

2145-14

Spring College on Computational Nanoscience

17 - 28 May 2010

From Supported Clusters to Nanocatalysis Part I

Gianfranco PACCHIONI

Dipt. Scienze dei Materiali Univ. Milano Bicocca Italy Spring College on Computational Nanoscience, Trieste, May 18, 2010

FROM SUPPORTED CLUSTERS TO NANOCATALYSIS

Nanocatalysis: supported clusters, particles, and model systems

Gianfranco Pacchioni

Dipartimento di Scienza dei Materiali

Università Milano-Bicocca

Part I – Nanocatalysis: supported clusters, particles, and model systems

Part II - CO on MgO: lessons from 25 years of interplay between theory and experiment

Part III – New phenomena: metal clusters on ultra-thin oxide films

CATALYSIS: OLD BUT FUNDAMENTAL TECHNOLOGY

1909

Fritz Haber develops the industrial process of ammonia synthesis on Fe catalysts: $3H_2 + N_2 \rightarrow 2NH_3$

$$H_2 \rightleftharpoons 2 H_{ad}$$
 $N_2 \rightleftharpoons N_{2,ad} \rightleftharpoons 2 N_s$
 $N_s + H_{ad} \rightleftharpoons NH_{ad}$
 $NH_{ad} + H_{ad} \rightleftharpoons NH_{2,ad}$
 $NH_{2,ad} + H_{ad} \rightleftharpoons NH_{3,ad}$
 $NH_{3,ad} \rightleftharpoons NH_3$

The Haber-Bosch process step-by-step

In the Haber-Bosch process nitrogen (white) reacts with hyrogen (striped) on an iron surface to then form molecules of ammonia which are released from the surface. This reaction, which extracts nitrogen from air, is an important step in the production of artificial fertilizer.

Ammonia Synthesis from First-Principles Calculations

K. Honkala, ^{1,2} A. Hellman, ⁴ I. N. Remediakis, ^{1,2} A. Logadottir, ^{1,2} A. Carlsson, ⁴ S. Dahl, ⁴ C. H. Christensen, ^{1,3} J. K. Nørskov^{1,2*}

SCIENCE VOL 307 28 JANUARY 2005

2005

The process is completely elucidated at a first-principles level of theory

ENVIRONMENT: AUTOMOBILE CATALYTIC CONVERTERS

Car exhaust catalyst: monolithic backbone covered internally with alumina+ceria+zirconia. Support for metal particles (Rh, Pt) of nanometer size

CO converted to CO_{2} , $C_{n}H_{2n+2}$ converted to CO_{2} , NO_{x} converted to N_{2}

THE IMPORTANT ROLE OF NANOSIZED METAL PARTICLES ON OXIDE SUPPORTS

TRADITIONAL HETEROGENEOUS CATALYST: SUPPORTED METAL PARTICLES

Aging effects

Noble metal

Oxide support

Ceramic substrate

Sintering and incapsulation of the noble metal Sintering of the support (loss of surface area)

1273 K

CATALYSIS BY GOLD: PARTICLE SIZE COUNTS!

SUBNANOMETER GOLD IN CATALYSIS

#Dried, active (100%) | Calcined 400 C (91%) | Calcined 550 C (31%) | Calcined 600 C (< 1%) 10% Atoms Monolayers Bilayers >1 nm

Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation

Andrew A. Herzing, 1,2 Christopher J. Kiely, 1* Albert F. Carley, Philip Landon, Graham J. Hutchings 1*

Science, 321, 1331 (2008)

High resolution TEM (aberration correction): Au atoms & Au nanoclusters (0.2-0.5 nm) present on active Au/Fe₂O₃ catalyst

0.5 nm two-layer Au clusters (<10 atoms) responsible for catalyst activity

Active Au <1% of total Au. Not detectable with normal spectroscopies!

SUPPORTED METAL NANOCATALYSTS: OXIDE SINGLE CRYSTAL SUPPORTS

SUPPORTED METAL NANOCATALYSTS: OXIDE THIN FILM SUPPORTS

Supported metal nanoparticles: preparation

CATALYST PREPARATION: COPRECITATION (WET CHEMISTRY)

Precipitation from solution followed by calcination

Little or no control on particle size and particle size distribution

CAN WE PREPARE METAL NANOPARTICLES OF CONTROLLED SIZE ?

NANOLITOGRAPHY

ELECTROCHEMICAL NANOSTRUCTURING

STM tip as 4th electrode of an electrochemical cell

Tip approach

Jump to contact

Formation of a connective neck

Breaking of the connective neck and cluster formation

Tip-induced cluster formation

Metal is deposited onto the tip

The metal-loaded tip approaches the surface for a short time depositing small amounts of material

Left: array of 400 Cu clusters on Au(111); the Cu clusters are about 0.6 nm in height

Kolb et al. Science 275 (1997) 1097

SELF-ASSEMBLY OF METAL CLUSTERS FROM GAS-PHASE

Metal clusters on oxide thin films in UHV

Metal clusters formed on oxide thin films from vapor deposition

ultra-thin oxide films grown on a metal substrate in UHV allow use of electron spectroscopies, STM, etc.

WELL-DEFINED SUPPORTED METAL PARTICLES

Rh clusters on Al₂O₃

Metal deposited from vapor on Al₂O₃ ultra-thin films grown on a metal in UHV: allows use of Scanning Tunneling Microscopy (STM).

STM images of:

(a) clean Al₂O₃ thin film surface (b) deposition of Rh at 90 K (c) deposition of Rh at 300 K (d) deposition of Rh at 300 K on hydroxylated surface

Nucleation occurs at steps and defects; the particles have a nearly uniform size (few nm).

Bäumer, Freund, Progr. Surf. Sci. 61 (1999) 127.

Au/TiO₂(110): 1D \rightarrow 2D \rightarrow 3D

FABRICATION OF NANO-CATALYSTS ATOM BY ATOM

- Epitaxial MgO thin films on Mo(100) grown by vaporizing Mg in O₂ atmosphere
- Gas-phase metal clusters generated by laser vaporization
- Clusters are ionized, massselected and deposited at low kinetic energy (<0.2 eV/atom) (soft landing)
- Low cluster concentration (<0.1 mono-layer) and low substrate temperature (90 K) to prevent cluster diffusion and aggregation

Supported metal nanoparticles: characterization

PARTICLES SIZE, SHAPE, MORPHOLOGY AND DISPERSION

Pd particles on MgO

Transmission Electron
Microscopy (TEM) of Pd
particles grown on MgO
single crystal generated by
metal deposition on the
oxide surface in ultra-high
vacuum (UHV)

Various sizes of nanocrystals can be identified; average size 150x150 nm²

Goyenex, Henry, Urban, Phil. Mag. A 69 (1994) 1073

High-resolution TEM required to identify very small particles

METAL-METAL DISTANCES IN NANOCLUSTERS

Lattice constants (from HRTEM) and interatomic distances of Pt particles grown on $Al_2O_3/NiAl(110)$ as function of their size (horizontal bars represent the difference of the widths and the lengths of the clusters, vertical bars represent error bars)

Au NANOCLUSTERS ON MgO FILMS: STM

STM: possible on conducting substrates (e.g. thin oxid films on metals)

Structure of small gold clusters different in gasphase, on MgO(100) crystal and on MgO/Ag(100) thin films

Simic-Milosevic, Heyde, Lin, König, Rust, Sterrer, Risse, Nilius, Freund, Giordano, GP, Phys. Rev. B, 78, 235429 (2008) Frondelius, Hakkinen, Honkala, Phys. Rev. B 76, 073406 (2007)

Supported metal nanoparticles: properties

INSULATOR TO METAL TRANSITION: HOW MANY ATOMS ARE REQUIRED? LOCAL MEASURE OF PARTICLE GAP FROM STS

Scanning tunneling spectroscopy (STS) of single Au clusters deposited on TiO₂(110); recording of current-voltage curves (I-V).

Large particles do not exhibit a plateu near I = V = 0, smaller clusters do show the behaviour expected for a system with a gap

CHEMISTRY ON SIZE-SELECTED CLUSTERS

Acetylene trimerization to form benzene on MgO supported Pd clusters

 $3 C_2H_2 \rightarrow C_6H_6$

up to Pd₆ benzene produced at T ≈ 300K from Pd₇ to Pd₃₀ additional peak bserved at 430 K

different mechanisms for small- and medium-siize clusters

Abbet, Sanchez, Heiz, Schneider, Ferrari, GP, Rösch, J. Am. Chem. Soc. 122, 3453 (2000)

temperature programmed reaction (TPR) for Pd₁ to Pd₃₀; peak in TPR corresponds to benzene formation

one Pd atom is enough to catalyze the reaction!

ROLE OF SUBSTRATE IN CATALYTIC REACTIONS

- Pd atoms deposited on MgO films, then exposed to acetylene; benzene forms and desorbs at 300 K.
- Reaction: $3 C_2H_2 \rightarrow C_6H_6$
- Pd acts as catalyst (MgO inactive)

- Gas-phase Pd atom is inactive because there is not enough electron density
- Pd is active when charged Pd^δ-(DFT B3LYP calculations)

Pd ATOMS ADSORBED ON F CENTERS OF MgO

- Reaction path: only on oxygen vacancies centers activation energy of ≈1 eV, compatible with measured desorption barrier (T_{des} ≈300 K)
- All other MgO sites (terraces, low-coordinated ions, etc.) not active because Pd is neutral

Abbet, Sanchez, Heiz, Schneider, Ferrari, GP, Rösch, *J. Am. Chem. Soc.* 122 3453 (2000)

Charging is essential to turn inactive Pd atoms into active catalysts

DEFECTS AND SURFACE IRREGULARITIES

- role of surface defects: they act as nucleation centers where cluster grow begins
- they can alter the properties of nano-size metal clusters deposited on the surface

STABLE (AND VERY ACTIVE!) NANOCATALYSTS

Pt₈₋₁₀ clusters on alumina

- Mass selected, soft-landing deposition
- Thermally stable up to 500 °C
- 100-400 times more active than conventional catalysts in alkane dehydrogenation

Oxide surfaces in nanocatalysis: not only an inert support (role of morphology, defects, etc.)

VARIOUS FORMS OF OXIDE SURFACES

Single crystals

Advantages: almost defect free

Disadvantages: brittle and insulating, difficult to prepare, low surface area

Powders, polycrystals

Advantages: high surface area, easy to prepare by chemical synthesis (decomposition, CVD, etc.)

Disadvantages: surface heterogeneity, complex morphology, impurities

Amorphous (porous) structures

Advantages: easy to prepare (sol-gel, etc.)

Disadvantages: surface heterogeneity, complex morphology, local structure undefined

Epitaxial thin films (1-100 layers)

Advantages: low-dimensionality, nanostructure

Disadvantages: difficult to prepare, thermal stability

Different reactivity of oxide surfaces with different morphologies: CO on MgO

CO on single crystal MgO, no reactivity at all and adsorption occurs only below 57 K
(Freund 1998)

CO on polycrystalline MgO, complex radical anions form at 60 K! (Zecchina 2004)

OXIDES CRYSTAL STRUCTURES

Name	Examples
rocksalt	MgO, NiO, MnO, CoO, FeO
fluorite	CeO_2 , ZrO_2
spinel	Al ₂ MgO ₄ , Fe ₃ O ₄ (inverse)
perovskite	SrTiO ₃ , BaTiO ₃ , NaWO ₃
wurtzite	ZnO, BeO
rutile	TiO ₂ , RuO ₂ , SnO ₂
corundum	$Al_{2}O_{3}, Fe_{2}O_{3}, Cr_{2}O_{3}, V_{2}O_{3}, Ti_{2}O_{3}$

OXIDES SURFACE PLANES

Calcium oxalate crystal surfaces. (*Top*)
Scanning electron microscopy images
viewed perpendicular to the (100),
(12-1), and (010) faces. (*Middle*) AFM
lattice images. (*Bottom*)
Topographical images of the three
crystal faces

SURFACE RELAXATION & COMPOSITION

DEFECTS IN OXIDE SURFACES

low-coordinated cations
low-coordinated anions
anion vacancies (F
centers)
cation vacancies
divacancies
divacancies
O-radical ions
OH groups
impurity atoms (Li, Ni,...)
(111) microfacets
electon traps

ROLE OF ATOMIC PROBES AND THEORY IN IDENTIFYING POINT DEFECTS IN OXIDES

POINT DEFECTS: VACANCIES (STM IMAGES)

only on conducting substrates, not on insulating oxides (unless thin films).

STM needs theoretical interpretation

STS OF F CENTERS (O VACANCIES) ON MgO THIN FILMS

F centers form more easily on low-coordinated sites

GP, Pescarmona, Surf. Sci. 412/413 (1998) 657

Sterrer, Heyde, Novicki, Nilius, Risse, Rust, GP, Freund, J. Phys. Chem. B 110, 46 (2006)

ATOMIC FORCE MICROSCOPY (AFM)

2 nm

AFM of MgO single crystal show point defects with atomic resolution (divacancies?)

C. Barth & C. Henry, Phys. Rev. Lett. 91 (2003) 196102

AFM: MEASURING INTERACTION STRENGTH WITH DEFECTS

Dynamic Force
Microscope (noncontact AFM):
direct measure of
force between tip
and point defect

Different interaction of Pt tip with MgO and an oxygen vacancy (F⁰)

Compare to DFT interaction energy curves

König, Simon, Martinez, Giordano, GP, Heyde, Freund, ACS Nano, in press (2010)

DFM: MEASURING CHARGE STATE OF POINT DEFECTS

$$F_{el} = \frac{1}{2C_{\Sigma}^{2}} \frac{\partial C_{1}}{\partial z} \left(nq + C_{2} \left(V_{S} - \frac{\Delta \Phi_{loc}}{|q|} \right) \right)^{2}$$

DFM: measure frequency shift vs bias

Maximum determined by charge q and local work function $\Delta\Phi$

Different defects on MgO/Ag films result in different frequency shifts

König, Simon, Rust, GP, Heyde, Freund, J. Am. Chem. Soc. 131, 17544 (2009)

END OF LECTURE 1

OXIDES ELECTRONIC STRUCTURE: CORE LEVELS

OXIDES ELECTRONIC STRUCTURE: VALENCE BAND

Angular resolved
Ultraviolet Photoemission
Spectroscopy (UPS):
valence band structure

Electron Energy Loss Spectroscopy (EELS): band gap

Surface gap smaller than bulk gap

OXIDES ELECTRONIC STRUCTURE: DEFECTS

DEFECTS AND MORPHOLOGY OF OXIDE SURFACES

Bulk defects

- electrical, optical, electronic properties
- ion conductivity
- superconductivity
- insulator-to-metal transition

Surface defects

- chemical reactivity (catalysis)
- corrosion
- nucleation and growth of supported metal particles
- chemical properties of nano-clusters

THE OXYGEN VACANCY IN METAL OXIDES

SiO₂: covalent polar

MgO: largely ionic

TiO₂: mixed

conduction band

3 eV

O_{2p} valence band

SURFACE PHONONS: SiO₂/Mo(112) FILMS

- 1 layer film 3 Å thick with SiO_{2.5} stoichiometry; hexagonal pattern
- Computed phonons reproduce IR and HREELS spectra

Preparation: Schroeder, Giorgi, Bäumer, Freund, Phys. Rev. B 66 (2002) 165422

Structure: Giordano, Ricci, Pacchioni, Ugliengo, *Surf. Sci.* 584 (2005) 225; Weissenrieder, Kaya, Lu, Gao, Shaikhutdinov, Freund, Sierka, Todorova, Sauer, *Phys. Rev. Lett.* 95 (2005) 076103

EXTENDED DEFECTS: STEPS, DISLOCATIONS (STM)

