

2141-23

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

Cross Section Measurements and Uncertainties of Cross Section Data

PLOMPEN A. EC-JRC_IRMM Geel BELGIUM

Joint Research Centre (JRC)

Cross section measurements and

uncertainties of cross section data

Arjan Plompen

European Commission, Joint Research Centre,

Institute for Reference Materials and Measurements

http://www.jrc.ec.europa.eu/

Overview

2

General introduction

Some detailed measurement examples

Uncertainties in measurement

Summary part 1

Data of interest Use of uncertainties Need for measurements

Cross section total, fission, elastic inelastic, residual or ejectile yields

Differential cross section

- Angular distribution
- Emission spectrum
- Double differential

Other parameters

Resonance parameters

Influence quantities

Doppler broadening Instrumental broadening Sample broadening Temperature Pressure Sample composition, impurities, dimensions, roughness,... Room return Collimation Neutron sources

Computing power, data storage and manipulation, modeling improvements are increasingly determining the landscape of science

The possibilities are still poorly explored but new developments continuously push frontiers

Oak Ridge National Laboratory's Cray XT5 "Jaguar" Supercomputer Current #1 supercomputer

2 petaflops peak

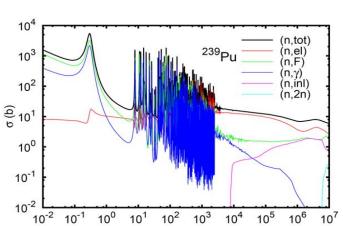
... to address some of the most challenging scientific problems in areas such as climate modeling, renewable energy, materials science, fusion and combustion...

.... Novel Computational Impact on Theory and Experiment (INCITE) program....

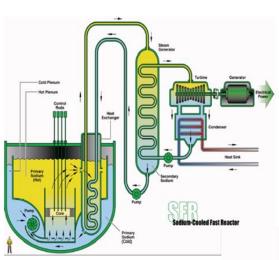
UROPEAN COMMISSION Why cross sections, ... (nuclear) data ?

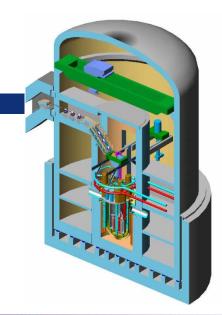
ICTP-IAEA 10 and 11 May 2010

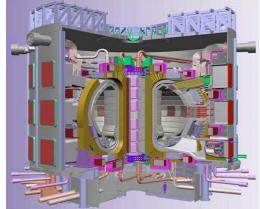
Modeling of reactors


Two important equations

Neutron transport: Boltzmann


Nuclides inventories: Bateman


... and charged particles, photons, (Encoded in discrete ordinates or Monte Carlo codes)


Equations, models, computing power are not enough! Constants of nature are required!

E (eV)

Boltzmann equation, quantities and required data

6

$$\frac{1}{v} \frac{\partial f}{\partial t} + \mathbf{\Omega} \cdot \nabla f + \sum_{T} f = S + \int dE' d\Omega' f(E', \Omega') \sum_{S} (E' \to E, \Omega' \to \Omega)$$

$$S = S_{PF} + S_{dn} + S_{\alpha n} + S_{\text{ext}}$$

$$S_{PF} = \sum_{i} N_{i} \int dE' f(E') \overline{V_{i}}(E') \sigma_{F,i}(E') f_{P,i}(E', E)$$

$$\sum_{S} (E \to E', \Omega \to \Omega') = \sum_{i} N_{i} \frac{d^{2} \sigma_{S,i}}{dE' d\Omega'} (E, E', \Omega \cdot \Omega')$$

$$\sum_{T} = \sum_{i} N_{i} \sigma_{T,i}$$

$$\sum_{S} = \int dE' d\Omega' \sum_{S} (E \to E', \Omega \to \Omega')$$

1 7 7

Bateman equation, quantities and required data

7

$$\frac{dN_i}{dt} = -\lambda_i N_i - r_i N_i + \sum_{j \neq i} \left\{ \lambda_{j \to i} + r_{j \to i} \right\} N_j$$

 N_i/N_j =concentration of nuclide i/j $\lambda_i = \frac{\ln 2}{T_{1/2,i}} = \sum_{j \neq i} \lambda_{i \to j} = \text{the decay constant of nuclide i}$ $\begin{vmatrix} \lambda_{i \to j} &= \lambda_i b_{i \to j} \\ b_{i \to j} &= \text{probability for decay of isotope i to j} \end{aligned}$ $r_i = \int dE \, \Phi(E, t) \sigma_{a,i}(E) = \sum_{j \neq i} r_{i \to j}$ $\sigma_{a,i}$ =absorption(=removal) cross section for isotope i $r_{i \to j} = \int dE \, \Phi(E, t) \sigma_{a, i \to j}(E)$ $\sigma_{a,i \rightarrow j}$ =cross section for transforming isotope i to j

This talk: Nuclear Data

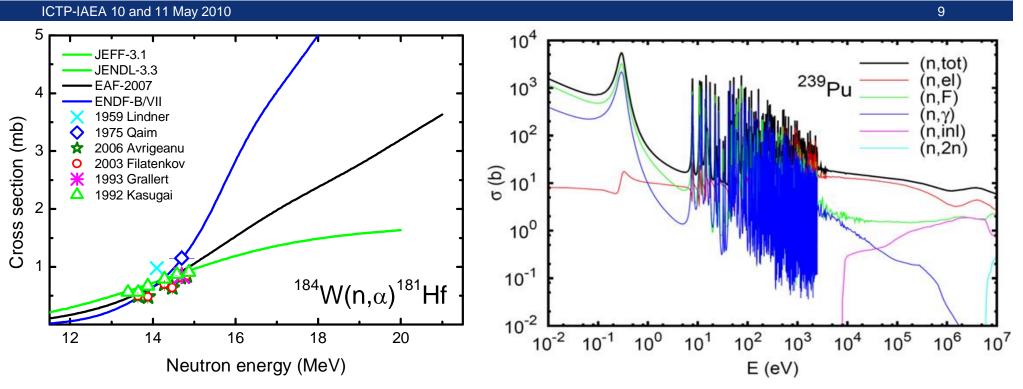
Thermo-hydraulic

Heat transport Coolant flow

• • •

Chemical

. . .


Fuel fabrication Reprocessing Partitioning Conditioning Corrosion But there are others... ... for other processes ... involving other equations ... increasingly integrated approaches are seen (microscopic-macroscopic approach, global modeling)

Mechanical

. . .

Densities, ... Strength/stress, ... Radiation damage

UROPEAN COMMISSION Why cross section/reaction parameter measurements?

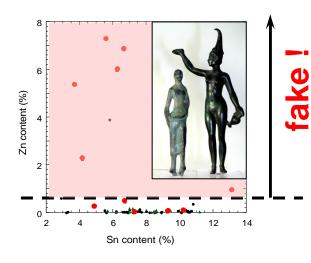
Nuclear modeling lacks accuracy for detailed predictions of cross sections

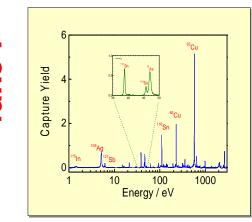
Resonance parameters are effectively stochastic variables level energies, partial widths

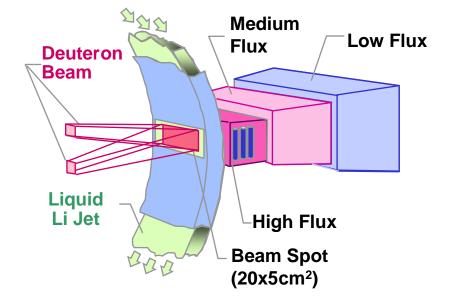
Data are needed for developing models, determining model parameters, benchmark model parameter databases and overall model performance

UROPEAN COMMISSION Why cross section/reaction parameter measurements?

ICTP-IAEA 10 and 11 May 2010 10 5 10⁴ JEFF-3.1 (n,tot) JENDL-3.3 10³ 239_D (n,el) EAF-2007 4 (n,F)FNDF-B/VII n,γ 1959 Lindner Cross section (mb) 10² n,inl) 1975 Qaim 2006 Avrigeanu (n,2n)2003 Filatenkov 0 (q) 10¹ 1993 Grallert 1992 Kasugai Δ 2 10⁰ 10^{-1} ¹⁸¹Hf ¹⁸⁴W(n,α) 10⁻² 10² 16 10⁻² 10⁰ 10³ 10⁵ 10⁶ 12 14 18 20 10⁻¹ 10¹ 10⁴ 10^{7} Neutron energy (MeV) E (eV)

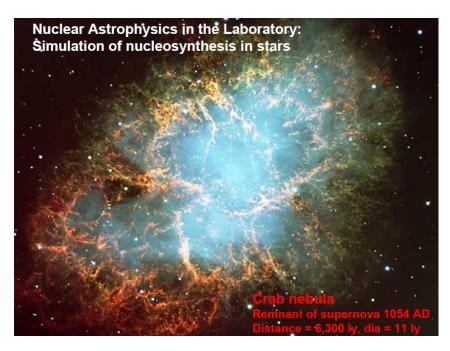

On the other hand: Modeling is essential to


✓ extract the physical parameters from a measurement
 ✓ interpolate and extrapolate from experimental results
 ✓ make an educated guess about the unmeasurable
 ✓ provide complete physically consistent databases



Other motivations than NPP...

ICTP-IAEA 10 and 11 May 2010



11

Current NPP related data needs

12

Important challenges:

- Plant life time
- Fuel economy
- Waste minimization
 - Transmutation
 - Elimination of all actinides (99.5-99.9%)
 - Th/U fuel cycle

Sustainability of (nuclear) energy

- Utilization of resources, global warming, ...
- Fast reactors
- ...recycling...
- Higher burnup, Th/U, ...

EUROPEAN COMMISSION Advanced reactor nuclear data and -uncertainty needs

ICTP-IAEA 10 and 11 May 2010

Subgroup 26 (SG26), M. Salvatores, coordinator (CEA/FZK/ANL)

Subgroup 26 is a working group of the Nuclear Energy Agency's Working Party on Evaluation Cooperation

It addressed the nuclear data needs likely to arise from design/optimization requirements in fast reactor development

General philosophy

 ☑ Choose the target systems (GenIV, GNEP, references)
 ☑ Choose key system parameters
 ☑ Fix their target accuracies
 ☑ Perform a sensitivity analysis
 ☑ Determine corresponding data uncertainties

Nuclear data needs nuclide, process, energy range

http://www.nea.fr/dbdata/html

Advanced reactor nuclear data and -uncertainty needs

ICTP-IAEA 10 and 11 May 2010

EUROPEAN COMMISSION

JRC

System modeling

A simple principle **Conceptual systems Good understanding**

Future

Better capabilities More modeling More systematic

Q: system parameters p: nuclear data f: the model

$$\mathbf{Q} = \mathbf{f}(\mathbf{p})$$

- $=(Q_1, Q_2, ..., Q_k) = \text{the list of system quantities}$ $=(p_1, p_2, ..., p_n) = \text{the list of model parameters}$ $=(f_1, f_2, ..., f_k) = \text{the model description}$
- = the model description

p tuned so that **Q** as desired **p** includes all cross sections for all isotopes e.g. Q_1 = the SFR BOL multiplication factor e.g. Q_{200} =the EOL amount of ²⁴¹Am in a PWR,... e.g. p_{100} =fission cross section ^{239}Pu in group 12 e.g. p_{200} =fractional yield of ${}^{242g}Am$ in ${}^{241}Am(n, \gamma),...$

UROPEAN COMMISSION Advanced reactor nuclear data and -uncertainty needs

ICTP-IAEA 10 and 11 May 2010

$$V_{ij}(\mathbf{Q}) \equiv \langle \delta \mathbf{Q}_i \delta \mathbf{Q}_j \rangle = \sum_{a,b} \frac{\partial f_i}{\partial p_a} \frac{\partial f_j}{\partial p_b} \langle \delta p_a \delta p_b \rangle$$

Relative covariance

$$R_{ij}(\mathbf{Q}) \equiv \frac{V_{ij}(\mathbf{Q})}{Q_i Q_j} = \sum_{a,b} S_{ia} S_{jb} R_{ab}(\mathbf{p})$$

Sensitivity coefficient: $S_{ia} \equiv \frac{p_a}{f_i} \frac{\partial f_i}{\partial p_a}$

$$R_{ij}(\mathbf{Q}) = \sum_{a,b} S_{ia} S_{jb} C_{ab}(\mathbf{p}) r_a(\mathbf{p}) r_b(\mathbf{p})$$

 $C_{ab}(\mathbf{p}) \equiv \frac{V_{ab}(\mathbf{p})}{u_a(\mathbf{p})u_b(\mathbf{p})} \implies R_{ab} = C_{ab}r_ar_b$

Uncertainty analysis System versus data: Uncertainty propagation Sensitivity analysis

V (co)variance matrix S sensitivity matrix R relative cov. matrix C correlation matrix

Uncertainty $u_a(\mathbf{p}) \equiv \sqrt{\langle \delta p_a \delta p_a \rangle}$ Relative uncertainty $r_a(\mathbf{p}) \equiv \frac{u_a(\mathbf{p})}{p_a}$ Correlation matrix ($C_{aa} = 1$)

15

UROPEAN COMMISSION Advanced reactor nuclear data and -uncertainty needs

ICTP-IAEA 10 and 11 May 2010

System uncertainty limits L_i :

$$r_i(\mathbf{Q}) < L_i \quad \text{for } 1 \le i \le k$$

Equivalently for the parameters:

$$\sum_{a,b} S_{ia} S_{ib} C_{ab}(\mathbf{p}) r_a(\mathbf{p}) r_b(\mathbf{p}) < L_i^2, \ i = 1..k$$

For each Q_i an ellipsoid in $\mathbf{r}(\mathbf{p})$ -space

$$\min\left(\sum_{a} \frac{\lambda_a}{r_a^2(\mathbf{p})}\right)$$

The cost parameters λ_a may be changed according to the relative difficulty of obtaining low uncertainties for the parameter p_a .

Back propagation method

16

L: System parameter constraints

Ellipsoids in relative uncertainty space of the data

One ellipsoid per system parameter

.... Still leave a domain of acceptable uncertainties

Use freedom to find best route to final goal:

Cost function to weigh relative difficulty for improvement of the data.

SG26 example shows

Use of data in reactor modeling

Use of uncertainties in reactor modeling

The benefits of sensitivity analysis to identify important issues in nuclear data (or other data/effect studies)

Role of data uncertainties

Role of uncertainty correlations

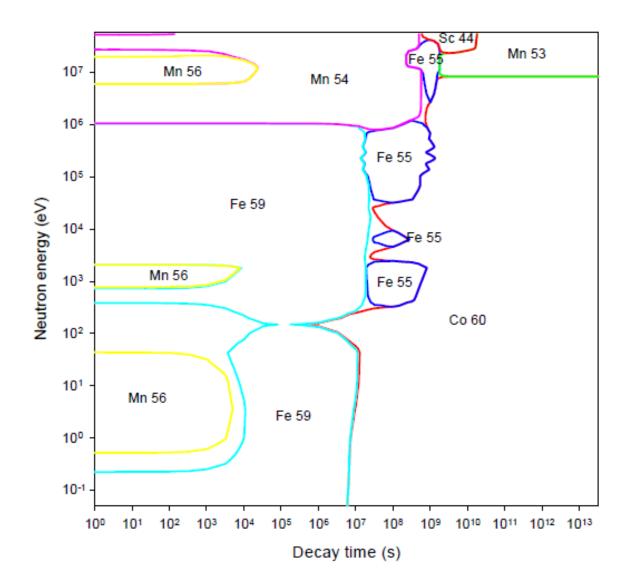
Other ways of identifying needs

Importance Diagrams

Activation data

UKAEA report 552 Handbook of Activation data calculated using EASY-2007 (2009)

Dose rate Activity Mn 53 Mn 53 10 Mn 56 Mn 54 Mn 54 106 10 Fe 55 10⁵ 105 utron energy (eV) Fe 59 Neutron energy (eV) 104 104 Fe 55 Mn 56 10³ Fe 55 10³ Co 60 Ver 102 10² 101 101 Mn 56 Fe 59 100 10⁰ 10-Fe 59 10-109 1010 1011 1012 1013 100 101 102 103 104 105 106 107 108 100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 Decay time (s) Decay time (s) **Ingestion dose** Heat output Ar 39 Mn 54 Mn 53 Fe 55 Mn 53 Mn 56 Mn 54 10 Ar 42 Mn 54 Co 60 106 10 Fe 55 105 105 lergy (eV) Fe 59 energy (eV) Fe 59 104 10 Fe 55 10³ Mn 56 103 Veutron Neutron Fe 60 Co 60 102 10² 101 10¹ Mn 56 Fe 59 100 109 Fe 59 Co 60 10-10 100 101 102 103 104 105 105 107 108 109 1010 1011 1012 1013 105 108 109 1010 1011 1012 1013 100 101 102 103 104 106 107 Decay time (s) Decay time (s'


Iron importance diagrams & transmutation

JRC

EUROPEAN COMMISSION

Dose rate

Established network and procedures

- Feedback from users and validation
- New measurement and evaluation
- Quality cycle

International fora (WPEC, JEFF, OECD-NEA, IAEA)

Collaborations (DOE, BNL, JAEA, Russia, Korea, China, India,....)

High priority request list for nuclear data (OECD-NEA)

www.nea.fr/html/dbdata/hprl

Measurements of nuclear data

ICTP-IAEA 10 and 11 May 2010

Reaction data

Decay data

Main topic

Some comments only

Measurements of nuclear data

Decay data

Half life

Measurements

Nuclear structure studies

- Type: γ , CE, β^- , β^+ , ϵ , n, α , SF
- Emission energies, spectra, probabilities
- Residual nuclide level and decay scheme

- Gammasphere, Euroball, Eurogam, Exogam, Miniball ...Agata, Greta Large specialized community
- Radionuclide metrology
 - Accurate data for calibration sources Accurate sources (α , β , γ ,F) Methods of measurement

Measurements of nuclear data

Reaction data

Large field, many aspects

Projectile + target

- Projectile: γ, e, n, p, d, α
- Target: nucleus (Z, A)
- Transport and energy loss
 - Elastic scattering
 - Inelastic scattering
- 'Real' reactions
 - Capture
 - Light particle emission
 - Fission
 - Spallation

Main interest:

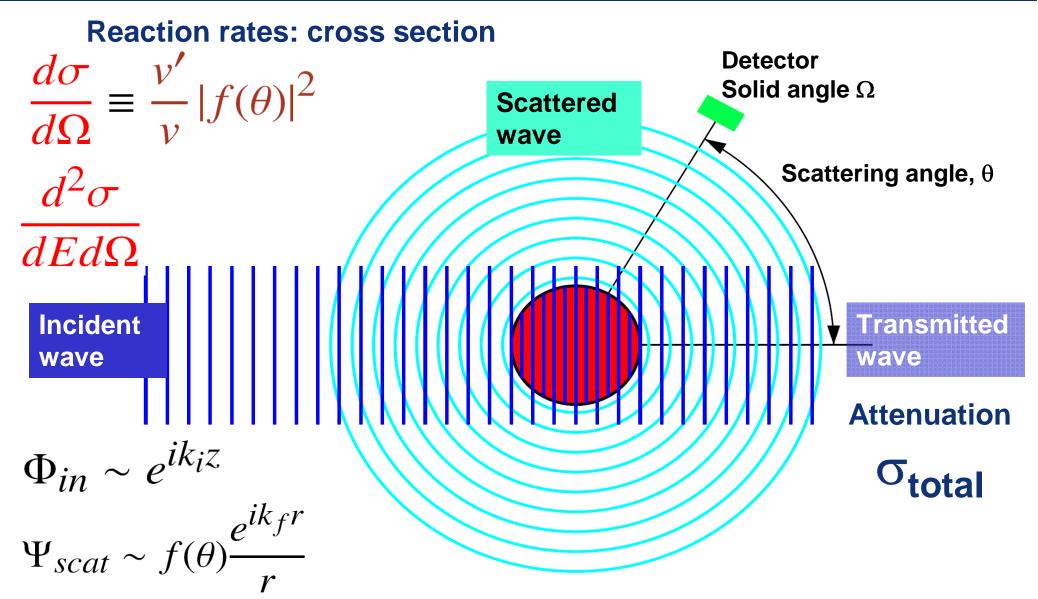
Neutrons as projectile

- Energy release
- Neutron production
- Neutron removal
- Neutron energy loss
- Neutron transport
- Production of residuals
- Activation products

Gammas, protons, alphas as projectile

- Heating
- Neutron production
 - Residual neutron source
 - Subcritical assemblies
 - Experimental facilities

Measurements of nuclear reaction data



Neutron-induced reactions elastic scattering (n,n) radiative capture Compound (**n**,γ) **Nucleus** neutron fission nucleus A+1X AX inelastic scattering T(P,E)R reaction specifier $(n,n'\gamma)$ **T: Target nucleus P**: projectile other reactions E: Ejectile(s) $(n,p) (n,d) (n,\alpha)$ **R:** Residual nucleus

Measurements of nuclear reaction data

ICTP-IAEA 10 and 11 May 2010

Definition and measurements of cross section

$$\sigma \equiv \frac{\text{Reaction rate}}{\text{flux}} \text{(per target nucleus)} = \frac{\dot{R}}{\Phi}$$

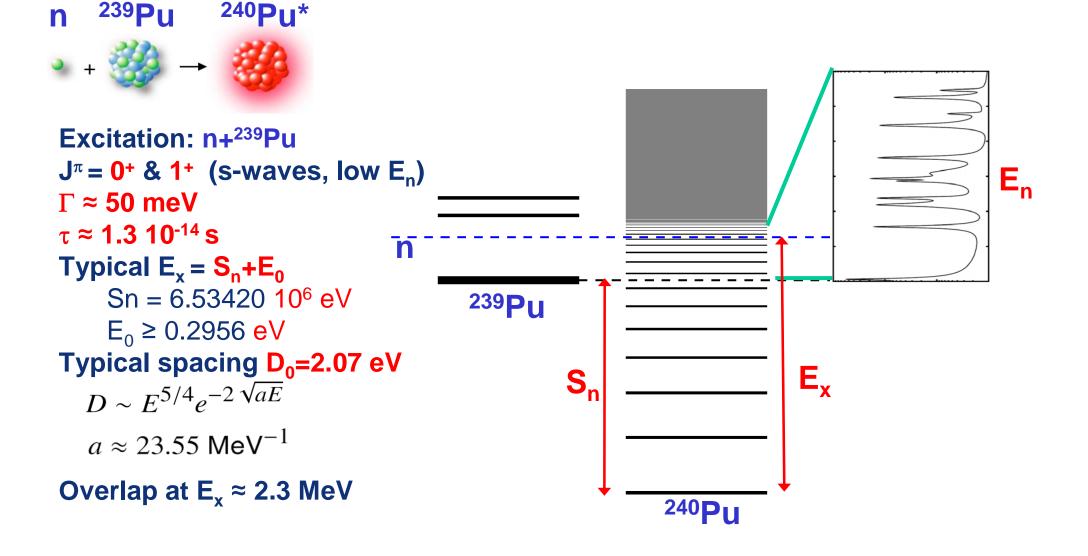
$$\sigma = \frac{\text{\# reactions}}{\text{fluence}} \text{(per target nucleus)} = \frac{R}{F}$$

 $\mathbf{F} = \mathbf{\Phi}t, \mathbf{R} = \dot{\mathbf{R}}t, t = \text{measurement time}$

Rate must be specified

Process (fission, elastic, etc) energy of particle(s) (E, E') angle of particle(s) (θ , d Ω ') Number of particles, Etc.

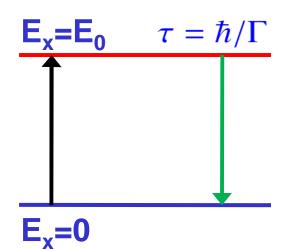
Measurements


Rate of process Fluence/normalization Number of target nuclides

26

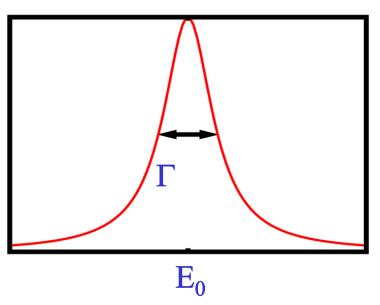
Influence parameters

The resonance range, resolvable and unresolvable structures



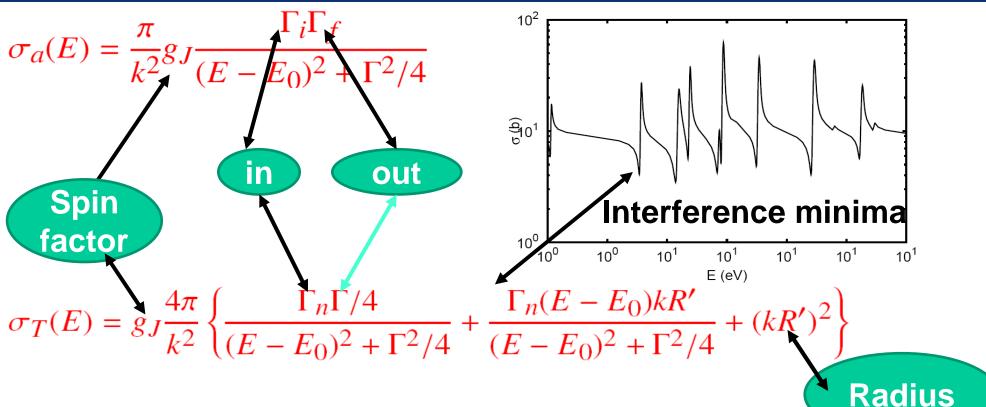
The resolved resonance range: resonance parameters

Excitation and decay of an intermediate metastable state Channels, i=initial, f=final


Excitation: $P_e = \Gamma_i / \Gamma$ Decay: $P_d = \Gamma_f / \Gamma$

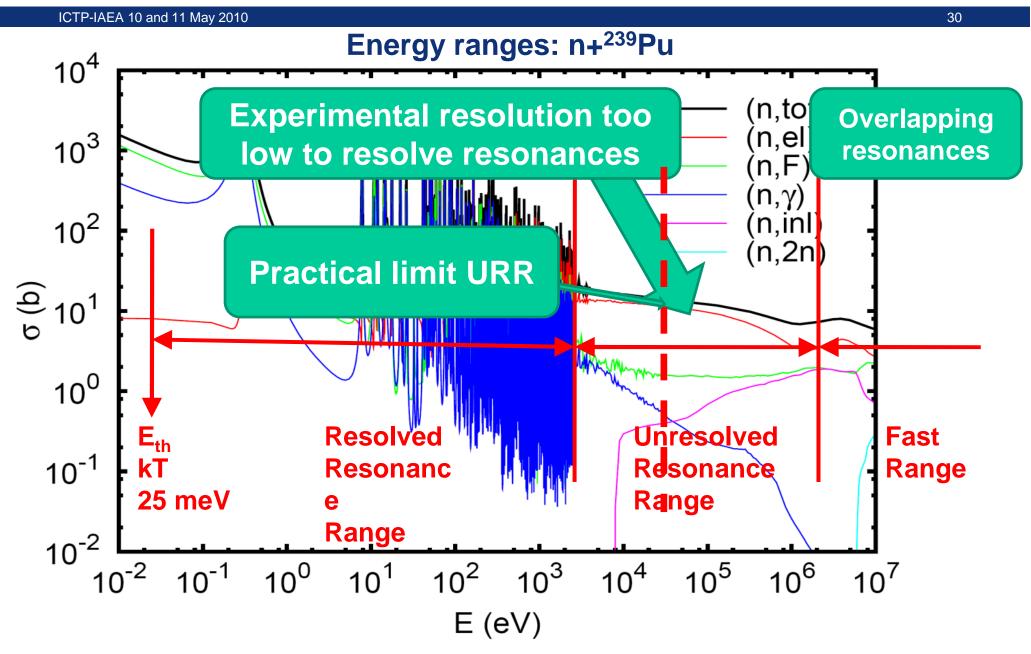
Mean life time τ Natural line width Γ

$$\sigma_a(E) = \frac{\pi}{k^2} g_J \frac{\Gamma_i \Gamma_f}{(E - E_0)^2 + \Gamma^2/4}$$


$$\Gamma = \sum_{f} \Gamma_{f}$$

Measurements of nuclear reaction data

ICTP-IAEA 10 and 11 May 2010



Many parameters E_0 , J^{π} , Γ , Γ_n , Γ_{γ} , Γ_f , R', g_J R-matrix: sophisticated model Advanced analysis codes: REFIT, SAMMY, CONRAD Characterization of resonances requires measurements with good energy resolution Good understanding of broadening mechanisms

29

Measurements of nuclear reaction data

Summary part 1

Data of interest Use of uncertainties Need for measurements

Cross section total, fission, elastic inelastic, residual or ejectile yields

Differential cross section

- Angular distribution
- Emission spectrum
- Double differential

Other parameters

Resonance parameters

Influence quantities

Doppler broadening Instrumental broadening Sample broadening Temperature Pressure Sample composition, impurities, dimensions, roughness,... Room return Collimation Neutron sources