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Abstract

The basic features of elastic and inelastic scattering within the framework of the spherical
and deformed nuclear optical models are discussed. The calculation of cross sections, an-
gular distributions and other scattering quantities is described and the distorted-wave Born
approximation calculations is also reviewed.

1 Introduction

A nuclear reaction is initiated when a nucleon or nucleus collides with another nucleon or nucleus.

Reactions are characterized in first place by the incoming nuclei and the outgoing reaction

products. Examples of the usual notation for this are 14C(n,n)14C, for the elastic scattering

of neutrons on 12C, 56Fe(p,t)54Fe, for the pickup by a proton of two neutrons from 56Fe, and
235U(n,n') for inelastic neutron scattering from 235U.

A complete description of a nuclear reaction involves other observable quantities beside the

incoming nuclei and the outgoing reaction products. Among these are the relative energy of

the incoming and outgoing nuclei and the scattering angle of the outgoing products. When the

nuclei/nucleons involved have spin and/or excited states, their polarizations and/or excitation

energies can also be observed.

The characteristics of the reactions induced by a given pair of incident nucleons/nuclei can

be summarized in distributions of the occurrence of the reaction products, called cross sections.

Quantitatively, the cross section ap for the production of a product p is defined as

number of particles p produced per unit time
p number of incident particles per unit time per unit area

Cross sections have the dimension of area. The information obtained from cross sections often

depends quite strongly on the internal structure of the initial and final nuclei. In fact, the

comparison of experimental scattering observables with those obtained from various nuclear

models can teach us a great deal about the structure of individual nuclei. After having used

such a comparison to determine the model parameters appropriate for a given system, one hopes

to use the same parameters to predict cross sections in other energy ranges or in neighboring

systems.



At low energies and for all but the lightest nuclear systems, nuclear reactions occur on two
very distinct time scales. Direct reactions occur promptly, on a time scale of the same magnitude
as the time it takes the projectile nucleus to pass by the target nucleus. Compound nuclear
reactions, which involve the formation of a quasi-bound intermediate complex, occur on a time
scale that is at least several orders of magnitude larger. A naive application of the uncertainty
relation, AEAt > h, would lead one to expect their energy scales to be inversely related. This
is, in fact, the case. The contributions of direct reactions to the cross sections vary smoothly
with energy. Compound nuclear reactions make contributions to the cross sections that fluctuate
rapidly with energy.
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Figure 1: 58Ni at low incident energy, taken from the data of Ref. 1

The difference in the energy dependence of the direct and compound nucleus contributions
to the cross section is clearly seen in Fig. 1, which displays the total neutron cross section on
58 Ni at extremely low incident neutron energy. One observes a direct reaction cross section - the
result of elastic scattering of the neutron, in this case - that varies slowly with energy, except
where it is punctuated by a faster variation due to the presence of a compound nuclear state
of 59Ni of about the same energy. At such low energies, separation of the direct and compound
nucleus cross sections is a fairly straightforward (although often grueling) task.

At higher energies, the density of compound nucleus states becomes so large that the individ-
ual contributions can no longer be resolved. It then becomes impossible to distinguish the slow
energy dependence of the direct contribution from the rapid variations of the compound nucleus
one. An example of this is given in Fig. 2, where the total cross section for neutrons incident
on 58Ni is again shown, but now at higher energies. The fluctuations in the cross section, called
Ericson fluctuations,[3] do not permit the determination of the contribution to the cross section
of each individual compound nuclear state. Instead, only the average properties of the compound
nucleus contribution to the cross section can be determined. It is in this context that the optical
potential plays a crucial role in the separation of the two contributions.

The principal objective of the optical model is to describe just the prompt, direct reactions
in a nuclear collision. To separate the direct reactions from the compound-nucleus ones (the-
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Figure 2: 58Ni in a small incident energy range close to 5 MeV, taken from the data of Ref. 2

oretically), one assumes that the compound-nucleus reactions do not contribute to the average

wave function and scattering amplitudes, due to their rapid fluctuations in energy. Note that

the compound-nucleus reactions still DO contribute to the average cross sections, which are, for

the most part, proportional to the squares of the amplitudes. The energy-averaged amplitudes,

however, are associated with the scattering amplitudes for the prompt component of the scatter-

ing. The optical model potential is defined as the potential which furnishes the energy-averaged

scattering amplitudes.

In a wider context, the optical potential can be considered an effective potential that takes

into account all of the physical processes one does not want to take into account explicitly.

The most important of these are the rapidly fluctuating compound-nucleus contributions to the

scattering. But direct processes are also included at times. One example of this is the use of

an effective spherical optical model potential to take into account the coupling to excited states

of the target. Another example is the deuteron optical potential, which usually contains the

contribution of direct deuteron breakup.

As well as being fundamental for the calculation of direct reaction observables, optical model

calculations are also used to produce the transmission coefficients essential for the analysis of

compound nucleus cross sections within the Hauser-Feshbach statistical theory. They are thus

one of the first and most important steps in the evaluation of nuclear cross sections.

2 Formal development of the optical model

To derive the optical model from 'first principles', one begins by partitioning the Hilbert space

of states into a component V containing the prompt states and an orthogonal component Q that

contains the closed channels of the intermediate compound complex.[4] As a concrete example,

one may consider V to be the subspace consisting of a nucleon scattering on 58Ni, while Q consists

of the ground and excited states of the nucleus 59Ni (and other processes, such as 7 emission,

that have been neglected). The projection operators, P and Q, onto the subspaces V and Q,



respectively, which satisfy the properties

P = Pj Q = Qj

P2 = P Q2 = Q (2)

P + Q = 1,

are then used to decompose the state vector of the system, \t, and the Schrodinger equation it

satisfies,

(E-H)V = 0. (3)

The prompt component of the state vector is Pty, while the slower component is Q^, with

* = P * + Q * . (4)

We can multiply the Schrodinger equation on the left by P or by Q and use the decomposition

of the wave vector to write the equation as two coupled equations,

(E - HPP)PΨ = VPQQ Ψ

and

(6)

where

HPP = H0P + VPP = PH0P + PVP, VPQ = PHQ, , (7)

and we have assumed that the contributions to the Hamiltonian of the internal degrees of freedom

and the kinetic energy, both contained in Ho, do not couple the V and Q subspaces. We may

formally solve the first of these, Eq.(5), as

in which the (+) denotes an incoming wave boundary condition, the vector (f>\ satisfies the

Schrodinger equation in the V subspace,

(E - HPP)φ(+)i = 0 , (9)

with an incoming wave in channel i alone (and none in the Q subspace) and P^i and Q^i are

the components of the full wave vector that evolve from this incoming wave. The solution P^i,

when substituted into the second coupled equation, Eq. (6), yields

(E - HQQ - WQQ)QΨi = V Q P Φ

 i (+)

where
l (ii)

We can decompose the P-subspace Greens function into its real and imaginary parts as

1 P.P.

- HPP E - HPP

4

- iπδ(E - HPP), (12)



where P.P. represents the principal part. The open channels in the V subspace thus make a

negative imaginary contribution to WQQ, which results in singularities in the wave vector in the

lower half of the complex E plane.

Eq. (10) can be solved to obtain the Q-subspace component of the wave vector as

1 V QPφ (+)

(14)

E - HQQ - WQQ

which then permits the expression of the P-subspace component of the wave vector as

1 1
-VQP<P\

A careful analysis of the last expression leads one to the scattering matrix Tfi giving the transition

amplitude in the V subspace,

1
T (P)

fi = Tfi VPQ
E — Hno W

1VQP (15)

The first term in this expression is the direct scattering amplitude associated with scattering in

the V subspace alone. The second term describes the slower processes that result from coupling

through the states of the Q subspace. The first term varies slowly as a function of energy while

the second term varies rapidly.

The energy average of the P-subspace wave vector can now be written as

, (-t-~\ 1 /I

where

- HPP

= E — H — W

(16)

(17)

is the only rapidly varying function of the energy in the expression. The average wave vector

can be written in a Schrodinger-equation-like form by multiplying both sides of the expression,

Eq. (16), by £<+) - HPP,

1
(E - HPP) hPΨii = VPQ

Using Eq. (16) again to rewrite the wave vector (/K as

, m 1

VQPΦ(+ (18)

1 + (E(+) _ Hpp)-WPQ h1/eQQi VQP H P Ψ I i ,

substituting this in Eq. (18) and performing a bit of algebra, one finally obtains the optical

model equation,

E — HPP — VPQ

The optical potential can thus be written as

Vopt = VPP + VPQ

1
- l

Vv
-V,

QQ
QP

+WQQ

VQP .

(20)

(21)



To conclude the formal development of the optical model, one must evaluate the average value

(l/egg). The simplest way of doing this is to average the quantity l/egg over a normalized

Lorentzian density,

( — )=[<&>„ Pi

n

E'E0\A/ , (22)
\ QQI J EQ- HQQ - WQQ

where

ρ(E,E0) = t(E-Eo)'+(A/2y 2 .

Assuming the quantity l/egg to have no poles in the upper half of the complex E plane (due

to causality, it should have them only in the lower half-plane), we can perform the integral by

closing the contour and calculating residues in the upper half plane to obtain

/J_\ =
/eQQ= E + iA/2-HQQ-W(

and hence

(24)

Vopt = VPP + VPQ 1 . VQP . (25)
E - HQQ + iΔ/2

The optical potential is obviously energy-dependent, non-local and complex due to the energy-

averaged propagator (E — HQQ + iA/2)" 1 in the second term. Its imaginary part is negative,

resulting in a potential that is absorptive. The flux of particles leaving the scattering region is, in

this case, smaller than the incident flux, with the remaining fraction of the flux being absorbed

by the potential. It is through its imaginary part that the optical potential takes into account

the flux that is lost from the states of the V subspace to the states of the Q subspace.

The optical scattering matrix can easily be derived in the same manner. One obtains

f
'PQ \ -— ; vQp

(26)

with (l/egg) given by Eq. (24). Observe that the second, rapidly fluctuating term does not

vanish completely. Indeed it should not vanish in general, for its average contribution describes

the loss of flux from the prompt channels to the long-lived compound-nucleus states.

3 Low-energy neutron scattering

At low relative energies, a collision between charged nuclei or a nucleus and a charged nucleon is

dominated by the Coulomb force, which keeps the two beyond the range of nuclear interaction.

Only neutrons can enter sufficiently close to a nucleus at such energies to feel the effects of the

nuclear force.

Several factors also simplify the description of low-energy neutron scattering. The centripetal

barrier keeps all but the 1=0 s-wave contribution effectively out of the reach of the nuclear

interaction for energies smaller than about 50 keV. In addition, with few exceptions, nuclei

have no excited states at energies lower than about 20 keV. The prompt component of neutron

scattering then reduces to s-wave elastic scattering in this energy range.



The optical model equation for the s-state wave function ipo is

which can be reduced to
j2ni,_ r o , , i

(28)

where the wavenumber is k = y//2/j,Ecm/h2, /J, is the reduced mass and Ecm the center-of-mass

energy.

To solve this equation numerically, one develops the solution, ipo,int(r), starting from r = 0,

using the condition that the wave function vanishes at the origin, ipo,int(r = 0) = 0 and one

of many possible numerical methods (Cowell, Numerov, modified Numerov, Runge-Kutta, etc.).

The equation is solved numerically out to a radius rm, beyond which the optical potential can

be neglected. For values of the radius equal to or larger than this matching radius, the solution

to the differential equation that satisfies the incoming wave boundary condition takes the form

0,ext(r) = l-{e~lkr - S0e
ikr) r > r m . (29)

One requires, at the matching radius rm, that this external wave function and its derivative be

the continuous extensions of the numerical wave function obtained in the the internal region and

of its derivative. This results in two equations,

a0ψ0,int(rm) = l-{e~%kr™ - S0e
ikrm )

and

ao^Mrm) = ^(e- i fc r- + Soe
ikr™), (31)

whose solution yields the amplitude of the internal wave function, ao, and the S-matrix element,

So.

Once the S-matrix is known, the cross sections can be calculated. For the case of s-wave

scattering, these are

2vr
σtot = 2kπ2(1-ReS'o),

<Tel = ^\So~l\2, (32)

and =k π 2 ( 1 - |S0 |2) = T^TQ ,

where To is the s-wave transmission coefficient. The reaction cross section and the transmission

coefficient To are non-zero when the S-matrix element 5*0 is smaller than one in magnitude. This

occurs when flux is absorbed by the long-lived compound-nucleus states. Care must be taken,

however, when comparing the optical model reaction cross section to the experimental one. A

part of the flux absorbed by the compound nucleus can later be re-emitted in the elastic channel,

in which case it should rightly be considered part of the elastic cross section.

Of the three cross sections, only the total one can be compared directly with experimental

data, as it is the only one that is linear in the scattering amplitude (here the S-matrix element
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6*0). The S-matrix element can be written in general as the sum of an average and a fluctuating

part, S = Save + Sfi. The average elastic cross section then has the form

(33)

The first term alone gives the elastic cross section of the optical model. The second term

contributes to the optical model reaction cross section.

Other scattering quantities of physical interest can also be calculated for low-energy neutron

scattering. At extremely low energies — below the resonance region — the elastic cross section is

observed to approach a constant value, a®j. This value is used to calculate the scattering radius,

B! = ^/<7°/4TT.

In the resonance region, s-wave and p-wave strength functions can be defined. The s-wave

strength function, so, relates the average neutron partial width (Fo) and spacing Do of the

resonances to the optical model absorption. One has, approximately,

D0

where EQ is usually taken to be 1 eV. The factor \/Ecm, proportional to the s-wave penetrability,

kR', cancels the energy dependence of the neutron partial width, so that the strength function

varies slowly with the incident neutron energy. The p-wave strength function, S\, relating the

average partial width and spacing of the I = 1 reonances is defined analogously in terms of the

p-wave S-matrix elements and penetrability.

Adjustment of the optical model parameters at low energy to reproduce the s-wave and p-

wave strength functions, the scattering radius and the total cross section is known as the SPRT

method. [5] A good fit to these observables is important in determining the low energy behavior

of the optical cross sections and the transmission coefficients, which is important, in turn, in

determining the behavior of compound nucleus cross section calculations near threshold.

4 The phenomenological optical potential

The formal derivation of the optical potential presented in Section 2 might suggest that it could

be calculated directly. Although a good deal of work has indeed been done in this direction, the

resulting potentials are often difficult to calculate and still not sufficiently precise. They also

have the drawback of being non-local, which can greatly complicate solution of the corresponding

Schrodinger equation.[6, 7, 8]

Instead, phenomenological optical model potentials are normally used to compare and fit to

experimental data. With few exceptions, these potentials are taken to be local. However, the

qualitative characteristics of the geometry and the general trend of the energy dependence of

the phenomenological potentials are quite similar to those found in microscopic potentials. Both

types of potentials are, after all, trying to describe the same physical processes.

In the empirical potentials, the functional form is usually determined by a limited set of

parameters that are adjusted to obtain a best fit with the experimental data. Over the years, a



standard form of the phenomenological optical model potential has evolved, which permits the
parametrization of the scattering of a light particle (neutron, proton, deuteron, triton, 3He or
alpha) from a given nucleus. This is

Uopt(r) =
+VC(r)
-Vfvir)
+VsgV(r)
-iWsgw(r)
-iWvJw(r)
-dsof^sVsohVso(r)
+idso~l • sWsohWso(r)

a Coulomb term,
a real volume term,
a real surface term,
an imaginary surface term,
an imaginary volume term,
a real spin-orbit term,
and an imaginary spin-orbit term,

(35)

where the spin-orbit constant is dso = (h/m^c)2 pa 2 fm2, m^ being the pion mass.
The Coulomb term is usually taken to be the interaction of a point charge with a uniformly

charged sphere of radius Rc,

VC(r) =
ZpZte

2/Rc

ZpZte
2/r

r < Rc

r> Rc

(36)

where Zp and Zt are the projectile and target charge, respectively. Although this potential
neglects the surface diffusivity of the nuclear charge distribution, it is a reasonable approximation
in the case of the scattering of light particles from nuclei.

The real and imaginary volume terms are normally taken to be of Wood-Saxon form,

1
fi = i = V,W, (37)

1 + exp [(r - Ri)/ai]

where Ri and cii are the radii and the diffusivities, respectively, of the two terms. The Wood-
Saxon form factor, shown in Fig. 3, can be thought of as a smoothed step function, falling from
one for values of the radius r smaller than the radius Ri to zero for values of r greater than Ri,
in a few multiples of the diffusivity ê .

Figure 3:

The real volume potential reflects the average interaction of the projectile with the nucleons
of the target nucleus. The Wood-Saxon form factor it uses is quite similar in form to the nucleon
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density of a saturated nucleus (A > 30 ). (For lighter nuclei, a Gaussian geometry is sometimes

used.) The strength of the real volume potential is roughly proportional to the mass of the

projectile and decreases with the incident energy, in qualitative agreement with the results of

calculations of the nuclear mean field.[9]

The imaginary volume potential takes into account the loss of projectile particles due to

collisions with the nucleons of the target. It is zero at low energies, for which the projectile does

not have sufficient energy to knock out a target nucleon. At higher energies, it increases slowly

with the incident energy, as the phase space available for nucleon knockout increases. At even

higher energies, both the real and imaginary volume potentials for nucleon scattering are fairly

well described by the impulse approximation, in which the the target density is simply folded

with the nucleon-nucleon cross section.[10, 11]

The real and imaginary surface terms of the optical potential are taken to be either the

derivative of a Wood-Saxon,

= -Adi—fAr) = 4
dJl{)

exp [(r - Ri)/ai
i = V,W,

or a Gaussian,

gi(r) = exp (r -
a2

i = V,W.

(38)

(39)

In either case, the potential peaks at a radius Ri and falls to zero within a few multiples of the dif-

fusivity aj. A derivative Wood-Saxon form factor with diffusivity aws is almost indistinguishable

from a Gaussian form factor with diffusivity ao = 2.21aws, as shown in Fig. 4.

1

0.8

0.6

0.4

0.2 J \ V.
1 2 3 4 5 6 7 8

r fm

Figure 4: aws=0-5 fm. and aG=1.105 fm, respectively, are shown.

The imaginary surface term of the optical potential takes into account the absorption due to

the coupling to the quasi-bound compound nucleus states through the excitation of low-energy

collective modes, which have their couplings concentrated in the nuclear surface. Similar many-

body effects can also be invoked to justify the presence of a real surface term. However, given

the imaginary surface term, the existence of the real term can be shown to follow directly, by

using a dispersion relation based on the causality of the optical potential (no singularities in the

energy upper halfplane).[12] The dispersion relation shows that an energy-dependent imaginary

10



potential W(r,E) necessarily leads to a contribution AV(r,E) to the real potential given by

p p />oo

ΔV(r, E) =
7T E'-E

Obviously, if the imaginary term is a surface one, the real term resulting from the dispersion

relation will be a surface one as well.

Both the real and imaginary spin-orbit terms of the optical potential are taken to have a

Thomas form factor,

rdr rai e x p [(r -
i = Vso, Wso . (40)

Like the surface imaginary term, the Thomas form factor,shown in Fig. 5, yields potentials which

peak at a radius near Ri and fall to zero in a few multiples of the diffusivity e .̂

Figure 5:

The Thomas form factor, as well as the spin-orbit potential itself, can be derived (for spin

1/2 particles) by performing a reduction of a Dirac equation with Wood-Saxon potentials to

an equivalent Schrodinger equation. [9] The spin-orbit interaction and the Thomas form factor

can then be interpreted as but another manifestation of the volume interaction of the incident

particle with the nucleons of the target nucleus.

The phenomenological optical potential is thus parametrized in terms of a set of potential

strengths and corresponding geometrical parameters. These parameters have been adjusted for

many systems and values of the relative energy. Several attempts have been made to adjust a

single set of parameters to a wide range of systems by introducing a dependence on the target

charge and mass as well as that on the relative energy. The potentials obtained using such sets

of parameters are called global optical potentials. Many individual and global optical parameter

sets can be found in an old compilation by Perey and Perey. [13] An extensive study of neutron and

proton optical potentials has been performed recently by Koning and Delaroche.[14] However,

the best modern reference for optical potential parameters is the Reference Input Parameter

Library (RIPL-2), available both online from the International Atomic Energy Agency. [15]
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For nucleons, typical values of the potential strengths are

V « (45-55)MeV-(0.2-0.3)E,

Ws « (2-7)MeV -(0.1-0.3)£ £ < 8-10MeV, (41)
Vso^ (4-10)MeV.

Above 8 - 1 0 MeV, Ws is usually constant or slightly decreasing. Vs and Wso can normally

be taken to be zero as can W below about 10 MeV. Above about 10 MeV, W is constant or

slightly increasing. As mentioned above, for heavier particles, the real volume potential V scales

approximately linearly with the mass.

The radii Ri characteristically take on values close to that of the radius of the target matter

distribution. They are often parameterized in terms of reduced radii r» and the target mass as
1/3

Ri = TiAt , with the reduced radii in the range fj ~ 1.2 - 1.3 fm. The diffusivities normally

take on values in the range a» w 0.4 - 0.7 fm, except in the case of a Gaussian surface form factor,

for which the typical values are slightly larger.

Not all of the optical model parameters are uniquely determined by the experimental data.

It has been observed, for example, that fairly wide ranges of the parameters V, Rv, Ws, and

as result in equally good fits to the experimental data if the values of VR% and Wsas remain

constant. These are known as potential ambiguities.

5 Partial wave expansion in the single-channel optical model

When angular momenta greater than the s-wave contribute to the scattering, the wave func-

tion and the scattering matrix are determined most conveniently when decomposed in angular

momentum partial waves.

The partial wave expansion of the scattering wave function of a particle of spin s [16] can be

written as

? l ^ ' W C T t f l * ) ( 4 2 )

|jni Ylm(r) |sνi , (43)

kr π
ljn

in terms of the spin-angular functions

where I and j are the orbital and total angular momenta and \sv) is an eigenvector of the particle

spin. In the expansion of the wave function, ai is the Coulomb phase, f denotes the angular

variables and k the direction of the incident momentum. (The S-matrix element in partial wave

I for pure Coulomb scattering of the projectile from the target would be e2l(Jl.) The factor

ilel(Jlipi(r)Ikr could have been written as simply ipj (r) in the partial wave expansion. The form

used above simplifies later manipulations.

When the partial-wave expansion of the wave function is substituted in the optical Schrodin-

ger equation, one can extract an independent equation for the wave function ipj in each partial

wave. One finds

Uso(r) } # » ψ l j (r)

12



where the spin-orbit constant is dj = dso (j(j + 1) — 1(1 + 1) — s(s + l))/2 and Ucen and Uso are

the central and spin-orbit terms of the phenomenological optical model potential discussed in

the previous section.

The incoming-wave boundary condition requires that asymptotically the wave function take

the form of an incoming plane wave and an outgoing scattering wave,

\I> —> exp (ik • f + irj\og(kr — k • r)) 2\ \su) (sv\ (45

- exp (ikr - iη log(2kr)) X \su') fviv(6) hsν| ,
vv'

where the fv>v(6) are the spin-projected matrix elements of the elastic scattering amplitude and

rj is the Coulomb parameter, rj = ii,ZpZte
2/h2k. To be consistent with this expression and satisfy

the differential equation, the wave function ipj must have the asymptotic form,

.Cf = ̂ ffr(r)-fl+(r)e^5fje-^, (46)

where Cj = (Sj — l)/2i, Fi and Gi are the regular and irregular Coulomb wave functions,

respectively, and Ht = e^%(Tl(Gi ± iF{) are the linear combinations of these that asymptotically

contain only incoming (Hf) or outgoing (H^) waves. Sj is the nuclear part of the S-matrix

element and e2tai the Coulomb part.

The S-matrix elements, Sj, are obtained in the same manner as 5*0 is obtained in the case of

low-energy neutron scattering. In the internal region, the differential equation for each partial

wave, Eq. (44), is solved numerically out to the radius, rm. The numerical solution and its

derivative are matched there to the wave function in the external region, given by Eq. (46), and

to its derivative, to obtain the ampitude in the internal region, aj, and the S-matrix element, Sj.

The only novelty to the solution here is deciding with which partial wave to stop the cal-

culation, for I and j extend to infinity. The calculation is normally stopped when the nuclear

S-matrix elements are sufficiently close to one. This occurs when the centripetal barrier no longer

permits the projectile to enter the range of nuclear interaction with the target. For partial waves

of larger I, the scattering reduces to pure Coulomb scattering (or for neutrons, no scattering at

all), as is evident from Eq. (46).

When the asymptotic form of the partial wave function, tpj, of Eq. (46), is substituted in

the partial wave expansion of the total wave function, Eq. (42), and the result is compared to

the expected form of the asymptotic wave function, Eq. (45), one can extract the partial wave

expansion of the scattering amplitude,

f(0) = ̂ rYl (e2iatSi -^yu^yf^ik), (47)
ljn

or,in terms of its spin-projected matrix elements,

Yim,(r)Yfm(k) (Im1 sv'\jn) (jn\lmsv) . (48)

13



mm'

Due to the slow convergence of the Coulomb term, it is convenient to write these amplitudes in

a form in which the Coulomb contribution has been summed exactly,

Yim'(r)YL(k)

x (lm'sv'\jn) hjn|lmsνi

= <W fc(0) + - ^ E e2i°l (Si ~ X) Yim'^Y^k) (49)
ljn

mm'

x (lm'sv'\jn) hjn|lmsνi ,

where

(50)
2if\j S i l l

is the Coulomb amplitude.

For spin-0 particles, there is only one amplitude. This is

f(e) = Me) = fc(e) + ̂  £ (21 + i)e^'(^ - i)^(cos 0). (51)

For spin-1/2 particles there are two distinct amplitudes. They are

A{6) = /1 i = / _ i _ i (52)

= fC(θ) + 1

and

B{6) = / I _ I = / _ I I (53)
2 2 2 2

The differential elastic cross section for an unpolarized incident beam is obtained by averaging

the squared magnitude of the scattering amplitudes over the initial values of the projectile spin

and summing over the final ones. The general expression that results is

^ - r i — ' ( M )

vv'

For spin-0 particles, this is

(55)

For spin-1/2 particles, it is

(56)

14



For particles of spin-1/2 and greater, one can define vector and tensor spin observables in

terms of other combinations of the amplitudes. In particular, for particles of spin-1/2, the vector

polarization, P(9), is

The fraction of flux absorbed from each partial wave is given by the transmission coefficient,

T/, defined as

Tlj = 1 - Sl j . 2 .

When the S-matrix element is unitary, no flux is absorbed and the transmission coefficient is

zero. When absorption is complete, the transmission coefficient is one. These quantities are

essential for calculating statistical reaction cross sections. Quite often, optical model calculations

are a mere preliminary to statistical model calculations and are performed only to obtain the

transmission coefficients.

The total flux lost in the scattering is related to the reaction cross section through the

equation
1 /

σr = — (t y d~a, (59)

where it is understood that the probability current,

is integrated over a surface which tends to infinity. The reaction cross section can be expressed

in terms of the transmission coefficients as

lj

For charged particles, integration of the differential elastic cross section of Eq. (54) leads to

an infinite result, due to the infinite range of the Coulomb interaction. For neutrons, it yields

the elastic cross section,

(62)

lj

This is often called the shape elastic cross section to distinguish it form the compound elastic

one.

For neutrons, a total cross section can also be defined as the sum of the elastic and reaction

cross sections,

σtot =

The total cross section takes into account all flux lost from the incident plane wave, either by

scattering or by absorption. Comparing the expression for the total cross section with that of the
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Figure 6: n + 5 8 Ni total cross section, identified by their EXFOR access numbers, are shown

together with two optical model calculations.

scattering amplitude, A{9), one sees that the optical theorem is explicitly verified by the partial

wave expansion,

σtot = — A ( θ = 0 ) . (64)
k

As observed earlier, when it exists, the total optical cross section is the average of an am-

plitude and can thus be compared directly with the energy-averaged experimental data. This is

done in Fig. 6, where a selection of the experimental measurements of the n + 5 8 Ni total cross

section is shown together with optical model calculations using the parameters of A. Prince[17]

and those used in the exercises. Although there is a great deal of dispersion in the low energy

data, the calculations succeed in following its trend.

10
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Figure 7: n + 5 8 Ni elastic cross section, identified by their EXFOR access numbers, are shown

together with two optical model calculations.

The optical elastic and reaction cross sections involve the average of a squared amplitude and

cannot be compared directly with the energy-averaged experimental data. The compound elastic

cross section is part of the optical reaction cross section rather than the elastic cross section.
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The experimental elastic cross section can thus greatly exceed the optical component of the cross

section. This is illustrated in Fig. 7, in which a selection of the experimental measurements of

n + 5 8 Ni are compared to optical model calculations using the parameters of Prince[17] and of

the exercises. At energies sufficiently high for the elastic compound nucleus cross section to have

dropped to zero (which usually occurs at an energy of the order of a few MeV), the differential and

integral (when it exists) optical elastic cross sections can be compared with the energy-averaged

experimental data. Note that the elastic cross section for neutron-induced scattering can also be

compared to the experimental data at extremely low incident energies, where it is customarily

expressed as a scattering radius R'.

At high energies, the reaction cross section can also be compared to experimental data.

However, the reaction cross section cannot be measured directly, making the data for such a

comparison scarce.

6 The generalized optical potential

The single-channel or spherical optical model treates the target nucleus as if it were spherical.

But nuclei are often deformed. An all nuclei, whether spherical or deformed, are susceptible

to shape oscillations. Most deformed and many spherical nuclei possess low-lying collective

states that are easily excited in a collision. As these excitations are prompt reaction modes,

one would expect their description to lie within the scope of a generalized optical model. The

standard extension of the optical model takes into account the expected deviation from spherical

symmetry by modifying the radii Ri of the terms in the optical model potential.

A vibrational nucleus possesses a spherically symmetric ground state. Its excited states

undergo shape oscillations about the spherical equilibrium mode.[20] To take these into account,

the radii of the terms in the potential are expressed as

Ri = Roi 1 + X a λμYλμ (65)

where the b\ and bx^ are the creation and annihilation operators of nuclear phonons and the

[3\ are the amplitudes of their respective shape oscillations. One usually expands the optical

potential to first or second order in the creation and annihilation operators,

Uopt(r,f) = Uopt(r) + E S ^ E a V * V ( r ) (66)

A M

thereby taking into account the direct excitation of one- and two-phonon states. The vibra-

tional model including one-phonon states is called the first-order vibrational model, while that
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containing the two-photon states as well is known as the second-order model.

The nucleus 5 8 Ni serves as an example of a typical vibrational nucleus. Two neutrons from a

doubly magic configuration, it has a spherically symmetric J = 0 + ground state and a J = 2+

excited state at EX=1A54 MeV that can be considered a one-quadrupole-phonon vibrational

state. At about twice the energy of the one-phonon state, in particular, at EX=2A59, 2.776,

and 2.943 MeV, one finds a trio of states with J = 4+, 2 + , and 0+, respectively, which can

be interpreted as the two-phonon states. The fact that the first two these (but not the third)

decay almost exclusively to the J = 2+ excited state corroborates such an interpretation, but

also shows its limitations.

A statically deformed nucleus possesses rotational excited states.[20] When the nucleus pos-

sesses axial symmetry, the radii are replaced by

where [3\ is the static deformation of mutipolarity A and the angle 9' is in the body-fixed frame.

This substitution could be extended to the general case of triaxial nuclei without too much

difficulty (at least at this point). The model is then called the assymetric rotational model in

contrast to the (axially) symmetric one. In either case, the potential obviously depends on the

orientation of the principal axes of the target.

When the deformation of the nucleus is large, expansion of the potential in a Taylor series is

not a good approximation. It is better to expand it directly in multipoles as

(r'), (68)
A

where the multipole potentials are obtained as

Uλ(r) = I dQ' Uapt(r, 9')YX0(9'). (69)

In the body-fixed frame, the moments U\^(r) with /j, / 0 vanish. The body-fixed angles f' are

related to the space-fixed ones r by a rotation through the angles that define the orientation of

the nucleus, which are the collective angular coordinates of the nucleus, Tint- For the spherical

harmonics, this implies that

V(O n^hnt) , (70)

where the D* , are rotation matrices with the special value for // = 0 used in the last equality.

The optical potential in the rotational model can thus be decomposed as

U^r, hat) = J2 U^) *V(r) YUhnt) • (71)
A M

The nucleus 2 3 8 U provides an excellent example of a statically deformed nucleus with rota-

tional excitations. Its 0 + ground state possesses static quadrupolar e hexadecapolar deformations
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with /?2 = 0.198 and /?4 = 0.057. Its first four excited states, at Ex - Jn= 0.044 MeV-2+, 0.148
MeV-4+, 0.307 MeV-6+, and 0.518 MeV-8+, iniciate a rotational band that can be traced to at
least the 28+ state at Ex=A.h\Q MeV. Each of these states decays exclusively to the next lower
state in the rotational band.

Morel elaborate couplings between projectile and target can also be described through ap-
propriate generalizations of the optical potential. One of these was mentioned above — the
asymmetric rotational model — obtained by taking into account triaxial deformations of the nu-
cleus. Another is the vibrational-rotational model which couples static deformation to dynamic
shape oscillations. More details about these can be found in Refs. [20, 18, 19].

In the generalizations of the optical potential discussed in this section, the introduction of
target degrees of freedom leads to a potential that depends on the relative orientation of the target
with respect to the projectile. The system is no longer invariant under independent rotations of
the target or the projectile and their individual angular momenta are not conserved. However,
in all cases, the system continues invariant under a simultaneous rotation of the projectile and
target. The total angular momentum thus continues to be a conserved quantity.

7 Partial wave expansion in the coupled-channels optical model

The partial wave expansion proceeds in the coupled-channels optical model much as it did in the
single-channel one. There are several new features however. The first of these is that the excited
states and their angular momentum must now be taken into account.[16, 18, 19]

To include the angular momentum of the target, the spin-angular functions are coupled to
the target states to form target-spin-angular functions,

(jnIcNc\JM) yf?(r) |IcNci , (72)
nNc

where the \ICNC) represent the target states with total angular momentum and angular mo-
mentum projection Ic and Nc, respectively. In the vibrational model, these are the one- and
two-phonon states,

and \ICNC) = , — L — \b]b]2] |0> . (73)
V I1I + "hh c c

In the axial symmetric rotational model, they are the rotational states, which can be written in
terms of the rotation matrices DT

NK as

{nnt\IcNc) = _ _ W - £ - L - (74)

where X±K is the internal wave function of the rotational band, Ix its internal angular momentum
and K the projection of the total internal angular momentum on the symmetry axis.
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The scattering wave function is expanded in a sum over both the excited states and the

angular momenta. The expansion can be written as

pi<J\c

i^( (75)
ijcJM K c T

I'j'rJ

Factors of il and elr7lc /kcr, where kc is the wave number in channel c, have again been extracted

from the wave functions to simplify later manipulations. The Coulomb phase now depends on

the channel energy, through kc, as well as on the angular momentum.

In the deformed optical model, the wave functions, ^'{,j,c, ijC(r), couple different values of the

angular momenta I and j and different channels c for each value of the total angular momentum

J. This contrasts with the single-channel optical model, in which the wave function for total

angular momentum j also possesses a well defined orbital angular momentum I. This is due to

the fact that the interaction couples the different partial waves in the deformed model, while it

does not do so in the spherical one. (If it did, a partial wave expansion in terms of the wave

functions ip^ in Eq. (42) would, in general, have been necessary.)

When the partial-wave expansion of the wave function is substituted in the optical Schrodin-

ger equation, the latter can be reduced to a set of coupled equations for each value of the total

angular momentum J . These are

l>{1' + 1 ) + JfeMt*J (r)

where the potential matrix elements are calculated with respect to the orthonormal target-spin-

angular functions,

J

Although the target-spin-angular functions used to calculate these matrix elements have a well-

defined projection M of the the total angular momentum J, the matrix elements that result are

independent of this value if the system is rotationally invariant. When the system is invariant

under time-reversal, the potential matrix is also symmetric under interchange of the primed and

unprimed indices.

By writing the matrix elements as matrices,

I 5i'i5j'j5c'c —> Lj , kci 5i'i5j'j5c'c —> Kj , (78)

the Schrodinger equation can be recast in a more familiar form as a matrix equation,

d2 LJ(LJ + 1) 2 2μ 1

dr2 r2 h2 J
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The incoming-wave boundary condition again requires that asymptotically the wave function

take the form of an incoming plane wave and an outgoing scattering wave. Here this takes the

form

exp (ikc-r + iηc log(kcr — kc • r)) X| sνIcNci hsνIcNc|
V

1 X

cc'

X

vv'

where the fv/N /VNC(9) are the target and projectile spin-projected matrix elements of the elastic

scattering amplitude.

The asymptotic form expected of the wave function in the partial wave of total angular

momentum J can be most easily expressed using an obvious extension of the matrix notation

above. To be consistent with Eq. (80) and satisfy the differential equation, the matrix wave

function \tj must have for its asymptotic form,

)Cj (81)

where Cj = (Sj — lj)/2i, Fj and Gj are the regular and irregular Coulomb wave functions

in (diagonal) matrix form, respectively, and Hf = eZfttTj(Gj ± iFj) are the linear combinations

of these that asymptotically contain only incoming (Hj) or outgoing (H^) waves. Sj is the

nuclear part of the S-matrix element. One can loosely interpret the half of the Coulomb phase

shift elr7J that precedes the nuclear S-matrix in Eq. (81) as the Coulomb deflection accumulated

on the incoming half of the 'trajectory,' with the half of the Coulomb phase shift following the

nuclear S-matrix then being the Coulomb deflection of the outgoing half of the 'trajectory'.

The S-matrix elements, Sj, can be obtained by an obvious extension of the method used for

the spherical optical model. In the internal region, the differential equation for each partial wave,

Eq. (79) is solved numerically out to the radius, rm. The numerical solution and its derivative

are matched there to the wave function in the external region, given by Eq. (81), and to its

derivative, to obtain the amplitudes in the internal region, aj, and the S-matrix elements, Sj.

This is repeated for increasing values of J until the value of Sj which results is sufficiently close

to one.

The important difference between the deformed optical model and the spherical model is that

the wave function in partial wave J is not a scalar, as it is in the spherical model, but a matrix.

The differential equation that must be solved is also a matrix one. Although the only solution

that is normally of interest is the one in which the target is in its ground state in the incoming

wave, the complete matrix solution is needed to invert the matching equations and obtain the

S-matrix. The calculation is thus much more time consuming than in the spherical case.

To obtain the partial wave expansion of the scattering amplitude, one repeats the procedure

used earlier: substitute the asymptotic form of the partial wave function, \tj of Eq. (81), in
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the partial wave expansion of the total wave function, Eq. (75), and compare the result to the

expected form of the asymptotic wave function, Eq. (80). One then finds

E { t a i / % ^ 5 5 5 ) ly^A)yffJ(k) (82)
ljcJM
I'j'd

Its target and projectile spin-projected matrix elements are

_ / ^ N 4vr ^—\ / • j

Kr
Ijcl'j'c'

JMmm' nn'

x {j'n'lc'Nd\JM) hJM|jnIcNci hjn|lmsνi .

In the scattering problem considered here, the flux, not the density, is conserved. When a

state is excited, the energy that goes to excitation must be taken from the relative motion. The

relative velocity thus decreases, as does the flux. To take this into account, the S-matrix and

scattering amplitude must be renormalized as

and

fv'Nc,vNc(0) =

When the system is time-reversal invariant, the matrix Sj is symmetric.

The scattering amplitude with the Coulomb term extracted thus has the form

fv'Nc,vNc{6) = ^v'v^Nc,Ncfcc{0)

4πX i σ \ ia ( J \ iσ 1
2^ Z- ^ ^ •? c ' 3C •* •* ' h

Ijcl'j'c' k
J Mmrn'nn'

xllw(f)F^(A:) (l'm'si/\j'ri) (86)

x {j'n'lc'Nd\JM) hJM|jnIcNci hjn|lmsνi .

where

fCc(θ) = ou c 2exp
£K>C S i l l 1// ^

is the Coulomb amplitude in channel c.

Once the scattering amplitude is known, calculating cross sections is a simple matter. The

differential cross sections for an unpolarized incident beam and target are obtained by averaging

the squared magnitude of the scattering amplitudes over the initial values of the projectile and

target spin and summing over the final values. The differential elastic cross section for a collision

in which the target is initially in its ground state is then given by

dσel
2

fv'N'ovNo{Q) • ( 8 8 )
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The differential inelastic cross section for inelastic scattering to an excited state c can be written

similarly as

v'N'
dΩ= (2s + 1)(2I0

where it should be emphasized that the sum over N'c refers to a sum over the spin projections of

the final state c only.

Due to the infinite range of the Coulomb force, the integrated elastic cross section is finite

only when at least one of the two colliding particles is neutral. In the particular case of neutrons

incident on a nucleus, integration of the differential cross section of Eq. (88) yields.

J- " x 1 / ^ - ^ , \ i ^ , / r~ r- *-* (r\r\\

j

The integrated inelastic cross sections exist for for both neutral and charged particles. They take

the form
1 π

' I'j'lj
J

Just as in the single-channel problem, the total flux lost from the elastic channel can be

related to the reaction cross section through the equation

0r =-~ (p To • <%, (92)

where the probability current,

Jo = 77— ( * J V * 0 - ( V ^ o ^ o ) , (93)

is integrated over a surface which tends to infinity, with \to being the ground-state component

of the wave function. However, in the coupled-channel problem, it is also possible to define an

absorption cross section, which can be related to the total flux lost from all channels, elastic and

inelastic, as

(Tabs = — (by^Tc-da, (94)

where the probability current in channel c, J*c, is

Jc = ^ ( * J W C - ( W c ) ^ ) , (95)

with ^ c the component of the wave function that asymptotically occupies state c.

Using the asymptotic form of the partial waves, Eq. (81), the expression for the reaction cross

section can be reduced to
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The contribution of each partial wave to the reaction cross section is determined by the fraction

of the flux lost from the elastic channel. The absorption cross section can, of course, be reduced

to a similiar form, which can be written as

σabs = (2s + 1)(2I0 + 1) k
lj J

where the coupled-channels transmission coefficients have been introduced. These are defined as

The similarity of the transmission coefficients to the single-channel ones becomes clear when they

are written in matrix form. The transmission matrix in partial wave J can be written in terms

of the corresponding S-matrix as

Tj = l j - S\Sj. (99)

Comparison of the form of the reaction and absorption cross sections reveals a simple relation

between the two,

<rr = (Jabs + ^ 2 <rc • (100)
c/co

In other words, the elastic channel loses flux to both the prompt inelastic channels and the

long-lived compound states. The reaction cross section takes both of these into account.

The absorption cross section and the corresponding transmission coefficients characterize the

transition of flux from the prompt channels to the compound states. These are the quantities

of principal interest for compound-nucleus calculations. When using coupled-channels transmis-

sion coefficients in compound-nucleus calculations, it is quite common to use just the diagonal

elements of the transmission matrix and neglect the off-diagonal ones. A careful analysis by

Engelbrecht and Weidenmiiller [22] showed that a more correct procedure is to perform the

compound-nucleus calculation in a basis in which the transmission coefficients are diagonal and

transform the resulting cross sections back to the non-diagonal basis.

For neutral particles, the neutron in particular, the elastic cross section is finite. A total

cross section can then be defined as the sum of the elastic and reaction cross sections,

σtot = σel + σr = 1 π 2 X

I 0 + 1k2 ljJ

The total cross section takes into account the occurence of scattering of any type. It is a measure

of the flux lost from the incident plane wave state.

Just as in the case of the elastic cross section, care must be taken when comparing inelastic

optical model cross sections with experimental data. At low energies, these cross sections are

dominated by their compound nucleus contribution, as shown in Figs. 8 and 9, for neutron-

induced excitation of the first excited state in 5 8 Ni and 2 3 8 U , respectively. One observes that

the direct process plays a very minor role in the excitation of these states in the first few MeV

above threshhold. In Fig. 8, the 5 8 Ni data are compared to optical model calculations using
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Figure 8: n +5 8 Ni EX=1A54 MeV 2+ inelastic cross section, identified by their EXFOR access
numbers, are shown together with two optical model calculations.

the parameters of A. Prince[f7] and those of the exercises, both with a phonon amplitude of

(32=0.2. Note the strong influence of the optical model parameters on the direct component of

the inelastic 58Ni excitation. The Prince parameters yield an inelastic cross section that is almost

twice that of the parameters of the exercises, although both use the same phonon amplitude. The
238U data of Fig. 9 is compared to an optical model calculation using the parameters of Young

and Arthur[21], which fits the higher energy data quite well. One notes that the direct excitation

cross section of the 238U 2 + state reaches a value of almost 500 mb. In general, the inelastic

excitation of a rotational band can be quite large, demanding a coupled channels method for its

precise calculation.
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Figure 9: n +2 3 8 U ^x=0.044 MeV 2+ inelastic cross section, identified by their EXFOR access
numbers, are shown together with an optical model calculation.
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8 The distorted-wave Born approximation

The distorted-wave Born approximations (DWBA) can be understood as a simple iterative ex-

pansion of the Lippmann-Schwinger equation in powers of the potential. It is thus a good ap-

proximation when the coupling to the excited states is weak. The Lippmann-Schwinger equation

the integral representation of the wave equation, which can be written as

* = * J + G0+ U' Ψ , (102)

where G j is the Green's function of the Schrodinger equation containing the part of the optical

potential that does not couple states, having as its wave function \Î j~, and the + superscript

means that the wave function ^J+ satisfies incoming-wave bounday conditions while the propa-

gator G j asymptotically contains only outgoing waves.

In the single-channel optical model problem, one can define incoming- and outgoing-wave

solutions, hjc (r), of the wave equation in each channel,

&_ 2 l(l + 1) 2 2 2/

dr2 r2 c K- + 4 Uso,c{r)) } >*?W ± ( r )=0,

where the spin-orbit constant dj = dso (j(j + l) —1(1 + 1) —s(s + l))/2 is as before. Asymptotically,

these solutions have the same behavior as the incoming and outgoing Coulomb waves,

hlcj±(r) -+ Hlc±(r) = e ^ ( G l c ( r ) ± i F l c ( r ) ) . ( 1 0 4 )

They are, however, solutions to the optical Schrodinger equation at all values of r. Numerically,

they can be obtained by solving the differential equation inward from the matching point, using

the conditions for matching to the asymptotic Coulomb functions as the initial conditions.

The incoming- and outgoing- wave solutions to the optical Schrodinger equation are not

regular at the origin. Through a comparison with the asymptotic form given in Eq. (46), it is

easy to convince oneself that a linear combination of the two that is regular is given in terms of

the S-matrix as

lc v ) nlc (r)e

(105)

where the last equality simply makes note of the relationship between the wave function tp3

l(^ and

the single-channel wave function ipjc of the partial wave expansion in Eq. (42). The S-matrix has

been relabelled 5*0 to emphasize its relation to the single-channel problem as well.

The single-channel Green's function in channel c can be decomposed in partial waves as

^ W ) &(r, r')y^(f'),. (106)
ljn

where the partial-wave Green's functions are defined in terms of the regular and outgoing partial

wave solutions as

^ ^ { r < ) ^ { r > ) • ( 1 0 7 )
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The channel Green's functions can then be combined into the complete single-channel Green's

function appropriate to the coupled-channels problem,

^c{r, f1) |IcNci hIcNc |
cNc

rr
ljc
JM

When the partial wave expansions, Eqs. (75) and (108), are substituted in the Lippmann-

Schwinger equation, Eq. (102), it can be reduced to a set of coupled equations for each partial

wave,

/// All ^11

In matrix notation, this takes a much simpler form,

dr' G0+J(r, r') U'j(r') Vj(r'), (110)

where ^ O J = ^ /oj e*< J J 1S the coupled-channels (diagonal) matrix form of the single-channel wave

function of Eq. (42). Asymptotically, this partial wave equation tends to

-(Hj(r) - HJ(r)eiajSjeiaj)e-iaj

(111)

Extracting the coefficient of the outgoing Coulomb wave, -ffj7, one obtains an expression for the

coupled-channels S-matrix,

Sj = SOJ + 2 i ^ KJ1/2 j™ dr' *Oj(r') U'j(r') * j (/) K~l/2 . (112)

(Recall that Sj = KlJ2^jK~l/2.)

The drawback to this form of obtaining the S-matrix is that it first requires knowledge of the

full coupled-channels wave function. However, by using this general expression and Eq, (110)

above, one has for the zeroth-order approximations (starting values) for the wave function and

S-matrix of the partial wave J,

J ( r ) = Ψ 0 J ( r ) and sf = S0J. (113)

The first-order distorted-wave Born approximation, or just DWBA, to the wave function is then

/>oo

! 1 ) + / dr'G+j(r,r')U'j(r')^oAr'), (114)
J0
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while the DWBA to the S-matrix is

S? = SOj + 2 i ^ K~l/2 f°° dr' *Oj(r') U'j{r') *Oj(r') K~1/2 . (115)

Note that the S-matrix is clearly symmetric when the optical potential coupling matrix U'j is

symmetric.

The DWBA is at times extended to second order in the coupling. In this case, one obtains

for the wave function,

/ ) (116)
0

/

oo />oo

dr' G+j(r, r') U'j{r') / dr" G+^r1, r") U'j{r") * O j ( r " ) ,
J0

j /

J0

and for the S-matrix

c(2) a . o . ^ 7^-1/2 / , / ,
SJ(2)=S0J + 21—^Kj' / dr '

~2 J0
(117)

/>oo

x / dr" G+j(r', r") U'j(r") *Oj(r") KJ
Jo

The DWBA is usually not extended beyond second order. If higher order terms in the

interaction are necessary, it is usually better to resort to other methods, such as a conventional

coupled-channels calculations.

The DWBA was developed to approximate the effects of the coupling between channels when

that coupling is weak. It assumes that the contribution of the next-order term will always be

relatively small compared to the last term included, due to the weakness of the coupling. It

usually overestimates the cross section since it neglects the flux lost due to the excitation that

it itself describes.

9 Reduced matrix elements and form factors

In Eq. (77), the target-spin-angular functions were used to calculate the matrix elements of the

optical potential,

Ui'3'c,i3c(r) = J d3rmt dQ y^)c,{r) U^r, rmt) yifc{r). (118)

It was noted that although these elements are calculated for a particular value M of the projection

of the total angular momentum J, the matrix elements that result are independent of this value if

the system is rotationally invariant. The representation of these matrix elements will be discussed

here.

The most general form of a rotationally-invariant interaction between a projectile and a

target couples tensor operators acting on the orbital angular momentum, i^Yx^f), the spin of
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the projectile, Q^v, and the angular momentum of the target, Q^^int), to a scalar,

(119)

In principle, the radial dependence of each term, V^_(r), can depend on the angular momenta

of the tensor operators, A, a, and K, as well as on the initial and final channels, c and d.

The interactions in the vibrational and rotational models (with a spherical spin-orbit poten-

tial) are simpler than the general one above, as they couple only the orbital and target angular

momenta. In these cases, the projectile-spin tensor operator is itself a scalar. This is not true in

general.

The matrix elements of the general interaction of Eq. (119), calculated with respect to the

target-spin-angular functions, can always be written in the form

t\h)V&K{r)- (120)

The factor Gf,^c, ls- is a geometrical/statistical coefficient, which gives the appropriate weight

to the angular momenta involved,

_ κ \j+rc+j -v+i+x

+1)(2λ + l)(2j'

V
l o o I j i ic id , j s

The reduced matrix elements of the projectile and target angular momentum tensor operators,

(s'\ Qp

a \s) and (/c/| Qf

K \IC) can, in principle, contain information about the nuclear part of the

matrix elements. In the macroscopic models discussed, the reduced matrix element for the

projectile is just a number, the number 1, to be precise. The reduced matrix element for the

target depend on the oscillation amplitude in the vibrational model and on the deformation

parameters in the rotational one.

Models with quite general couplings can be constructed in terms of their reduced matrix

elements and form factors. In this way, it is possible to construct microscopic as well as alternative

macroscopic models of the nuclear coupling.

10 Summary remarks

The objective of the optical model is to describe the fast, direct contribution to nuclear scatter-

ing. It makes use of an optical potential having both real and negative imaginary parts. The

absorption of flux from the optical wave function, due to the imaginary part of the potential,

accounts for the flux lost to the slower, compound nucleus component of the scattering. The

single-channel optical model describes the scattering in the elastic channel alone. It is often

called the spherical optical model because, in it, the target may be considered to be spherically

symmetric, since its structure is never introduced.
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Direct reactions that transfer energy as well as momentum are often quite important. Such

inelastic scatterings, in the case of the inert projectiles that we are considering (n, p, a, d,

etc.), leave the target in an excited state and diminish the asymptotic kinetic energy of the

projectile. To describe inelastic scattering, one must introduce at least the basic characteristics

of the ground and excites states of the target.

The optical model and optical potential continue to be subjects of intense research. One can

find out more about the directions this research is taking in the proceedings of a more or less

recent conference[23].

Acknowledgments

The lecturer would like to thank the organizers, the ICTP and the IAEA for this opportunity

to offer his view of the optical model. He also acknowledges partial support provided by the

Brazilian National Research Council (CNPq) and by the Fundagao de Amparo a Pesquisa do

Estado de Sao Paulo (FAPESP).

References

[1] CM. Perey, F.G. Perey, J.A. Harvey, N.W. Hill, N.M .Larson, R.L. Macklin,"58Ni+n trans-

mission, differential elastic scattering and capture measurements and analysis from 5 to

813 keV", ORNL-TM-10841, (1988); EXFOR file #12972003.

[2] A. Brusegan, G.Rohr, R.Shelley, E.Macavero, C. Van Der Vorst, F. Poortmans, I. Mewis-

sen, and G. Vanpraet, "Very high resolution transmission measurements and resonance

parameters of 58Ni and 60Ni", EXFOR file #22314006.

[3] T.Ericson, Advances in Physics, Vol. IX, No. 36, 425 (1960).

[4] H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions, John Wiley and Sons, Inc.,

New York (1992).

[5] J.P. Delaroche, Ch. Lagrange, and J. Salvy, IAEA-190, Vol. 1, (Vienna, 1976), p. 251.

[6] J.P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C16, 80 (1977).

[7] C. Mahaux and R. Sartor, in Proceedings of the Specialists' Meeting on the Use of the

Optical Model for the Calculation of Neutron Cross Sections below 20 MeV, OECD,

Paris, (1986), p. 17.

[8] F. Osterfeld, in Proceedings of the Specialists' Meeting on the Use of the Optical Model for

the Calculation of Neutron Cross Sections below 20 MeV, OECD, Paris, (1986), p. 29.

[9] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 1 (1986).

[10] R.J. Glauber, in Lectures in Theoretical Physics, Interscience, New York, (1959), Vol. 1, p.

315.

[11] A.K. Kerman, H. McManus, and R.M. Thaler, Ann. Phys. (N.Y.) 8, 551 (1959).

30



[12] C. Mahaux and H. Ngo, Nucl. Phys. A378, 205 (1982).

[13] C. M. Perey and F. C. Perey, Nucl. Dat. Tab. 14, 293 (1974).

[14] A.J. Koning and J.P. Delaroche, Nucl. Phys. A713, 231 (2003).

[15] T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A.V.

Ignatyuk, S. Kailas, A. Koning, P. Oblozinsky, V. Plujko and P. Young, Handbook for

calculations of nuclear reaction data : RIPL-2, IEAE-TECDOC-1506 (IAEA-Vienna,

2006); See also http://www-nds.iaea.org/RIPL-2.

[16] R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, Inc., New York

(1966).

[17] A. Prince, in Proceedings of the International Conference on Nuclear Data, Antwerp, (1982).

[18] J. Raynal, "Optical model and coupled channel calculations in nuclear physics" in Computing

as a Language of Physics, International Atomic Energy Agency, Vienna (1972).

[19] J. Raynal, "Strong channel coupling method for cross-section calculation", Workshop on

Nuclear Model Computer Codes, Trieste, Italy (1984).

[20] A. deShalit and H. Feshbach, Theoretical Nuclear Physics Volume 1: Nuclear Structure,

John Wiley and Sons, Inc., New York (1974).

[21] P.G. Young, in Handbook for calculations of nuclear reaction data: Reference input parameter-

library, IEAE-TECDOC-1034, p.131.

[22] C. A. Engelbrecht and H. A. Weidenmiiller, Phys. Rev. C8, 859 (1973).

[23] Proceedings of Specialists' Meeting on the Nucleon Nucleus Optical Model up to 200 Me V,

OECD, Bruyeres-le-Chatel, (1996).

31


