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Outline

• Transverse gauge fields in  correlated Fermi systems 

• Summary and outlook

• Dephasing by gauge field fluctuations

• Enhanced quantum corrections to the conductivity induced 
by gauge field interactions and disorder: exchange terms  

• Anomalously large quantum correction to the conductivity:
Hartree terms and gauge invariance



Transverse gauge fields in  correlated Fermi systems

• Transverse electromagnetic field in metals 

• Transverse gauge fields in  models of cuprate superconductors 

• Transverse gauge fields in quantum Hall systems near �=1/2

T. Holstein, R.E. Norton, and P. Pincus, 1973; M. Yu. Reizer, 1989;
G. Baym, H. Monien, C. J. Pethick, and D. G. Ravenhall, 1990.

G. Baskaran and P. W. Anderson, 1988; L. B. Ioffe and A. I. Larkin, 1989; 
N. Nagaosa and P. A. Lee, 1990; P.A. Lee and N. Nagaosa, 1992.

J. K. Jain, 1989; A. Lopez and E. Fradkin, 1991; B. I. Halperin, P. A. Lee, and N. Read, 1993.

Induce current-current interaction, which remains unscreened
non-Fermi liquid effects, important only at very low energy (v/c << 1)

Dynamics of fermions in constrained Hilbert space (infinite U Hubbard model) 
may be described by fictituous gauge field

Composite fermions consisting of electron+2 flux quanta interact via 
Chern-Simons gauge field



Composite fermions in the half-filled lowest Landau level 
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Fractional Quantum Hall EffectV. Umansky und J. Smet (2000)

J. Jain (1989), Read, Halperin, Lee (1995)

Composite Fermion “absorbs” part of 
magnetic flux: 

Effective magnetic field: (1 2 )effB B �� �

• Fermi liquid at   
10,    
2effB �� �

Model of infinitely thin flux lines :
Chern-Simons gauge field theory



Chern-Simons gauge field theory 
of composite fermions 

Hamiltonian including fictitious gauge field a(r,t) of flux lines

Density n(r) of flux lines determines fictitious magnetic field b(r) (p=1 near v=1/2)

Current density j(r) of CFs and associated 
motion of flux tubes induces electric field:

Ohm’s law for CFs:

Relation of resistivity tensors of electrons and CFs:

B. I. Halperin, P. A. Lee, and N. Read, 1993



Observation of quantum corrections to the conductivity 
of composite fermions 

L.P. Rokhinson, B. Su and V. J. Goldman, 1995

Longitudinal conductivity of quantum Hall system near half-filling

Possible explanation: (1)  Weak localization?          No
(2)  Kondo effect?                  No
(3)  Interaction correction?   Yes



Interaction correction to conductivity of 
electrons in disordered systems 

� Dynamics of electrons in disordered systems is diffusive: 
slower than ballistic

� Coulomb interaction between electrons is enhanced by diffusive motion

� Temperature dependent quantum correction to conductivity

� In two dimensions  (B.L. Altshuler and A.G. Aronov, 1979):

In well-screened metals F is small and positive: 
the observed CF conductivity correction is larger by factor ~5 

Enhancement of correction by gauge field interaction?



Effective current-current interaction 
of composite fermions  

Transverse part of gauge field propagator:

Conductivity in limit q,� � 0:
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Current-current interaction

Distinguish cases of unscreened and screened Coulomb interaction
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Scattering of electrons by remote impurities:  
random magnetic field acting on composite fermions 

 

Strongly anisotropic scattering causes large current vertex corrections

Remote impurity potential causes static long range density fluctuations,
leading to long range correlated fluctuations of magnetic flux

random magnetic field b(r)

Scattering cross section diverges at small scattering angles:
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� � �Single particle scattering rate                               ill-defined (diverges)
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� � ��Transport relaxation rate                                       is well-defined



Gauge field induced quantum corrections to the 
conductivity: exchange diagrams

Kubo formula for longitudinal conductivity

Exchange diagrams in leading order in 1/g  (g= dimensionless conductance) 

Gauge field propagator (wavy line):

Single particle propagator (solid line):

Diffuson: particle-hole impurity ladder (shaded rectangle):

A.D. Mirlin and P. Wölfle, Phys.Rev. B55, 5141(1997)



Gauge field  induced quantum correction to 
conductivity: exchange diagrams, unscreened Coulomb 

c �

C* � 10

Cannot explain experimental data

A.D. Mirlin and P. Wölfle, Phys.Rev. B55, 5141(1997)



Gauge field induced quantum correction to 
conductivity: exchange diagrams, screened Coulomb interaction 

May explain experimental data

A.D. Mirlin and P. Wölfle, Phys.Rev. B55, 5141(1997)



Gauge field induced quantum corrections to the 
conductivity: Hartree diagrams

V.M. Galitski, Phys. Rev. B72, 214201 (2005)

More recently, the Hartree type correction to the conductivity was calculated 
for the case of screened interaction:

This result depends on the length L of the sample and therefore

violates gauge invariance. 

Galitski missed to include diagrams removing an unphysical singularity.

The Hartree diagrams may be represented like exchange diagrams, with 
interaction replaced by a “Hikami box”:

D(k)



Gauge field induced quantum corrections to the 
conductivity: gauge invariant Hartree diagrams

T. Ludwig, I.V. Gornyi, A.D. Mirlin and P. Wölfle, 2008

singular at k<q 

In the sum of the three terms, the strong singularity at k<q is cancelled 
(gauge invariance),  resulting in  (g is the dimensionless conductance)

screened Coulomb interaction

unscreened Coulomb interaction, � � kF



Gauge field induced quantum correction to  
conductivity: Lowest order Hartree diagrams 

(screened Coulomb int.)
Evaluating the Hartree diagrams with full diffusion propagators and 
the bare gauge field interaction  (�=e*/e) one finds

At strong coupling, �=e*/e ~ 1 , this result is 
� anomalously large (factor of �) , 
� much larger than the exchange contribution
� positive (antilocalizing)

Defining the characteristic temperatures:
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We find that at 

T<T0 the interaction is renormalized
T>T1 dephasing cuts off the diffuson pole



Dephasing by gauge field fluctuations:Cooperon

Weak localization correction to conductivity

Cooperon equation of motion:

Solution in path integral form:

Cooperon averaged over Gauge field fluctuations

/1/ 2(4 ) tDt e ��
 ���

Phase relaxation rate:

A.G. Aronov, P. Wölfle, PRB 50, 16574(1994); P. Wölfle, Found. Phys. 30, 2125 (2000);
T. Ludwig, A.D. Mirlin, PRB 69, 193306 (2004)
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Dephasing induced by gauge field fluctuations:
Delayed Diffuson

In Hartree type diagrams one has diffuson propagators, where particle and hole
belong to different loops and may be delayed by a time �, corresponding in 
Fourier space to the energy E of the particle.
The diffusion pole arises as a consequence of particle number conservation. 
However, the number of particles with given energy E is not conserved 
if inelastic processes are allowed.
This leads to a finite decoherence rate in the diffusion pole.
The equation of motion of the delayed diffuson is: 

where

Conductivity correction at high T:

T. Ludwig, I. V. Gornyi, A.D. Mirlin, P. Wölfle, Phys. Rev. B 77, 235414 (2008)



Renormalization of diffusonbby gauge field  
interaction:

Full self energy of Delayed Diffuson

In Hartree type diagrams one has diffuson propagators, where particle and hole
belong to different loops and may have different energies E, E’

T. Ludwig, I. V. Gornyi, A.D. Mirlin, P. Wölfle, Phys. Rev. B 77, 235414 (2008)

Define disconnected diffuson : 
only self energy contributions



Renormalization of gauge field interaction:
Delayed Diffuson

T. Ludwig, I. V. Gornyi, A.D. Mirlin, P. Wölfle, Phys. Rev. B 77, 235414 (2008)

Full dressing of delayed diffuson : 
vertex corrections

The lowest order diffuson dressed interaction is effectively replaced by



Self energy correction to Delayed Diffuson

In addition to a finite decoherence rate the delayed diffuson propagator is
renormalized by the real part of the self energy

At T << T0  : 
Z �
� �� �� �

At T >> T0  : 1/ 2
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1/ 2
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Renormalization factor suppresses diffuson
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Hartree correction to conductivity:
screened Coulomb interaction

Diffuson self energy at low energy leads to reduction in size and suppression of 
T-dependence of Hartree correction at low T

� Anti-localizing correction
� Linear in ln(T)
� Prefactor O(1)

2 1/ 2 0
1 2 1( ) [ ln ] ,      H TT e c g c T T

T
�� � � ��



Hartree correction to conductivity:
screened Coulomb interaction
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At low T the localizing exchange contribution dominates over the antilocalizing
Hartree contribution: interaction correction leads to localization



Hartree correction to conductivity:
unscreened Coulomb interaction

Gauge field propagator has weaker singularity  ~ 1/k
renormalization of gauge field interaction not important



Gauge field Interaction correction to conductivity:
unscreened Coulomb interaction

At the lowest temperatures, the usual A-A-correction due to Coulomb 
interaction dominates the Hartree correction for not too high conductance,
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Cooperon dephasing at strong coupling

Weak localization correction to conductivity

Cooperon averaged over Gauge field fluctuations

/1/ 2(4 ) tDt e ��
 ���

Phase relaxation rate:

prefactor of T  is O(1) rather than O(g)

Renormalization of diffuson: replace time 

Renormalization leaves bare Cooperon unchanged, 

but changes �S: 



Summary 
• Transverse gauge fields in 2d correlated electron systems  

induce highly singular current-current interaction, depending 
on the screening of the Coulomb interaction (by external gates), 
leading to singular quantum corrections to the conductivity

• Exchange corrections to the conductivity are relatively small, 
and localizing, with T-dependence  ~ - lng lnT (screened) and
- const + �T  (unscreened Coulomb interaction)

• Hartree corrections in case of screened interaction are antilocalizing :
At weak coupling  ~ g ln2T >> g . At strong coupling and  high T
dephasing of diffusons suppresses the correction. At low T
renormalization of the diffusons and of the current-current-interaction 
reduce both size and T-dependence of the correction.

• Hartree corrections in case of  long range Coulomb interaction are 
antilocalizing ~ lng lnT , but are dominated by the usual localizing
A-A-correction for not too large g.

• The phase relaxation rate is proportional T,  with prefactor ~ g  at weak 
and   ~ lng at strong coupling.




