

2141-33

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

Evaluated data formats and data evaluation with EMPIRE

TRKOV A. SJS Ljubljana Slovenia

Nuclear Data Evaluation, Processing and Applications

Andrej Trkov Jožef Stefan Institute Ljubljana, Slovenia

> Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

- Types of nuclear data
- Nuclear reaction data evaluation
- ENDF-6 format
- Data file verification
- Data validation
- Processing for applications

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

Objectives

- Distinguish different data types and understand the transformations
- Understand the basic principles of data evaluation
- Understand data formatting, verification and validation
- Get acquainted with codes and methods of data processing for applications

Nuclear reaction data types

- Integral (observables in integral measurements)
- Microscopic
 - Differential in incident particle energy
 - Differential in outgoing particle angle or energy (spectra)
 - Double differential in energy and angle
- Processed (result of data reduction)

Nuclear reaction data types

• Microscopic

- Basic (measured or calculated)
- Evaluated
- Processed
 - Change of data representation
 - Reformatting
 - Group averaging (preparation of multigroup constants) ⇒ Data Reduction

What do engineers need?

I need cross sections ...

$$-\nabla D_{(1)} \nabla \phi_{(1)} + \Sigma_{a(1)} \phi_{(1)} = \frac{1}{k} \left[\sum_{g} v_{(g)} \Sigma_{f(g)} \phi_{(g)} \right] + \Sigma_{(2 \to 1)} \phi_{(2)}$$
$$-\nabla D_{(2)} \nabla \phi_{(2)} + \Sigma_{a(2)} \phi_{(2)} = \Sigma_{(1 \to 2)} \phi_{(1)}$$

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

What orthodox theoreticians provide?

Here you are ... It is all described in my article in the journal !

7

$$\sigma_{a}(U,J,\pi) = \frac{\pi}{k^{2}} \frac{(2J+1)}{(2I+1)(2i+1)} \sum_{S=|I-i|}^{I+i} \sum_{l=|J-S|}^{J+S} f(l,\pi) T_{l}^{a}(\varepsilon)$$

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

Dialogue?

What do I do with that? My codes cannot read journals!

Do what you want! It's not my job...

Nice guy/girl comes along...

We now have a code that turns theory into numbers

We can compare measured and calculated data ...

... plot pictures ...

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

Are we there yet?

Nice numbers ...

Lots of numbers !

Too many numbers !!!

Besides: which one is right?

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

What needs to be done?

What needs to be done:

- Data evaluation \rightarrow computer-readable format
- Data reduction (processing)
 - Averaging by energy (deterministic transport) → group-averaged cross sections
 - Reformatting (Monte Carlo transport)
 - Homogenisation and condensation \rightarrow macroscopic cross sections that engineers need
- Whole-core calculation with thermo-hydraulic feedbacks ...

Modelling and Evaluating Nuclear Data.

ICTP Trieste, 3-14 May 2010

Nuclear reaction data evaluation

- Evaluation and formatting
- Complete file assembly
- Data file verification
- Processing for applications
- Benchmarking (feedback loop to evaluation)
- Final validation

Now we know at least what numbers are (probably) right !

17/05/2010

Evaluation – fast energy range

- Use state-of-the-art nuclear model code (EMPIRE)
- Choose adequate model options
- Determine best input parameters (RIPL)
- Calculate cross sections and other quantities
- Compare calculated values to carefully chosen measured data

Loop-1

- Fine-tune the input model parameters
- From model parameter uncertainties generate covariance matrix prior

Covariances – fast energy range

- Prior by random sampling of model parameters within their uncertainties
- Introduce measured data (microscopic cross sections and other quantities) to constrain the uncertainties (e.g. GANDR)
- Covariances <u>must</u> be consistent with the evaluated cross section data !

Evaluation – resonance range

- Theoretical predictions are not possible
- Resonance parameters must be obtained from fitting experimental data
- Modern resonance fitting codes produce "best fit" parameters as well as their covariances (e.g. SAMMY, REFIT, etc.)
- Storage of results in ENDF-6 format

ENDF-6 format

- Reasonable compromise between what:
 - Experimentalists can measure
 - Theoreticians can model
 - Engineers can use
- Well documented
 - Precise definitions, >300 pages manual
- Adopted by all national projects
 - USA, EU, Japan, Russia, China ...
- Supported by processing codes !

ENDF-6 format (Cont.)

What's in the name?

- Evaluated Nuclear Data File (ENDF)
- "/B" full library from U.S.A. (as opposed to partial evaluations denoted "/A")
- Roman numerals denote library version (e.g. ENDF/B-VII)
- Several releases (updates) may exist (e.g. Rel.1)

 Format designation without "/B" and with arabic numerals for version designation.
 ENDF/B-VII Rel.0 – Library from U.S.A.
 ENDF-6 Format (maintained by BNL)

Data formatting in ENDF-6

- MAT library sorted by material number
- MF different types of data
- MT reaction types

Data formatting ENDF-6

MF different types of data

- 1 General information, nu-bar, decay data, etc.
- 2 Resonance parameters
- 3 Cross sections
- 4 Angular distributions
- 5 Emission spectra
- 6 Double differential cross-sections
- 32 Resonance parameter covariances
- 33 Cross section covariances
- 34 Angular distribution covariances
- 35 Emission spectra covariances, etc.

Data formatting ENDF-6

MT different reaction types

1	Total
2	Elastic
16	(n,2n)
18	Fission
51-91	Discrete inelastic and continuum
102	Radiative capture
600-649	Discrete level proton emission
800-849	Discrete level alpha emission
Etc.	

IRDF-ext				777	0	0	0
5.312700+4 1.258140+2	2	0	41	15325	14	151	1
0.000000+0 0.000000+0	0	0	0	65325	14	151	2
1.000000+0 3.200000+7	0	0	10	25325	14	151	3
0.000000+0 0.000000+0	1	0	122	35325	14	151	4
53-I -127 FEI E	EVAL-Jul07 H	K.I.Zolotar	ev	5325	14	151	5
I	DIST-Sep07			5325	14	151	6
BROND-2 N	MATERIAL 532	25		5325	14	151	7
INCIDENT NEUTRON I	ATA			5325	14	151	8
ENDF-6 FORMAT				5325	14	151	9
******	*********	*******	********	******** 5325	14	151	10
* Extension to the Inte	ernational H	Reactor Dos	imetry Libr	ary * 5325	14	151	11
* supported partially k	by the Inter	rnational A	tomic Energ	y Agency * 5325	14	151	12
* through IAEA research		13335.		* 5325	14	151	13
0.000000+0 0.000000+0	0	0	0	05325	0	0	0
5.312700+4 1.258140+2	0	0	0	05325	3	16	1
-9.143470+6-9.143470+6	0	0	1	1745325	3	16	2
174 2				5325	3	16	3
9.215700+6 0.000000+0	9.250000+6	1.050030-2	9.450000+6	1.745260-25325	3	16	4
9.500000+6 2.822020-2	9.550000+6	4.175640-2	9.600000+6	5.772310-25325	3	16	5
9.650000+6 7.581830-2	9.700000+6	9.577150-2	9.750000+6	1.173390-15325	3	16	6
9.800000+6 1.403000-1	9.850000+6	1.644570-1	9.900000+6	1.896270-15325	3	16	7

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

Evaluated data file assembly

- Data for the resonance and fast range must be assembled consistently (ENDRES)
 - Resolved resonance range
 - Unresolved resonance range (LSSF flag)
 - Background contribution in MF 3
- Covariance data inserted when ready (ENDCOV)
 - Energy range consistency of MF32 with MF2
 - Energy range consistency of MF32 and MF33

WARNING: Patching into the file covariance data from another evaluation is <u>dangerous</u>!

Evaluated file verification

• ENDF Utility codes

- STANEF: utility to standardise number representation, dictionary, etc.
- CHECKR: check formal correctness of format
- FIZCON: check physical consistency of the data
- PSYCHE: more advanced checking of the file contents

Evaluated file verification (Cont.)

- Pre-Pro ENDF Pre-Processing codes
 - Linearisation, resonance reconstruction, Doppler broadening, etc.
 - First test of data processability.
- ENDVER graphical display package
 - Heavy usage of Pre-Pro codes
 - Comparison with experimental data from EXFOR
 - Reconstruction of elemental data from isotopic
 - Reactions defined by summation
 - Differential and double-differential data

Databases/Files/Processes: control and run						
ENDVER-GUI						
EndVer GUI-Tuning EXFOR Help ZVD						
Target: W-0 ZA=74000 (Tungsten-0) Run immediately						
Projectile: n Quantity: AE;DE;CSP;DAP;DEP;RI;SP;MFQ						
EXFOR: set ->Retrieve Reaction=n,* Quantity=CS;DA;DAE;DE;CSP;DAP;DEP;RI;SP;MFQ						
ENDF: set ->Process Input: O en\W_iaea_ib17j.en Output: _W_iaea_ib17j.pen						
Make PS-plot: set ->PlotC4 from C4 and one Pen file						
Make ZVD-plot: set ->LstTab specify Pen file(s) and select indices from Lst: i0= 107 i1= 111						
LSTTAB: Resolution broadening fraction: 0.03						
nW-0.c4 769294 2007/04/03 10:04:10						
nW-0_Roberto.c4 769294 2007/03/28 10:18:10						
nW-0.htm 12100 2007/04/03 10:04:10	E					
nW-0.lst 9968 2007/04/03 10:04:10						
nW-0_e7.lst 158744 2007/06/30 23:40:16						
nW-0_132.1st 308298 2007/02/14 00:29:00						
NW-0_tendi20.ist 110154 2006/11/15 16:49:50						
nW-0_tendi21.ist 139480 2000/11/15 10.51.41						
nW-0_110.1st 1510420 2007/03/00 15:20:35						
nW-0_iaea.ist 1465506 2007/04/02 25.15.11						
nW-0_ib17i.lst 1744670_2008/12/12 14:44:45						
nW-0_ib5c1st 1488906_2007/10/17 22:19:27	-					
Run						
Modelling and Evaluating Nuclear Data,						
i/2010 ICTP Trieste, 3-14 May 2010	28					

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

17/05/2010

30

Data processing

- Reformatting and basic operations
 - Linearization
 - Resonance reconstruction
 - Doppler broadening, etc.
- Data reduction
 - Averaging over energy
 - Averaging over space
- Assembly of application libraries

Data Reduction: Group averaging over energy

Reaction Rates

 $\sigma_g \varphi_g = \int \sigma(E) . \varphi(E) dE$ **Average Cross Sections** $\sigma(E)\varphi(E)dE$ $\varphi_g = \int \varphi(E) dE$ σ_{g} = $\int \varphi(E) dE$ **Scattering Matrices** $\int_{-1}^{1} d\mu \int_{g} dE.\varphi(E) \int_{h} dE'.\sigma(E \to E', \mu) P_{l}(\mu)$ $\sigma_{(l)g o h}$ $\varphi(E) dE$ Modelling and Evaluating Nuclear Data, 17/05/2010 ICTP Trieste, 3-14 May 2010

Data Reduction: Group averaging over space

Reaction Rates

$$\left\langle \Sigma_{g} \right\rangle \left\langle \phi_{g} \right\rangle = \int_{V} \Sigma(\vec{r}) \phi(\vec{r}) dV$$

Average flux and cross sections

$$\left\langle \phi_{g} \right\rangle = \int_{V} \phi(\vec{r}) dV$$

$$\left\langle \Sigma_{g} \right\rangle = rac{\int_{V} N\sigma(\vec{r})\phi(\vec{r})dV}{\int_{V} \phi(\vec{r})dV}$$

Modelling and Evaluating Nuclear Data, ICTP Trieste, 3-14 May 2010

17/05/2010

17/05/2010

34

Group averaged data - Definitions

- Fine group data (> about 600 groups)
- Multigroup (20 600 groups)
 - Application-dependent (fast reactors, thermal reactors, fusion applications, accelerator shielding, etc.
- Few-group (1-20 groups)
 - Local material properties (macroscopic cross sections, homogenised coarse-mesh spatial grid)

Data Processing codes

- Pre-Pro: ENDF Pre-Processing codes perform basic operations on nuclear data
- NJOY is a comprehensive system for generating application libraries, developed at Los Alamos National Laboratory
- AMPX is a comparable system developed at Oak Ridge National Laboratory

Covariances

- Sensitivity vector *S* of the sensitivity of parameters $x_i y_j$ to integral observable R $S_i = \frac{x_i \ dR}{R \ dx_i}$
- Group representation *i*
- Covariance matrix $C(x_i, y_i)$
- Uncertainty by the sandwich rule
 dR = S^T C S

Covariances (cont.)

Covariance matrix prior in the fast energy range

- Best-estimate evaluation (model calculation)
- Perturbation by random sampling of the model parameters and tuning factors
- Covariance matrix prior, including correlations between energies and reaction channels

Covariances (cont.)

Covariance matrix of resonance parameters

- Resonance analysis is usually done separately
- Covariances of resonances parameters are obtained during resonance analysis
- Resonance analysis codes usually provide parameters in ENDF-6 format

Covariances (cont.)

Experimental data

- Correlations in experimental data
- Scheme to apply GLSQM or UMCM (e.g. GANDR system)
- Apply adjustments to cross sections
- Insert covariances into ENDF files
- Analysis may include cross-material correlations

Data validation

- Before use, verification of application libraries is needed (processing errors)
- Validation of evaluated data files is implicit in the validation of application libraries
- Validation of application libraries is done by modelling integral benchmarks and comparing calculated and measured integral parameters
- Validity of such libraries is limited to problems, which resemble the benchmark test cases.

Data validation (Cont.)

- Verification: CHECKR, FIZCON, PSYCHE, EMPEND...
- Processing: NJOY (for deterministic and/or Monte Carlo codes) → test application library
- Validation: benchmark databases
 ICSBEP, IRPhE, SINBAD ... → Compare calculations/experiment

Conclusions

- Evaluation steps described
- Covariance data preparation described
- Verification steps defined
- Validation:
 - Processing
 - Benchmark calculations
 - Feedback to evaluation
 - Validity: cases similar to benchmarks