

2141-31

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

Introduction to Nuclear Model Code EMPIRE

CAPOTE R. IAEA Vienna AUSTRIA

EMPIRE code as a tool for nuclear reaction data evaluations

IAEA HQ Vienna Austria

Roberto Capote

International Atomic Energy Agency, NAPC - Nuclear Data Section

OUTLOOK
Principles of nuclear data evaluation
EMPIRE overview
EMPIRE as a ND evaluation tool
Selected evaluations and modelling results
2/60 ICTP workshop 2141, ND Roberto Capote, IAEA Nuclear Data Section Trieste, Italy, 3-14 May 2010 e-mail: R.CapoteNoy@iaea.org / Roberto.Capote@vahoo.com

Motivation for new ND evaluations

OECD/NEA WPEC Subgroup 26 Final Report:

"Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations", M Salvatores (coordinator), R. Jacquemin (monitor), Technical report NEA No. 6410, OECD 2008.

The request for improved cross sections and emission spectra and their accuracies for neutron induced reactions on 238 U is an important issue that emerges in several of cases studied. High accuracy requirements were placed on inelastic cross-sections 238 U(n,inl) in the whole energy range up to 20 MeV and on capture cross section 238 U (n, γ).

Cross sections uncertainties and covariance data are strongly required

ND evaluation: energy ranges

e-mail: R.CapoteNoy@iaea.org / Roberto.Capote@yahoo.com

4/60

Trieste, Italy, 3-14 May 2010

What is Nuclear Data Evaluation? A properly weighted combination (usually by GLSQ fit) of selected experimental data and nuclear reaction modelling results.

Alternatives:

GLSQ model can be replaced by Unified Monte Carlo

(see my Thursday lecture)

□ MC sampling can be extended (TMC), no covariance formatting

(see Koning's lecture in the morning)

6/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

ND evaluation – resonance range

7/60

Evaluation – fast energy range

8/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

Evaluation – fast energy range

- Use modern nuclear model code (e.g. EMPIRE or TALYS)
- Choose adequate reaction models
- Define recommended input parameters (<u>RIPL</u>)
- Calculate cross sections and other quantities
- Compare calculated values to selected measured data (after correcting for new stds, discarding discrepant, etc)
- Given Fine-tune the input model parameters

Loop

□ From model parameter uncertainties and model uncertainties generate covariance matrix prior

9/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

EMPIRE overview

10/60ICTP workshop 2141, ND
Trieste, Italy, 3-14 May 2010

EMPIRE developers

- M. Herman (BNL, NNDC) coordinator
- R. Capote (IAEA, Vienna)
- B.V. Carlson (ITA, Dao Jose dos Campos)
- P. Oblozinsky (BNL, NNDC)
- M. Sin (Univ. Bucharest)
- A. Trkov (JSI, Lubljana)
- H. Wienke (Belgonucleaire)
- V. Zerkin (IAEA, Vienna)

Contributors:

E. Betak (SAS, Bratislava), C. Mattoon (BNL, NNDC), M. Pigni (BNL, NNDC), V. Plujko (Univ. Taras Shevshenko, Kiev), A. Ventura (ENEA, Bologna)

12/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

EMPIRE highlights

System of codes for modelling nuclear reactions:

broad range of energies (up to ~150 MeV) and projectiles
most important nuclear reaction mechanisms
choice of models and parameterizations
extensive input parameter library (RIPL)
automatic retrieval of experimental data from EXFOR
highly automated fit of optical model parameters
determination of covariances (Monte Carlo, Kalman filter)
easy input (extensive use of defaults, built-in internal logic)

EMPIRE highlights (continued)

easy operation via Graphic User Interface (GUI)
 interactive plots of experimental and calculated results

 excitation functions
 angular distributions
 inclusive emission spectra for n, p, ...
 double differential spectra

 Plots use ZVView (see V. Zerkin lecture)

ENDF-6 formatting (EMPEND, see A. Trkov lecture)
 utility codes (ENDF-6 verification)

Full path from experiment to validated ENDF-6 file

Intermezzo storico opus 1

Table 1: Major releases of the EMPIRE code.

Version	Year	Location	Comments
EMPIRE	1980	Warsaw	CN+HYBRID
EMPIRE MSC	1983	Warsaw	FKK(MSC)
EMPIRE HI	1988	Messina	heavy-ion version
EMPIRE HMS	1991	Bologna	NVWY(MSC)+TUL(MSD)
EMPIRE-2.13	2001	Vienna	totally rewritten
EMPIRE-2.17 (Montenotte)	2002	Vienna	ECIS, HRTW, EXFOR, HMS,
			DEGAS, RIPL-2, plotting
EMPIRE-2.18 (Mondovi)	2002	Vienna	
EMPIRE-2.19 (Lodi)	2005	Brookhaven	advanced fission,
			photo-nuclear reactions,
			PE clusters (PCROSS),
			OMP fitting,
			merging resonances,
			mixed inclusive/exclusive spectra,
			checking codes, NJOY support,
			used for ENDF/B-VII.0
EMPIRE-3.0 (Arcola)	2008	Brookhaven	deformed TUL(MSD)
			Monte-Carlo sampling of input parameters
			improved fission
			formatting of isomers

16/60ICTP workshop 2141, ND
Trieste, Italy, 3-14 May 2010

EMPIRE: reaction models

spherical optical model (ECIS-2006),
DWBA, coupled channels (ECIS-2006),

TUL Multistep Direct (ORION + TRISTAN),
 NVWY Multistep Compound with -emission,
 exciton model (PCROSS, DEGAS),
 Monte Carlo preequilibrium (DDHMS),

□ HRTW for widths' fluctuations,

□ Hauser-Feshbach model with full -cascade and dynamical

 $\hfill\square$ deformation effects ,

□ State of the art fission (multi-hump barriers, microscopic barriers, optical model for fission, multimodal fission)

(see M Sin lecture)

17/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

EMPIRE statistics

EMPIRE core: more than 79 000 lines (ECIS: 23860)
utility codes: more than 109 000 lines
number of bash and Tcl/Tk scripts: 40
number of python scripts: 16 and growing!
size of the internal parameter library: 31.6 Mb
size of the RIPL-3 library: 91 (+129) Mb (micro LDs)

Interactive plotting through ZVView
 Results converted into the ENDF-6 format (EMPEND)
 Verification using PREPRO system

Total size: ~ 350 Mb

18/60ICTP workshop 2141, ND
Trieste, Italy, 3-14 May 2010

EMPIRE platforms

Languages: FORTRAN 77 (99%), C (mostly ZVView), Bash (scripts), Tcl/Tk (GUI), Python (scripts), (awk)

Operating systems:
Linux (Red Hat, Fedora, Ubuntu, ...),
UNIX (any one should work but TLC might be needed)
Mac (X11 needed for ZVView and xterm)
MS Windows (EMPIRE core runs, close to be fully operational)

19/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

GUI interface (Main 1)

File Options Inputs Execute Outputs Logs	Plots Clean Source Help	
Main 1 Main 2 ZVV plots DDX plots Execute Create input Edit input MAT 1111 MAT 1111 Run selected -> Plotting (PLOTC4)	Files Archive Files Archive Folders Multi-run Source Output Output Output Output Output Discrete levels OMP for direct ENDF Cumul. plot Fission input Exit	
/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 20	Roberto Capote, IAEA Nuclear Data Section 010 e-mail: R.CapoteNoy@iaea.org / Roberto.Capote@yahoo.ce	om 📢

GUI interface (Main 2)

File Options Inputs Execute Outputs Logs Plots Clean Source Help	
Main 1 Main 2 ZVV plots DDX plots Files Archive Folders Multi-run Source	**
OMP fit EXFOR Edit RIPL OMP GUI interface Run fit + Plot View EXFOR Store as ref. View C4	
ICTP workshop 2141, ND Roberto Capote, IAEA Nuclear Data Section	
21/60 Trieste, Italy, 3-14 May 2010 e-mail: R.CapoteNoy@iaea.org / Roberto.Capote@yah	oo.com

GUI interface (zvv plots)

R EMPIRE GUI		
File Options Inputs Execute Outputs Logs Plots Clea	an Source Help	الليم
	TIL W W W W C C:/EMPIRE/scripts	
Main 1 \ Main 2 \ ZVV plots \ DDX plots \ Files	Archive Folders Multi-run Source	
Available ZVV plots	Select data for ZVV plotting (multiple allowed) List of selected	
Filter: Select MT: Plot_selected MT <= Delete selected	# MF p MT Einc Elev Ang Shift 10** Eres (rel) Plot the list List name	
ZVV plot from EMPIRE	Compare to:	
2/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010	Roberto Capote, IAEA Nuclear Data Section e-mail: R.CapoteNoy@iaea.org / Roberto.Capote@yahoo.	com

GUI interface (Files)

Main 1 \ Main 2	ZVV plots \ DDX p	L D D Clean	Archive	iolders 🔪 Mult	C:/EMPIRE/	scripts e	
Select file types: full output short output log files ENDF PLOTC4 plots EXFOR C4 file neutron TI's proton TI's	 OM parameters OMP for direct ZVV plots levels collective levels EMPIRE input fission input alpha TI's TI directory 	Delete selected files Clean project Remove project	Available file skel.inp	5:			Filter: *.inp Selected file Change to its project Edit Delete all selected
0 ICTP	workshop 2141,	ND	R	oberto Car	oote, IAEA	Nuclear Dat	a Section

GUI interface (Multi-run)

GUI interface (Source)

R EMPIR	e gui									
File Option	s Inputs Execute	Outputs Logs I	lots Clean	Source Help)					
6		🖌 🖋 🧸 🛽	b 🗎 🍈	🚳 🙆		C:/EMP	PIRE/scripts			*
Main 1	Main 2 \ZVV	plots \ DDX plots \	Files	Archive	Folders \ M	lulti-run \ S	ource \			
Double clic	k to edit									
empire_ctl.f main.f input.f	^	Edit dimensions	[
fusion.f		Make								
ccfus.f]							
MSD-orion.f MSD-tristan	f	Make all								
MSC-NVWY subecis06m	.f 1.f		1							
fis_io.f										
degas.f	~									
25/60	ICTP works	hop 2141, ND		F	Roberto Ca	apote, IAI	EA Nuclear	Data Section	1	(A)
23/00	Trieste, Italy	, 3-14 May 20)10 e	e-mail: R .	CapoteNo	y@iaea.o	rg / Roberto	.Capote@ya	ahoo.com	

Evaluation using **HNPIRH**

26/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

EMPIRE produces ENDF-6 data

Reasonable compromise between what:

- Experimentalists can measure
- Theoreticians can model
- Engineers can use

 Well documented (<u>ENDF-102.pdf</u> – June 2009) Precise definitions, >300 pages manual
 Adopted by all major national projects USA, EU, Japan, Russia, China ...
 Supported by processing codes !

ENDF-6 formatted file

2.	505500+4	5.446610+1	0	0	1	01111	2151	L 1
2.	505500+4	1.000000+0	0	0	1	01111	2151	L 2
0.	0	0.0	0	0	1	91111	2151	L 3
9.	000000+0	2.000000+0	0	0	0	01111	2151	L 4
1.	00000-5	6.368000-1	9.00000+4	6.225000-1	1.000000+5	6.049000-11111	2151	L 5
1.	100000+5	5.937000-1	1.250000+5	5.766000-1	1.350000+5	5.612000-11111	2151	L 6
1.	500000+5	5.406000-1	2.00000+5	5.140000-1	2.500000+5	4.810000-11111	2151	L 7
1.	00000-5	8.00000+4	1	1	1	91111	2151	L 8
2.	500000+0	0.0	0	0	1	01111	2151	L 9
5.	446610+1	0.0	0	0	24	41111	2151	L 10
-3.	449970+3	2.000000+0	1.078210+0	3.282100-1	7.500000-1	0.0 1111	2151	L 11
-1.	149970+3	2.000000+0	1.078210+0	3.282100-1	7.500000-1	0.0 1111	2151	L 12
1.	150030+3	2.000000+0	1.078210+0	3.282100-1	7.500000-1	0.0 1111	2151	L 13
3.	450030+3	2.000000+0	1.078210+0	3.282100-1	7.500000-1	0.0 1111	2151	L 14
						1111	2 (99999
						1111	0 0) 0
2.	505500+4	5.446610+1	0	0	0	01111	3 1	L 1
0.	0	0.0	0	0	1	3791111	3 1	L 2
	379	2				1111	3 1	L 3
1.	00000-5	4.093599+1	1.084651-5	3.932864+1	1.175671-5	3.779880+11111	3 1	L 4
1.	273421-5	3.634307+1	1.378259-5	3.495820+1	1.494930-5	3.359273+11111	3 1	L 5
1.	620380-5	3.229340+1	1.755104-5	3.105730+1	1.899598-5	2.988168+11111	3 1	L 6

Processing codes clearly needed !

28/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

EMPIRE: Modelling advances

- Full access to RIPL OM database: dispersive and Lane consistent coupled-channel OMPs
 neutron inelastic scattering to discrete levels;
- improved neutron emission spectra (MSD+MSC) to calculate neutron inelastic scattering to the continuum;
- EGSM level density parameterization (EGSM): all statistical cross sections
- □ improved fission formalism and parameters;

29/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

DISPERSIVE OPTICAL MODEL POTENTIAL

Energy dependence (I) Functional form of the real and imaginary potentials:

$$V_{HF}(E) = V_0 \cdot exp(-\alpha_{HF}(E - E_F))$$

$$W_{V}(E) = A_{V} \frac{(E - E_{F})^{4}}{(E - E_{F})^{4} + (B_{V})^{4}}$$
$$W_{S}(E) = A_{S} \frac{(E - E_{F})^{4}}{(E - E_{F})^{4} + (B_{V})^{4}} \cdot exp(-C_{S}|E - E_{F}|)$$

30/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

$$\Delta V(E) = \frac{\mathcal{P}}{\pi} \int_{-\infty}^{\infty} \frac{W(E')}{E' - E} dE'$$

$$\begin{split} V_{v}(E) = &V_{HF}(E) + \Delta V_{v}(E) + \Delta V_{<}(E) + \alpha_{v} \Delta V_{>}(E) \\ V_{s}(E) = &\Delta V_{s}(E) + \alpha_{s} \Delta V_{>}(E) \end{split}$$

W(E) must be defined in the interval $-\infty < E < \infty$

Analytical/numerical solutions for $\Delta V(E)$ published

31/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

AVERAGE RESONANCE PARAM.

For dispersive OMP, the real potential is almost flat toward the low energies, by a combination of the increasing contribution of the smooth "Hartree-Fock" potential with the decreasing dispersive contribution (which goes to zero at Fermi energy).

Average resonance parameters for DCCOMP (Th232+n)

Present work	(evaluated at 2 ke	eV)]		
$S_0, (eV)^{-1/2} 10^{-4}$	$S_1, (eV)^{-1/2} 10^{-4}$	R', fm	$S_0, (eV)^{-1/2} 10^{-4}$	$S_1, (eV)^{-1/2} 10^{-4}$	R', fm
0.853	1.80	9.58	$0.935\ (0.05)\ [35]$	$1.81 \ (0.03) \ [35]$	$9.53\ (0.05)\ [35]$
			$0.87 \ (0.07) \ [64]$		

39/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

Th-232 and Pa-231 EVALUATION

- Optical model (total, inelastic to low-lying collective levels, angular distributions, elastic and non-elastic XS calculations)
- Capture (Hauser-Feshbach + HRTW)
- Neutron emission spectra (1-15 MeV)
 - (DWBA + exciton model + Hauser-Feshbach)
- Total Inelastic, (n,2n) and (n,3n)
- Fission and prompt fission neutrons

Recent evaluations (DDXS)

43/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

Trieste, Italy, 3-14 May 2010

44/60

$$lpha = 0.0741, \ eta = 0.0003, \ \gamma_0 = 0.5725.$$

f_{rms}=1.70

Notable features of the EGSM parameterization are the vanishing role of the nuclear surface term (β parameter is negligible compared to α in Eq. (52)), and the linear dependence of "experimental" asymptotic \tilde{a} values on mass number A ($\tilde{a} \approx 0.0741A = A/13.5$). The derived asymptotic value of the level density parameter is very close to the theoretical value of the Fermi gas model of Eq. (44); the complete absence of the shell effects in the mass dependence of \tilde{a} is a strong argument in favor of the collective enhancements and shell corrections adopted in the EGSM.

γ-RAY STRENGTH FUNCTION

Improved fission modelling

Fission mechanisms

PHYSICAL REVIEW C 77, 054601 (2008)

Transmission through multi-humped fission barriers with absorption: A recursive approach

M. Sin

Nuclear Physics Department, Bucharest University, Bucharest-Magurele, Romania

R. Capote Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria (Received 18 February 2008; published 7 May 2008)

A fission formalism which describes transmission and absorption through multiple humped barriers using a recursive method is proposed. Developed within the optical model for fission, it accounts for the fission mechanisms associated to the different degrees of damping of the vibrational states accommodated by the minima of the fission path. It can provide accurate description of experimental fission cross sections, including

46/60 ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

Improved fission modelling

Improved fission modelling Barriers + Wells (includes absorption)

Full damping vs Partial damping.

Near-barrier fission structure – ²³²Th

Near-barrier fission structure - ²³¹Pa

Improved fission modelling

Neutron Capture

Evaluation: fast energy range n + ²³²Th

What about uncertainties & covariances?

54/60ICTP workshop 2141, ND
Trieste, Italy, 3-14 May 2010

Some additional results

Some additional results

RIPL Objective (1993)

Improve the methodology of nuclear data evaluation by increasing predictive power, accuracy and reliability of theoretical calculations by nuclear reaction model codes

1994 – 2009 The longest running IAEA/NDS project

Nuclear Data Sheets **110** (2009) 3107–3214

RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

R. Capote,¹ M. Herman,^{1,2} P. Obložinský,^{1,2} P.G. Young,³ S. Goriely,⁴ T. Belgya,⁵ A.V. Ignatyuk,⁶ A.J. Koning,⁷ S. Hilaire,⁸ V.A. Plujko,⁹ M. Avrigeanu,¹⁰ O. Bersillon,⁸ M.B. Chadwick,³ T. Fukahori,¹¹ Zhigang Ge,¹² Yinlu Han,¹² S. Kailas,¹³ J. Kopecky,¹⁴ V.M. Maslov,¹⁵ G. Reffo,¹⁶ M. Sin,¹⁷ E.Sh. Soukhovitskii,¹⁵ and P. Talou³

59/60ICTP workshop 2141, ND
Trieste, Italy, 3-14 May 2010

RIPL participants

M. Avrigeanu

T. Belgya

O. Bersillon

R. Capote

M.B. Chadwick

T. Fukahori

S. Goriely

J. Kopecky

Yinlu Han

M. Herman

S. Hilaire

A.V. Ignatyuk

S. Kailas

A.J. Koning

P. Obložinský

V. A. Plujko

E. S. Soukhovitskii

P. Talou

60/60

P. G. Young

Zhigang Ge

ICTP workshop 2141, ND Trieste, Italy, 3-14 May 2010

