passing through the compound nucleus stage. 
 Initially the compound nucleus model formulated by N.Bohr [36B1] was considered as a model 
of strong interaction of the projectile with the target nucleus. As a result of such an interaction the 
projectile is absorbed by the target nucleus immediately at the moment of contact and the 
compound nucleus formation cross section should coincide with the geometric cross section of the 
nucleus. Further research demonstrated however that for most reactions absorption is not so strong 
and the nucleus should be considered rather as a “semi-transparent” body. 
 Indications of the significant transparency of nuclei were first obtained from the analysis of the 
neutron scattering cross sections with the energy of 90 MeV [49F]. In order to describe the 
observed total and absorption cross sections a complex single-particle potential was used. Its real 
part corresponds to the mean field of a nucleus while the imaginary part determines the overall 
effect of all inelastic processes that remove the particle from the elastic channel. The relation 
between the imaginary part of the potential and the nuclear absorption coefficient was obtained 
from the consideration of the particle flux attenuation. 
 A further developments of the optical model was stimulated by the experiments on the scattering 
of neutrons with energies of several MeV conducted by Barshall [52B1]. Wide maxima were 
observed in the energy dependence of the neutron total cross sections, the positions of which 
changed smoothly with the mass number. Later similar maxima were observed in the differential 
neutron scattering cross sections as well. Feshbach, Porter and Weiskopf [54F] demonstrated that 
common features of the observed cross sections can be reproduced within the optical model with 
the potential in the form of a complex square-well with the depth of 42(1 + 0.03i) MeV and radius 
Ro = 1.45 A1/3 fm. The imaginary potential value corresponds to the mean free path of 15-20 fm, 
which significantly exceeds the size of a nucleus. Thus nuclei are rather transparent for low-energy 
particles and this property plays an important role in the analysis of nuclear reactions. 
 Though the square well model describes the basic features of the irregular behavior of the 
strength functions and the corresponding scattering cross sections, it is certainly too simplified to 
quantitatively describe experimental data. Therefore further development of the optical model 
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proceeded by making the single-particle potential used more precise and complicated. At present 
this potential usually takes the form  

 ( ) ( )sl ⋅+++−=
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ννν     , (2.28) 

where 1)]exp(1[)( −−
+=

i

i
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Rrrf  are the form-factors of the volume, surface and spin-orbital 

components of the optical potential, respectively, and the geometric parameters of the correspon-
ding form-factors can be different in the general case. Numerous results of cross section 
calculations within the optical model as well as examples of the experimental data description 
obtained can be found in Refs. [60N, 63H]. 
 Many authors attempted to find a universal set of optical potential parameters, which would give 
rather good description of a wide range of experimental data. At the same time they tried to keep 
the same geometrical parameters of the potential as in the shell model. They also take into 
consideration the dependence of the real and imaginary optical potential components on both the 
projectile energy and target isospin [72P1, 73H]. Despite the large number of the parameters 
included in the analysis, calculations with universal sets of potential parameters reproduce correctly 
only the general trends of the cross section dependencies on the energy and nuclear mass number. 
To describe the cross sections in a particular nucleus a certain adjustment of the potential 
parameters is usually needed, especially when cross sections are related to the low-energy region. 
The strength functions of the s- and p-wave neutrons shown in Fig. 3 can serve as an example of the 
results obtained within the optical model calculations. The calculations performed for some 
universal set of optical potential parameters do not reproduce the isotopic changes of the strength 
functions observed in the range of strength function minima. Neither does it show the splitting of s-
wave strength functions in the rare-earth nuclei. For a more accurate description of the available 
data we should not limit ourselves to the one-channel optical model and include some additional 
structural effects. 
 In the one-channel model the influence of all possible reaction channels on the elastic scattering 
channel is approximated by means of the imaginary part of the optical potential. If the effect of 
some reaction channels is much stronger than that of others, as we observe, for example, for the 
inelastic scattering of nucleons on the low-lying collective levels, the generalized optical model or 
the of coupled channels method (CCM) [58F1, 65T] should be used instead of the one-channel 
model. Within the phenomenological version of CCM the interaction between the neutron and the 
nucleus is described by the deformed optical potential 
 ),,()()r( ϕθrVrVV coupl+=     , (2.29) 
where V(r) is the spherical part of the potential similar to (2.28) and Vcouple is the potential 
component responsible for the coupling of different reaction channels. Vcouple can be expressed 
through the deformation parameters that describe the rotational or vibrational nuclear excitations 
[65T]. The coupling of the elastic scattering channel and those of closed inelastic scattering 
channels corresponding to low- lying collective levels is directly responsible for the splitting of the 
3s-giant resonance of the neutron strength functions shown in Fig. 3 [57M, 58V, 58C]. The 
coupling with the inelastic scattering channels is also important for the explanation of the isotopic 
dependence of the neutron strength functions [72N]. 
 Nowadays CCM is extensively used in the neutron cross-section analysis and numerous 
examples of experimental data descriptions obtained can be found in Refs. [75T, 83B]. The optical 
potential parameters obtained on the basis of the CCM analysis demonstrate a much smaller 
fluctuation from nucleus to nucleus than the individual sets of spherical optical model parameters. 
Besides, the parameters of the real component of the optical potentials are also in a much better 
agreement with the standard parameters of the shell model single-particle potential. This agreement 
is an important advantage of the generalized optical model. 
 When the mean free path is long, the probability of one of the particles escaping from the 
nucleus after one or several collisions of the projectile with a nucleon of the target nucleus is rather  
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Fig. 3. Strength functions of s- and p-wave neutrons as a 
function of the mass number. Results of calculations are shown 
by dashed curves for the spherical optical model and solid ones 
for CCM. 

high. Such processes are usually 
referred to as direct nuclear 
reactions. A typical time of direct 
reactions is approximately the 
same as the transit time of a 
projectile ~10-22 s and is much 
shorter than the time-life of a 
compound nucleus τc = 10-1..10-19 
s. As the number of intranuclear 
collisions is small, they cannot 
sufficiently disorient the 
projectile, thus the particle 
escaping from the nucleus is 
usually concentrated in the front 
hemisphere. This asymmetrical 
character of the angular 
distribution of particles is a major 
characteristic of direct 
mechanisms of nuclear reactions. 
The main theoretical methods 
used nowadays to describe these 
reactions as well as numerous 
examples of their application in 
experimental data analysis can be 
found in Refs. [70A, 83S]. 
 The above time estimates show 
that direct transitions and 
comparatively slow processes in 
the stage of the quasi-equilibrium 

compound nucleus correspond to two extremes in the time scale of nuclear reaction evolution. It is 
natural to expect that the processes relevant to the intermediate transition stage between the fast 
direct and slow compound stages will play a certain part in the nuclear transformations too. Study 
of such processes is one of the major current concerns in the theory of nuclear reactions [74F, 75A, 
80F].  
 
3  Nuclear level densities 
 
An essential part of our current knowledge on nuclear structure has obtained from investigations of 
the low-lying nuclear levels. However, a number of levels for medium and heavy nuclei grow so 
rapidly with increasing excitation energy that the spectroscopic analysis for each level becomes 
practically unfeasible. In such conditions a transition to the statistical description of nuclear 
properties looks natural and quite reasonable. The nuclear level density is the most important 
statistical characteristics of excited nuclei.  
 Simple analytical relations for the state density ω (U) of a nucleus with a given excitation energy 
U and the level density ρ(U,J) of a nucleus with a given angular momentum J have been obtained 
by Bethe on the basis of the Fermi gas model [37B]: 
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Here a = π2 g/6 is the level density parameter, which is proportional to the single-particle state 
density g near the Fermi energy, and σ2 is the spin cutoff parameter. 
 For the Fermi gas model the state equations determining a dependence of the excitation energy 
U, the entropy S and other thermodynamic functions of a nucleus on its temperature t have a simple 
form: 
 U = at2    , S = 2at    , σ2 = <m2>gt   , (3.2) 
where <m2> is the mean square value of the angular momentum projections for the single-particle 
states around the Fermi energy, which may also be associated with the moment of inertia of a 
heated nucleus ℑ = g<m2>. The connection of the thermodynamic functions (3.2) with the state and 
level densities (3.1) is obvious.  
 The main parameters of the Fermi-gas model may be estimated rather simply using the 
semiclassical approximation: 
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where m0  is the nucleon mass,  r0  is the radial parameter, A is the mass number and  bs  defines the 
surface component of the single-particle level density. 
 The most direct information on the level density of highly excited nuclei is obtained from the 
average parameters of neutron resonances. For the majority of nuclei the observed resonances 
correspond to s-neutrons, therefore the value of D0 is related to the level density of the compound 
nucleus by the relations: 
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were Bn  is the neutron binding energy, ΔE is the energy interval for which the resonances are being 
examined, I0  is the target nucleus spin, and the coefficient 1/2 before the sum takes into account the 
fact that s-neutrons form resonances only of a particular parity. If necessary, resonances for p-
neutrons  can be taken into consideration analogously. 
 The experimental values of Ds  are normally used as source data, from which the magnitude of 
the level density parameter can be derived by means of Eqs. (3.1) and (3.4). Many authors have 
carried out such an analysis [65G, 69M, 70B]. The regular differences of the level densities for 
even-even, odd and even-odd nuclei analogous to the even-odd differences of the nuclear masses 
have been already noted on the first systematics of experimental data. To take this effect into 
account it is usual to introduce the so-called effective excitation energy defined as 
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where δI  is the corresponding phenomenological correction for even-odd differences of the nuclear 
binding energies.  
 The level density parameters obtained in the framework of such an approach are shown in the 
upper part of Fig. 4. The values of a -parameters differ greatly from the semi-classical estimation 
(3.3). In the lower part of Fig. 4 the shell corrections to the nuclear mass formula are shown which 
are determined as  
 ( ) ( )βδ ,,,exp0 AZMAZME ld−=    , (3.6) 
where Mexp is the experimental value of the mass defect and Mld is the liquid drop component of the  
 



 15

 
Fig. 4. Ratio of the Fermi-gas level density parameter to the mass number (upper plot) and the shell 
corrections to the nuclear mass formula (bottom plot) 
 
mass formula calculated for the equilibrium nuclear deformations β [67M]. The strong correlation 
of the shell corrections and the ratio a/A should be considered as a direct evidence of the important 
role of shell effects in the description of level densities and other statistical characteristics of excited 
nuclei. 
 Data on the cumulative numbers of low-lying nuclear levels are also very important for the level 
density analysis. Many years ago it has been noted [60E, 65G] that the observed energy dependence 
of the cumulative number of levels is described rather well by the function 
 ( )[ ]TUUUN /exp)( 0−=  , (3.7) 
where U0 and T are free parameters determined by the fitting to corresponding data. The quantity 
N(U) is related to the level density by the relation 

 ( )[ ]TUU
TdU

dNUlev /exp1)( 0−==ρ    , (3.8) 

and it is obvious that the parameter T corresponds simply to a nuclear temperature. Since the value 
of this parameter is assumed to be constant over the energy range considered, Eq. (3.8) are called 
the constant temperature model. 
 In order to obtain a description of the level density for the whole range of excitation energies the 
low-energy dependence (3.8) should be combined with the high-energy dependence predicted by 
the Fermi-gas model. The link between both models’ parameters can be found from the condition of 
continuity for the level density and its first derivative at some matching energy 

 [ ])(ln0 xfgx UTTUU ρ+=    ,  ** 2
31

xx UU
a

T
−=    , (3.9) 

where Ux
* is the effective matching energy that includes the even-odd corrections (3.5). An analysis 

of experimental data within the framework of this phenomenological approach has been carried out 
in Refs. [3, 6], and the obtained parameters are shown in Fig. 5. The values of Ux determine the 
energies below which the level density description in terms of the Fermi-gas model becomes 
unsatisfactory, and one can see that for the majority of nuclei this energy is rather high. 
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Fig. 5. Mass-number dependence on the nuclear 
temperature Т and the effective excitation energy Ux , 
bellow of which the level density approximated with the 
constant temperature model. Blue crosses show the 
results of the independent analysis of the low-lying 
discrete levels. 

Another approach to the problem of 
simultaneous description of neutron 
resonance densities and low-lying levels 
was proposed in Ref. [73D]. It has been 
assumed that both sets of experimental 
data can be described on the basis of the 
Fermi-gas relations if the level density 
parameter a and the excitation energy shift 
δeff are considered as free parameters for 
each nucleus. Since for odd-odd nuclei the 
displacement thus found is negative, the 
above approach has been called as the 
back-shifted Fermi-gas model. All data 
available on the neutron resonance 
densities and low-lying nuclear levels were 
analyzed, and parameters a and δeff  have 
been estimated for the entire mass region. 
Due to another determination of effective 
excitation energies the values obtained for 
the a-parameter are naturally somewhat 
lower then those shown in Fig. 3. 
However, the shell effects in the mass 
dependence of a-parameters remain 
essentially invariable. 
 For many nuclei the available experi-
mental data on the spins of low-lying 
levels can be used to analyze the statistical 
distribution of angular momentum. The 
distributions obtained agree rather well 
with  predictions of the Fermi-gas  model, 

but uncertainties of the spin-cutoff parameter estimations are still large for most nuclei. 
 The results of all consistent microscopic calculations of the nuclear level densities display the 
damping of the shell effect at high excitation energies [70I, 70R, 83I, 96G]. To include the shell 
effect damping into consideration the level density parameters should be energy dependent. This 
dependence may be approximated by the formula [75I] 
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where aas is the asymptotic level density parameter to which a(U) tends for high excitation energies 
and γ  is the damping parameter. From a fit of a-parameters with the Myers-Swiatecki shell 
corrections the following coefficients (in MeV-1) have been obtained:  aas = 0.0959A+0.1468A2/3, γ 
=0.325/A1/3. The systematics based on the similar formulas have been developed in Refs. [75I, 80K, 
94M] and main differences between the corresponding level density parameters relate to estimations 
of the shell corrections. 

On the basis of above results we can conclude that the Fermi-gas and constant temperature 
models provide us with comparatively simple and convenient formulas for parametrizing 
experimental data on nuclear level densities. However, these models do not give any explanation for 
the shifts of excitation energies and shell changes of the level density parameters. An interpretation 
of these effects must be obtained on the basis of more rigorous models that take into consideration 
shell inhomogenities of single-particle level spectra, on the one hand, and the superfluid and 
collective effects produced by the residual interaction of nucleons, on the other. A detailed 
discussion of such models can be found in the monograph [83I]. However, rigorous microscopic 
methods of level density calculations are extremely laborious and this severely limits their 
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application to experimental data analysis. For this reason there is a need to have the level density 
description, which take into account the basic ideas of microscopic approaches concerning the 
structure of highly excited nuclear levels while being sufficiently simple and convenient for broad 
application.  
 The level density calculations discussed above are based on a consideration of the total energy 
of an excited nucleus as the sum over all possible combinations of quasi-particle energies. If we 
include into these combinations all possible rotational or vibrational excitations then the level 
density of a excited nucleus may be written in the form 
 rotvibrqp KKUU )()( ρρ =    , (3.11) 
where ρqp  is the level density due to quasi-particle excitations only, and Kvibr and Krot are the 
corresponding enhancement coefficients. 
 In adiabatic approximation the rotational enhancement of the level density depends from the 
nuclear shape symmetry and can be written as [74B]: 
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where ℑi  is the moment of inertia relatively to the perpendicular axis. This formula is obtained on 
the assumption of the mirror and axial symmetry of deformed nuclei. This shape have most stable 
nuclei of the rare-earth elements (150 ≤ A ≤ 190) and the actinides A ≥ 230. For non-axial forms the 
rotational enhancement of the level density becomes even greater [74B]. 
 The vibrational enhancement coefficient is determined in the microscopic approach by the 
relation 
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where ωj  is the energy of vibrational excitations, ωi
o is the energies of corresponding quasi-particle 

excitation and gi  is the degeneracy of such excitations. The presence of quasi-particle energies in 
Eq. (3.13) reflects some account of non-adiabatic effects in excited nuclei. Due to the symmetry 
conditions imposed on the nuclear Hamiltonian the rotational and vibrational excitations become 
connected by some relations in consistent microscopic approach [83I]. As a result the calculated 
collective enhancement coefficients turn out always reduced in comparison to the adiabatic 
estimation.  
 It can readily be seen that the adiabatic estimation of Krot  increases the nuclear level densities by 
a factor of 50-100 compared to the calculations based on quasi-particle excitations alone. The 
increase of the level density due to vibrational excitations will be appreciable only for low-energy 
excitations with ωi < 1-2 MeV. 
 The influence of pairing correlations of superconductive type on nuclear properties can be 
characterized by the correlation functions Δoτ , which directly determine the even-odd differences in 
the nuclear binding energies and the energy gap 2Δoτ in the spectrum of quasi-particle excitations of 
even–even nuclei. The critical temperature tcr of the phase transition from a superfluid to a normal 
state is connected with the correlation function through the relation  
 tc = 0.567Δ0    . (3.14) 
The excitation energy corresponding to the critical temperature may be written as:  
 0

2
0472.0 Δ−Δ= naU crcr    , (3.15) 

where n = 0, 1 and 2 for even-even, odd and odd–odd nuclei, respectively. Above the critical energy 
the level density and other nuclear thermodynamic functions can be described by the Fermi gas 
relations, in which the effective excitation energy is defined as  
 condEUU −=∗     . (3.16) 
Here Econd is the condensation energy that determines a reduction of the nuclear ground state energy 
due to the pairing correlations: 
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 To take into account the shell effects the energy dependence of the level density parameter 
should be modified in the corresponding way: 
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 Below the phase-transition point (3.15) the expressions for thermodynamic functions of a 
nucleus are rather complex, and they will not be considered here. The complete expressions can be 
found in Refs. [79I, 83I]. The differences between the thermodynamic functions of the superfluid 
model and Fermi-gas model are shown in Fig. 6. The differences are most remarkable for the 
moments of inertia, and available experimental data about the temperature dependence of the 
effective moments of inertia for fissioning nuclei give the best evidence for the existence of the 
corresponding phase transition in excited nuclei [82I].  
 

 
Fig. 6. Temperature dependence of the nuclear thermodynamic functions for the superfluid model (solid 
lines) and the Fermi-gas model (dashed-dotted corves) 
 
 Eq. (3.18) was used as the basic one to construct a phenomenological version of the generalized 
superfluid model (GSM) [23]. Applying above relations for a description of the pairing correlation 
effects the level density enhancement coefficients were estimated from the experimental data on the 
densities of neutron resonances. In such analysis the asymptotic values  of the level density parame- 
ters were defined as aas = 0.073 A + 0.115 A 2/3 MeV , the shell corrections were taken from Ref. 
[67M]  and the correlation functions approximated as  Δo = 12/A1/2  MeV.  The coefficients obtained 
are shown in the upper part of Fig. 7. In the lower part the values of similar coefficients calculated 
in the adiabatic approximation are given. A correlation of both coefficients is very strong but as a 
rule the adiabatic evaluations give higher values of coefficients than the similar ones extracted from 
the observed density of neutron resonances. The difference of these two definitions of the level 
density enhancement factors demonstrates that the damping of the enhancement coefficients for 
highly excited nuclei should be taken into account. 
 At first glance it might seem that the systematics of the level density parameters in terms of the 
Fermi gas and the GSFM are equally justified, since they give approximately identical description 
of  the level  densities  at excitation energies  close to  the neutron  binding energy.  However, these 
descriptions correspond deferent absolute values of the level density parameters, because the 
inclusion of collective effects decreases the a-parameters obtained. These reduced values agree well 
enough with both the experimental data derived from the spectra of inelastically scattered neutrons 
with energies of up to 7 MeV and the theoretical calculations of the a-parameters for the single-
particle level schemes of a Woods-Saxon potential [79I, 83I].  This agreement of the data is very  
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Mass number 

Fig. 7. Collective enhancement factors calculated in the 
adiabatic approxima-tion (a) and obtained as the ratio of the 
observed density of neutron resonances to the calculated density 
of quasi-particle excitations (b). 

important, because the evaporation 
spectra are sensitive precisely to the 
value of the level density parameter 
rather than to the magnitude of the 
excited level density. It is impossible 
to explain differences between the 
values of a-parameter obtained from 
resonance data and from evaporation 
spectra in terms of the Fermi-gas 
model without account of collective 
effects. Proper consideration of the 
level density collective enhancement 
is also very important for a consistent 
description of the observed fissilities 
of highly-excited nuclei [80I].  

 At first glance it might seem that 
the systematics of the level density 
parameters in terms of the Fermi gas 
and the GSFM are equally justified, 
since they give approximately 
identical description of the level 
densities at excitation energies close 
to the neutron binding energy. How-
ever, these descriptions correspond 
deferent absolute values of the level 
density  parameters,   because the  

inclusion of collective effects decreases the a-parameters obtained. These reduced values agree well 
enough with both the experimental data derived from the spectra of inelastically scattered neutrons 
with energies of up to 7 MeV and the theoretical calculations of the a-parameters for the single-
particle level schemes of a Woods-Saxon potential [79I, 83I]. This agreement of the data is very 
important, because the evaporation spectra are sensitive precisely to the value of the level density 
parameter rather than to the magnitude of the excited level density. It is impossible to explain 
differences between the values of a-parameter obtained from resonance data and from evaporation 
spectra in terms of the Fermi gas model without account of collective effects. Proper consideration 
of the level density collective enhancement is also very important for a consistent description of the 
observed fissilities of highly-excited nuclei [80I].  
 Today it seems almost obvious that in description of the level densities of excited nuclei we 
should to use the models, which are more consistent than the Fermi-gas, but inevitably more 
complex. The success of the generalized superfluid model is attributed to the inclusion of the main 
well-known component of nuclear theory: the pairing correlations, shell effects and collective 
excitations. Some complexity of the model seems to be justified by the mutual consistency of the 
parameters obtained from the various experimental data and also by the close relation of the 
theoretical concepts used to describe the structure of low-lying nuclear levels and the statistical 
properties of highly excited nuclei. 
 
4  Statistical, direct and valence models of neutron radiative capture 

Nuclear reactions involving gamma-rays are usually described in the same way as the reactions with 
nucleons and other heavy particles in the entrance and exit channels [36B2, 52B2, 58L]. In 
accordance with the compound nucleus model the neutron radiative capture can be considered as 
two independent processes: formation of a long-lived excited nucleus by the absorption of neutron 
and further statistical decay with gamma-ray emission. Primary gamma-rays usually take away only 
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part of the excitation energy of a compound nucleus and the rest of the energy is taken away by a 
cascade of gamma-transitions (secondary, tertiary, etc.). 
 As the interaction between the nucleons and the electromagnetic field is rather weak, general 
expressions for the probability of radiative transitions can be obtained in terms of standard 
perturbation theory [52B2]. By expanding the electromagnetic field vector potential into multipole 
moments we find the following equation for the probability of electric E1- or magnetic M1- 
gamma-transitions  
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where kγ = εγ/ c is the gamma-ray wave number and Qlm is the electric or magnetic multipole 
operator.  
 Following  N.Bohr’s idea about a strong interaction between a neutron and a target nucleus, the 
initial states in (59) should be identified with the resonance states of the compound nucleus. Due to 
the complex nature of these states the amplitudes of partial radiative widths should be described by 
the normal Gaussian distribution (1.19) just like the amplitudes of the reduced neutron widths. In 
this case partial radiative widths obey to Porter-Thomas distribution (1.20) that is a typical feature 
of the statistical mechanism of neutron capture. 
 Experimental test of this distribution for partial radiative widths is a much more laborious task 
than for neutron widths. Even missing a few of weak gamma-transitions, which are very difficult to 
measure, could lead to misinterpretations. In general, measurements made for heavy nuclei far off 
the magic ones show agreement between experimental results and the Porter-Thomas distribution 
[69C]. The study of the total radiative width distribution is much simpler. As gamma-transitions to 
many levels of a compound nucleus are permitted for each neutron resonance, the average number 
of gamma-decay channels in heavy nuclei should be rather large (∼ 50÷80). According to (1.21), at 
large v fluctuations of total radiative widths  are relatively small.  This conclusion agrees well with 
the observed distribution of widths (Fig. 8). The large number of statistically equivalent gamma-
decay channels leads to a typical Maxwellian spectrum for gamma-ray energies.  
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Fig. 8. Total radiative width distribution for the s-
wave neutron resonances of 238U 

 First indications of the existence of 
non-statistical effects in thermal neutron 
capture originated from the study of gamma-
ray spectra [58G]. For the nuclei close to 
magic ones very intensive high energy 
gamma-transitions have been detected which 
seem to be in contradiction with the 
Maxwellian spectrum predicted by the 
statistical model. These experiments brought 
forth the development of a more rigorous 
theory of neutron radiative capture, which 
includes not only statistical but other 
reaction mechanisms as well. 
 Basic concepts of the theory have been 
formulated by Lane and Lynn [60L]. They 
pointed to the fact that in the application of 
Eq. (4.1) the full wave function of the 
neutron scattering problem should be 
considered for the initial state. This wave 
function contains all resonance states of a 
compound nucleus in the internal region as  

well as the full set of channel states determining the relative motion of a nucleus and neutron in the 
external region. The presence of non-resonance components, describing the potential neutron 
scattering in wave functions of the entrance channel and channels of inelastic scattering, brings 
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forth the corresponding components for the electromagnetic transition probability. Hence in the 
general case the elements of S-matrix for the radiative neutron capture have to be written as  
 S S Sn n

pot
n
res

γ γ γ= +     . (4.2) 
The resonance component of the matrix elements may be described by the multilevel Breit-Wigner 
formula 
 [ ]S i i E E in

res
n rn r r r

r
γ γ γϕ ϕ= − + − + −∑exp ( ( )/ /Γ Γ Γ1 2 1 2 12     . (4.3) 

However, it should be borne in mind that radiative width amplitudes contained contributions both 
from the internal resonance and external channel regions. So in the general case they have to be 
specified in the form of  
 ( ) ( )Γ Γ Γγ γ γn r r

chan1 2 1 2 1 2/ / /
= +inter     . (4.4) 

 The separation of internal and external regions in the wave functions of scattering problems as 
well as the definition of the potential and resonance components of S-matrix elements depends on 
the models used in the analysis of neutron cross-sections. Simple estimates of contributions from 
different components can be obtained from the model of strong interaction between an incident 
neutron and a target nucleus [60L, 68L]. In this model the neutron is absorbed on the surface of a 
nucleus and resonance width amplitudes for the decay into any channel are determined mainly by 
the internal region of a nucleus, i.e., by the first term of Eq. (4.4). This term directly corresponds to 
the statistical model of radiative neutron capture through a compound nucleus that was considered 
above. 
 The potential component of the S-matrix (4.2) in the strong absorption model is determined by 
the direct neutron capture from channel states into bound states of the residual nucleus. For s-wave 
neutron capture accompanied by an electric dipole transition into the bound p- state of a neutron in 
the residual nucleus the following expression for the cross section was obtained in the model 
considered [60L, 86R] 
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where R is the effective radius of the nucleus, R´ is the equivalent radius of the potential scattering, 
θf is the spectroscopic factor of the final state which coincides with the spectroscopic factor of the 
direct (d,p)-reactions, y2 = 2 2 2m Rε γ / . The numerical coefficient in Eq. (4.5) holds for the neutron 
energy in electron-volts and the capture cross section in barns. Initially an additional coefficient 
taking into account the target spin effects was included into Eq. (4.5), but it was removed after more 
careful consideration of the formula [86R]. 
 The channel component of the radiative widths of s-resonances can be calculated in a similar 
way for the strong absorption model [60L] 
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where θi
2 = Γni ⁄ 2kRPlΓsp  is the ratio of the reduced resonance neutron width to the single-particle 

width Γsp = 2/mR2; SIiIf  is the geometric factor determined by the angular momenta addition rules. 
 As the cross-sections of direct capture (4.5) and the channel component of radiative widths (4.6) 
depend on the spectroscopic factors θf , both capture mechanisms should be best revealed for the 
near-magic nuclei, the low-lying single-particle levels of which have the maximum values of θf ≈ 1. 
Of course the problem of identification of each capture mechanism arises. To do that we can 
analyze the capture cross sections far off resonances on the basis of the theoretical predictions (4.6). 
On the other hand, in order to differentiate between the two mechanisms we can use the differences 
in the energy dependence of gamma-transition intensities. For the direct capture the intensity is 
proportional to εγ, whereas for the channel capture it is proportional to εγ2. It was shown in Ref. 
[78M] through the use of these features that the direct capture mechanism makes an essential 
contribution to thermal neutron capture cross sections for many nuclei of the region A ≤ 50. 
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 The distribution of partial cross-sections of thermal neutron capture by 42Ca can be considered as 
one of the best evidence of the direct capture model [79M1]. The distribution observed is shown in 
Fig. 9 in comparison with the results calculated for available independent data on the spectroscopic 
factors of the (d,p)-reaction. A similarly good agreement with theoretical estimations was also 
demonstrated for partial cross sections of thermal neutron capture on 130Te, 136Xe, 138Ba [79M1]. 
Rather complete reviews of experimental data available about the direct capture of thermal and low-
energy neutrons can be found in Refs. [79M2, 83A] which also discuss the agreement of 
experimental data with the theoretical models more rigorous than the strong absorption model. 
 Analyzing the channel component of the radiative resonance widths Lynn proposed to consider 
the corresponding transitions as changes of the valence neutron states separated from the full 
spectrum of more complicated nuclear excitations instead of dividing the internal and external 
regions in the neutron wave function [68L]. In such an approach the relation determines the partial 
widths of electrical dipole transitions 
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where ui and uf  is the single-particle neutron wave functions for the initial and final states. The ini- 
tial calculations used the wave functions of the shell model single-particle potential and the 
estimation of the single-particle width Γsp corresponded to the strong absorption model. As the 
single-particle width for the realistic shell-model potential with a diffuse range is several times 
larger, problems arise in matching the single-particle widths to the normalization of single-particle 
wave functions. 
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Fig. 9. Comparison of the observed partial cross 
sections of the thermal neutron capture on 42Ca 
(left) with direct capture model calculations (right) 
[79M1]. The energies of excited levels are given 
on the left. 
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Fig. 10. Comparison of the relative intensities of 
observed partial radiative widths for the s-wave 
neutron resonance on 54Fe at the energy of 7 keV 
(left) with the valence capture model predictions 
(right) [80R]. 

 
 A more rigorous approach to the calculations of the valence neutron capture was formulated by 
Lane and Mughabghab within the framework of the optical model [74L]. They obtained the 
following relation for the valence component of radiative widths 

 Γ Θ Γγ
γπ

δi f
val

f ni

f i
opt

opt
JiJf

k Ze

A

u r u
S→ =

⎛

⎝
⎜

⎞

⎠
⎟

16

9

3
2

2
2

Im

Im tg
     , (4.8) 



 20

which, unlike (4.7), contains the single-particle wave function ui and phase shift δopt of the optical 
model. As a result of the mutual reduction of factors related to the single-particle wave function 
normalization and an increase in single-particle widths, predictions made according to the optical 
model (4.8) do not differ essentially from the initial estimations of valence widths with Eq. (4.7) in 
the vicinity of 3p-giant resonance (A ~ 90). However, the optical model calculations yield width 
values 1.5...2 times higher than (4.7) in the region of 3s-resonance (A = 50...70) [75B1, 78M]. The 
calculations of the radiative width valence components for a wide range of mass numbers, as well 
as the energy changes in the widths are reviewed rather completely in Ref. [78A]. 
 The analysis of partial radiation widths of s-wave resonances in 96Zr and 98Mo was one of the 
first quantitative tests of the valence neutron capture model [71M]. Further studies yielded similar 
results for many nuclei in the vicinity of 2p-, 3s- and 3p-giant resonances [78A, 80R, 83A]. The 
distribution of the partial radiation widths obtained for the s-wave neutron resonance at the energy 
of 7 keV on 54Fe (Fig. 10) may be considered as a bright example of a good agreement of 
theoretical predictions with experimental data [80R]. 
 The valence neutron radiative capture was also analyzed in the semi-microscopic approaches 
based on the modern multi-particle shell model [75C, 77U]. The results obtained do not differ 
significantly from those obtained through the optical model. However, they help to identify the 
optimum criteria for the selection of the optical model parameters and to achieve a more consistent 
description of nuclear structure effects in neutron induced reactions. 
 As the valence component of radiative widths is directly proportional to single-particle 
spectroscopic factors of initial and final states, the valence neutron capture should entail 
correlations of partial radiative widths for different neutron resonances as well as correlations 
between neutron and radiative widths. Such correlations were used in Ref. [78A] to estimate the 
contribution of the valence capture into the total radiative widths for a wide range of nuclei. For 
light and medium nuclei with a closed neutron shell these contributions may reach 20-30%, 
however, they decrease sharply with distance from the magic numbers. 
 It should be noted that the valence capture model explains correlations of widths caused by 
single-particle effects only. Experimental data on many nuclei reveal correlations of partial 
radiative widths, which can be explained by a non-statistical distribution of amplitudes of more 
complicated entrance excitations [71L, 80B1]. Noncontradictive description of such excitations 
seems to be feasible in the framework of consistent microscopic approaches. The quasiparticle-
phonon model seems a rather promising one [78S]. It allows interpreting not only the single-
particle valence neutron correlations, but also those related to collective nuclear excitations. A 
detailed discussion of the results of this model as well as the corresponding analysis of 
experimental data can be found in [79S, 80B1, 83A]. 
 The description of radiative widths can be made more consistent if in accordance with the 
general methods of the statistical theory of nuclear reactions we relate the gamma-decay widths to 
the cross section of the inverse absorption reaction. The absorption cross section of gamma-ray by 
an unexcited nucleus, averaged over resonances, can be written as 
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where gs = (2Ii + 1)/2(2I0 + 1) is the statistical weight factor determined by the spins of initial Io  
and excited Ii  states and <Γγ

o> is the average width of radiative decay to the ground state. Eq. (4.9) 
is valid also for the absorption cross section of gamma-rays by an excited nucleus. However, in that 
case the radiative widths for the corresponding excited state should be substituted in the right-hand 
side of the equation. Assuming that the photo-absorption cross section does not depend on the 
initial state of the nucleus and is determined only by the energy of the gamma-quanta, the average 
width of the gamma-decay of the excited nucleus to any lower state can be written as 
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This expression is usually referred to as the Brink hypothesis [55B]. 
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 For dipole electric transitions the absorption cross section observed has a shape of a giant 
resonance. Approximating such a cross section with the Lorentz curve we obtain the following 
relation for the radiative width 
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where Eg is the energy of the giant resonance, Γg is its half-width and σg is the resonance value of 
the photo-absorption cross section. It was shown by Axel [62A] that for gamma-ray energies close 
to the neutron binding energy Eq.(75) can be replaced with a rather simple formula 
 Γγ γεi f

E
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8 3 5/ ( )       (4.12) 
with the factor of kE1 = 6.1⋅10-15 MeV-5 corresponding to the mean parameters of the giant 
resonance: Eg = 80/A1/3 MeV, Γg =  5 MeV, σg  = 230 mb. 
 Most direct experimental information on the electromagnetic transitions in highly-excited nuclei 
is provided by the measurements of partial radiative widths of neutron resonances. Since partial 
widths fluctuate from resonance to resonance, averaging the observed widths over a sufficiently 
large number of resonances is necessary for a comparison with the above estimations. Such data are 
usually represented as the reduced gamma-ray strength functions determined as 
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For dipole electric transitions the definition of strength functions based on Eq. (4.12) is also widely 
used. Available experimental data on the radiative strength functions for gamma-ray energies close 
to the neutron binding energy are shown in Fig. 11.  
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On the average these data correspond to the 
following values of gamma-ray strength 
functions [81C]: 
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A considerable dispersion of the data in Fig. 7 
relative to the average values is displayed, 
especially for magnetic transitions. Errors of 
strength function evaluations are also big for 
many nuclei because of the limited number of 
resonances. 
 Methods of direct measurements of the 
partial radiative widths averaged over many 
resonances are very promising in the study of 
gamma-ray strength functions [70B]. Such 
measurements demonstrated that strength 
functions of dipole electric transitions 
observed for rareearth nuclei within the range 
of gamma-ray energies from 6 to 8.5 MeV 
approximately correlate with the Axel-Brink 
model. The giant resonance with the energy 
of 8...9 MeV was also observed in the 
gamma-ray strength functions of the dipole 
magnetic transitions [72B, 86C]. The 
estimation of the gamma-ray strength 
functions for quadrupole electric transitions 
was obtained in this approach too [86C] 
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 Experimental data on the gamma-ray continuous spectra produced in absorption of thermal and 
resonance neutrons as well as the gamma-ray spectra released in (d,pγ)-reactions are also widely 
used for the analysis of the energy dependence of radiative strength functions [74B]. Strength 
functions of the dipole electric transitions obtained for 181Ta and 198Au from the description of 
observed spectra are shown in Fig. 12 together with the results of partial widths analysis. Data 
available for the deformed nucleus 181Ta are in comparatively good agreement with the Lorentzian 
parameterization of the photo-absorption cross sections in the whole range of gamma-ray energies. 
At the same time considerable deviations from the Lorentzian curve appear for the spherical nucleus 
198Au at gamma-ray energies below 5 MeV. 
 Similar discrepancies manifest themselves for many nuclei within the ranges of mass numbers 
110 < A < 140 and 190 < A < 210. The anomalous “gross-structure” in the high-energy part of the 
gamma- ray spectrum produced in the (n,γ) and (d,pγ)-reactions is directly related to these 
discrepancies [74B]. An increase in the deviation of the giant resonance tail from Lorentzian 
parameterization for mass numbers close to magic ones was also observed in the gamma-ray 
strength functions obtained from the direct averaging of partial radiative widths of neutron 
resonances [82R]. 
 Unique possibilities to study the gamma-ray strength functions at energies below 1.5 MeV are 
offered by the investigation of the (n,γα)-reaction [82P]. The strength functions of the dipole 
electric transitions obtained from the analysis of the 143Nd(n,γα)-reaction are shown in Fig. 13 
together with the results of the analysis of averaged partial radiative widths for the gamma-ray 
energies of 5...7 MeV [82R] and data on the photo-absorption cross sections in the energy range 
above 8 MeV [71C]. The Lorentz curve which gives a good description of the photo-absorption 
cross sections passes much higher than the neutron resonance data on gamma-ray strength functions 
at energies of 5...7 MeV and fails to describe the energy dependence of the (n,γα)-data below 1.5 
MeV. Unfortunately, such manifold experimental data are currently available only for one nucleus,  
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Fig. 12. Energy dependence of gamma-ray strength 
functions obtained from the analysis of partial 
radiative resonance widths (•), from the gamma-ray 
spectra of the thermal neutron capture reaction (o) 
and the (d,pγ)-reaction (▲) [74B]. Dashed curves 
correspond to Lorentzian parameterization of the 
giant dipole resonance. 
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Fig. 13. Energy dependence of gamma-ray strength 
functions of 144Nd obtained from photo-absorption 
cross sections (o), from averaged partial widths of 
neutron resonances (•) and from the analysis of the 
(n,γα)-reaction (×). The dashed curve corresponds to 
the traditional Lorentzian approximation of the 
photo-absorption cross section; the solid curve is the 
Lorentzian approximation with the width dependent 
on gamma-ray energy and temperature of the 
residual nucleus [83K]. 
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144Nd. Therefore, it is difficult to understand to what extent the observed deviations from the 
standard Lorentzian shape reflect individual features of the given near-magic nucleus and how 
deviations will change if one moves away from the closed neutron shell. 
 To interpret the observed decrease in the radiative strength functions in the giant resonance tail 
region it was proposed in Refs. [82B, 83K] to use the giant resonance widths those depend on both  
the gamma-ray energies and temperature of an excited nucleus. Such dependence should be similar 
to the formulas for the zero sound attenuation in the Fermi-liquid theory [57L] and may be 
approximated in the following form 
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where Eg  and Γg  are the observed energy and half-widths of the giant dipole resonance and t is the 
temperature of the residual nucleus. Such modification of Eq. (4.11) gives a good description of the 
strength functions obtained from the partial radiative widths of neutron resonances and the 
temperature dependence of the giant resonance width (4.16) is of principal importance to the 
explanation of the radiative strength functions at gamma-ray energies below 1.5 MeV (Fig. 13). The 
generalized Lorentzian model that includes the energy and temperature dependence of the giant 
resonance width have got further development in Ref. [84U, 85K, 90K], where the formulas for 
gamma-ray strength functions of E1, E2 and M1-transitions were discussed in detail and global 
systematics of its parameters were proposed. 
 Besides the data on partial radiative widths for neutron resonances, considerably more extensive 
information exists on total radiative widths. These widths are one of the main characteristics of 
statistical description of neutron radiative capture cross sections and much attention was paid to 
their systematization and analysis. Since the dominant contribution to radiative widths is made by 
electrical dipole transitions, the relation for the total widths can be written in the form of 
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If necessary, contributions of the magnetic dipole transitions to total radiative widths can be taken 
into account using similar relations. 
 The gamma-transitions with energies about 2...3 MeV play a decisive role in the integrated 
function Eq. (4.17). For such transitions the Lorentzian approximation of the giant dipole resonance 
tail  can be presented as rather a simple function 
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Using this parameterization for gamma-ray strength functions and the constant temperature model 
for the level density we can obtain the following relation  for total radiative widths 
 53/75 )MeV/(10 tAtot −=Γγ     , (4.19) 
where the numerical factor corresponds to the widths in meV. Application of other functional 
representations of gamma-ray strength functions and nuclear level densities will produce only some 
changes in the power dependence of the total radiative widths on the temperature and mass number 
[ 81M,  82B, 83M]. As an empirical systematics of the radiative widths dependence on the mass 
number and excitation energy of the excited nucleus the following relation was suggested in Ref. 
[83M] 
 ( ) 56.2823.00321.0 MeVBA n

tot −=Γγ     . (4.20) 
 Beside simple analytical estimations, more accurate numerical calculations of the total radiative 
widths were performed, in which the individual variations of the nuclear level densities and gamma-
ray strength functions were taken into account [77J, 80R, 82H, 90K]. Results of these calculations 
provide a sufficiently good description of the main variations observed in the total radiative widths 
of neutron resonances. In particular, they explain some systematic differences of the total radiative 
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widths for s- and p-wave neutron resonances in the mass range 90 < A < 110 as an effect of the 
domination of certain parity in the spectra of low-lying nuclear levels. 
 It should be noted that the main part of some discrepancies of statistical calculations of total 
radiative widths with experimental data relates to near-magic nuclei. As discussed above , 
significant contribution to radiative widths of such nuclei may arise from different non-statistical 
effects and, the first of all, from the valence mechanism of the neutron radiative capture. The 
valence neutron capture model provides good explanation the difference between the radiative 
widths of s- and p-wave resonances at mass numbers about 50 and 90 which are not described by 
statistical calculations [78A, 80R]. For the near magic nuclei an important role in the analyses of 
radiative widths can play the shell effects similar to the shown one in Fig. 13. Unfortunately, 
limited experimental information on the gamma-ray strength functions and the valence component 
of neutron resonance widths does not allow us to identify all uncertainties of theoretical model 
parameters used in different descriptions of total radiative widths.  

For the neutron radiative capture the Hauser-Feshbach-Moldauer relation (2.10) can be written in 
the form  
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were Tγ are the radiative transmission coefficients connected with the radiative widths through the 
relation  
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Because the excitation energy of a residual nucleus after the emission of low-energy gamma-quants 
can be above the neutron binding energy and the reactions of (n,γn′),…, (n,xγn′) can be possible, the 
numerator of Eq. (4.21) includes only the capture radiative coefficients corresponding to the 
reaction channals without the secondary emission of neutrons.  

The available experimental data on the radiative capture of fast neutrons have been analysed by 
many authors [60B, 69M, 70S, 80R, 86B]. An effect of different factors on the calculated cross 
sections can be traced in Fig. 14, where the statistical model calculations are compared with the 
experimental data for the 68Zn(n,γ) reaction. Contributions of the various partial waves change 
rather quickly with the increasing of a neutron energy and the relative contributions depend 
essentially on the corresponding neutron strengh functions. For the neutron energies below the first 
excited level of the taget nucleus the fluctuation correction (2.24) reduces the calculated cross 
section by 15-25%. For higher energies, when several inelastic scattering channels are open, the 

 
 
 
 
 
 
 
 

Fig. 14. Neutron capture cross 
sections for 68Zn, calculated 
taking into account the width-
fluctuation corrections (solid 
curves) and without such 
corrections (dashed curve). The 
contributions of various partial 
waves are shown together with 
the corresponding experimental 
data for the total capture cross 
section (●). 
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fluctuation corrections lead to a redistribution of partial wave contributions on account of which the 
total capture cross section can even increase. With the subsequent increase of a number of open 
inelastic channels the effects of fluctuation corrections disappear rather quickly. On the other hand 
the energy dependence of the radiative strengh functions and the nuclear level densities begins to 
effect inceasingly on the calculated results with a growth of the incident neutron energy.  
 
5  Nuclear fission 
 
The main concepts of the nuclear fission description developed by N. Bohr, Wieler [39B] and 
Frenkel [39F] are based on the liquid drop model. According to this model the competition of the 
surface tension forces of a drop of the nuclear liquid and the Coulomb repulsion forces related to 
the nuclear charge lead to the formation of an energy barrier which prevents a spontaneous decay of 
a nucleus (Fig. 15). The penetrability of the barrier determines the periods of spontaneous fission of 
nuclei. In the liquid drop model for heavy nuclei the height of the fission barrier quickly decreases 
with the increase of Z2/A. At certain (Z2/A)cr = 46-48 the barrier should disappear. The decrease in 
height brings forth the exponential increase in barrier penetrability. These changes of barriers are in 
good agreement with the behavior of the spontaneous fission lifetimes of the actinide nuclei, 
ranging from the long-lived isotopes of uranium to the artificially synthesized short-lived isotopes 
of fermium, mendelevium and so on. [55G, 58F2, 83F, 90S].  
 The height of the barrier also plays a major role in the description of the fission probability of the 
compound nucleus. For an excited nucleus the fission width Γf  is determined, as for the neutron or 
any other decay width, by the product of the excited level spacing Dc and the sum of the 
transmission coefficients over channels leading to the decay of the fissioning nucleus  
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 As the fission fragments formed have a wide dispersion of masses and excitation energies, in 
terms of the formal reaction theory we should consider a huge number of fission channels even at 
low excitations of the parent nucleus. However, if we proceed from the principles of the liquid drop 
model, the intermediate saddle configuration, which the nucleus goes through at the top of the 
fission barrier, should be of vital importance for the determination of fission probability. In the  
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Fig. 15. Fission barriers of heavy nuclei according to the 
liquid drop model. The charge numbers are given for the 
corresponding curves. 

saddle point a significant amount of the 
initial excitation energy is concentrated 
in the fission degree of freedom. This 
imposes significant limitations on the 
excitations of other degrees of freedom. 
As both the saddle point and the 
relevant limitations are the same for the 
whole set of fission fragments, the 
emission widths of different fragments 
get in a strong correlation with each 
other. The total fission width resulting 
from this correlation is determined by 
the characteristics of transitions states 
in the vicinity of the saddle point. 
Therefore, just these states are usually 
considered as the fission channels. The 
spectrum of the fission channels should 
be similar to the observed level spectra 
of the heavy deformed nuclei. In 
particular, if the form of a nucleus in 
the saddle point is symmetrical both  
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axially and mirror-like, the same sequences for the angular momentum values J, parities π and the 
projections K of the angular momentum on the symmetry axis should be realized for the lowest 
fission channels as for the rotation bands of the ground states of the rare earths and transuranium 
nuclei [55B1].  
 To describe the energy dependence of fission widths a simple formula for the penetrability of the 
parabolic barrier can be used 
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where Ei is the energy of the transition state; ωi  is the curvature of the corresponding barrier close 
to its top. In the sub-barrier region the penetrability of the lowest fission channel is the dominating 
component of the sum (91). Resulting from the exponential growth of the barrier penetrability, 
which is much stronger than the decrease in the level spacing, the fission width grows exponentially 
with the increase of the excitation energy of a nucleus. At energies above the barrier the 
penetrability does not prevent nuclear transitions to open fission channels and the fission width 
grows due to the growth of a number of open channels only. This growth is much weaker than the 
sub-barrier increase of width, and this change in the growth rate of fission widths is usually used in 
experimental data analyses as a direct method for the estimation of fission barrier heights [73V].  
 The study of angular distributions of fission fragments is of great interest too. To consider the 
main features of such distributions let us use the semi-classical approach, applied above for the 
general analysis of the compound reaction angular distributions. For given values of the angular 
momentum J and its projection on the symmetry axis K permitted directions of fission fragment 
emission are restricted by the delta-function  δ (cosϑo - K/J),  where ϑo is the angle between the 
fission axis and the direction J. After averaging the δ-function over possible orientations of J in the 
compound nucleus we get the following formula [55B1] for the angular distribution of fragments 
with respect to the beam of particles inducing fission 
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The formula shows that at small K/J  fission fragments are concentrated mostly in the region of 
small front and back angles, whereas at growing K/J  the maxima in the angular distribution are 
shifted towards  π/2 angle. If channels with different J and K can contribute to the angular 
distribution of fragments, Eq. (93) should be averaged over the distribution of J and K in the 
corresponding fission channels. 
  The analysis of the observed fission fragment angular distributions produced by gamma-quanta, 
neutrons and different charged particles, demonstrated that in a wide range of energies the 
distribution of the angular momenta projections K on the direction of fission fragments does not 
differ much from the distribution of K for the fission channels in the saddle point [73V]. This 
results in the conclusion that there is no essential energy exchange between the rotation and other 
degrees of freedom during the motion of the fissioning nucleus from the saddle configuration to 
the scission. For low-energy fission such adiabatic separation of rotation seems to be resulting 
from the conservation of the axial symmetry of the fissioning nucleus in the process of a relatively 
slow descent form the barrier top. However, for high-energy fission the reason for the isolation of 
rotation may be completely different, namely, fast (as compared to the period of rotation) descent 
from the barrier. 
  Early studies show that despite some successful results the liquid drop model cannot explain the 
major peculiarity of spontaneous and low-energy fission of the actinides, namely the asymmetric 
mass distribution of fission fragments. Further experiments demonstrated that this asymmetry of 
mass yields is closely related to the increase in  the mean kinetic energies of fragments in the 
asymmetric fission and to the saw-like mass dependence of the average number of neutrons emitted 
by fission fragments [73V]. All of the above features of the low-energy fission of actinides are 
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obviously correlated with the position of the heavy magic fragment with the mass number of 
130...140. This fact proves the strong influence of shell effects on the fission fragment formation. 
 Initially it seemed that the above effects can be explained by some modifications of the liquid drop 
model predictions for the configurations close to the scission point (the point where the fissioning 
nucleus breaks into two fragments). However, in the 60-s new phenomena were discovered in 
nuclear fission studies, an explanation of which demanded much more radical changes in the fission 
model. This refers primarily to the spontaneously fissioning isomers found in the Am isotopes [62P] 
and to the intermediate resonance structures observed into the neutron induced fission cross sections 
[67V, 68M], which cannot be interpreted  from the point of view of traditional formulas (92) for the 
fission barrier penetrability. 
  Calculations of the nuclear deformation energy proved to be the keys to the understanding of 
these phenomena. They have been made by Strutinsky on the basis of the shell correction method 
[66S, 68S]. Fission barriers for the actinide nuclei obtained had the form of a two-hump curve with 
a rather deep potential well between the humps (Fig. 16). The two-hump structure of the fission 
barrier helps to explain both the nature of the spontaneously fissioning isomers that can be 
identified with the lowest energy states of the fissioning nucleus in the second potential well and the 
resonance character of the energy dependence of the two-hump barrier penetrability resulting from 
the quasi-stationary states of the nucleus in the well [68L, 69B]. 
  To discuss the major features of the two-hump barrier model let us use the quasi-classical 
equation for the penetrability of the barrier [69I] 
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Fig. 16. Fission barriers of actinides in accordance with the shell model calculations  
 
Here TA and TB  are the penetrability of the humps A and B, respectively, each of which can be 
described by Eq. (5.2); ϕ(E) is the phase integral determined by the semi-classical quantization 
conditions for the eigen states in the well between the humps (Fig. 15). In the sub-barrier region the 
penetrability of the two-hump barrier (94) varies greatly with energy changes reaching top values at 
energies corresponding to quasi-stationary levels ϕ(E)  = π(n + 1/2), and reaching minimum values 
between quasi-stationary levels:  
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By averaging (5.4) over the interval between the levels we obtain the average penetrability of the 
two-hump barrier  
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  The above model of the one-dimensional potential barrier contains quasi-stationary states only 
which correspond to vibrational excitations of the nucleus in the potential well formed by two 
humps. In addition to such collective excitations, the fissioning nucleus at deformations 
corresponding to the second well should have many other excited states similar to complex many-
particle excitations of nuclei at equilibrium deformations. Interaction between the collective and 
quasi-particle excitations leads to the dissipation of the vibrational excitations, i.e. to the 
fragmentation of vibrational mode intensity over all possible excited states of the nucleus in the 
second well. 
  Within the one-dimensional model of the potential barrier, the fragmentation effects can be taken 
into account by introducing a corresponding imaginary component into the potential V(β). This 
treatment is similar to the consideration of inelastic scattering effects in the optical model. If the 
imaginary part of the potential is rather small (ϕi << 1), the energy dependence of the penetrability 
contains the same resonance structure as in (94), but its maximum values for resonances decrease 
strongly. In this case the extreme values of the penetrability of the two-hump barrier are described 
by the relations 
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where T2 is the transmission coefficient for the gamma-ray decay in the second well. The average 
penetrability P(E) remains, however, the same as without the imaginary component that simulates 
the dissipation of the vibrational excitations. 
  At large ϕi  the coefficient of transition through the two-hump barrier has the following form  
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This case corresponds to the total break-down of the vibrational states in the second well into states 
of a intrinsic nature. The transition through the barrier in this case is determined by the probability 
of sequential transitions through each of the humps. If T2 <<(TA + TB), the probability of the 
transition through the asymmetric two-hump barrier will be the same as that of one-hump barrier, 
equivalent to the higher hump. 
 The above equations show that the energy dependence of fission widths in the two-hump model 
is much more complicated than for the one-hump barrier. The quasi-stationary states of the nucleus 
in the well between the humps modulate the penetrability of the barrier. These modulations are 
revealed in the cross-section of the sub-barrier fission of nuclei in the form of different intermediate 
structures. The above model of a complex one-dimension barrier determines the penetrability 
averaged over the spectrum of multiparticle excitations of the nucleus in the second well. In case 
the quasi-stationary levels corresponding to these excitations do not yet overlap, the energy 
dependence of the penetrability of the two-hump barrier and, consequently, the fission cross-
sections should reveal two types of intermediate structures: a gross structure resulting from the 
vibrational states of the nucleus in the well between the humps, and a smaller structure related to 
various excitations of other degrees of freedom of the nucleus. The resonances observed in the 
230Th(n,f) reaction at neutron energy of about 700 keV [67V] and in the cross-sections  of 
239Pu(d,pf) reaction at the excitation energy of the fissioning nucleus of about 5 MeV [69P] can 
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serve as most vivid examples. The other type of an intermediate structure is demonstrated in the 
cross-sections of 240Pu fission by resonance neutrons [68M]. The quantitative analysis of these 
structures as well as a more detailed discussion of the experimental data obtained and equations of 
the resonance reactions theory needed for their description are contained in [68L, 80B1].  
 When discussing different aspects of the two-hump barrier it should be borne in mind that the 
fundamental postulates of this model are inseparable from the understanding of the governing 
influence exerted by shell inhomogeneities of the one-particle spectrum on many properties of 
nuclei. This model helped to explain and systematize numerous experimental data on the fission of 
actinides. More complete reviews of modern problems of nuclear fission physics may be found in 
Refs. [73V, 91W]. 
 
Conclusion 
 
Only the basic aspects of the statistical theory of nuclear reactions have been discussed in the above 
lectures. A limited time does not allow to consider such questions as: the preeqilibrium reactions, 
intermediate at time between the fast direct and the relatively slow compound processes; the 
damping of collective enhancement of nuclear level densities at high excitation energies; the 
specific features of fission process related to nuclear viscosity and the corresponding reduction of 
fission probability at high energies. These questions are rather important for many practical applica-
tions and they will be partially discussed by other lectors. 
The statistical theory relations are widely utilized in the modern computer programs the most 
known of which are the GNASH [98Y], EMPIRE [07H], and TALYS [07K] codes. Two last codes 
will be discussed at the present Workshop in details together with the corresponding excesses. 
Advanced modeling codes require a considerable amount of numerical input, therefore the 
International Atomic Energy Agency has worked extensively during the last 15 years to prepare a 
library of validated nuclear-mode input parameters, referred as the Reference Input Parameter 
Library (RIPL) [98O, 06B, 09C]. Main components this library will be discussed in the next lecture.   
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