

2145-4

Spring College on Computational Nanoscience

17 - 28 May 2010

Siesta Tutorial

P. ORDEJON and J.A. TORRES CIN2 Barcelona / Univ. Madrid Spain

SIESTA (nano)TUTORIAL

Pablo Ordejón

FIRST-PRINCIPLES SIMULATIONS

Predictive Power

- Fundamental laws of Physics
- No empirical input
- Set of "accepted" and "well tested approximations
- Electrons are explicitly considered!!
- Impressive progress:
- Quantum Chemistry (molecules)
- Solid State Physics (solids)

Still: need to reach larger systems without a significant loose of accuracy.

A code for DFT simulations in large systems

siesta

Spanish Initiative for Electronic Simulations with Thousands of Atoms

Soler, Artacho, Gale, García, Junquera, Ordejón and Sánchez-Portal J. Phys.: Cond. Matt **14**, 2745 (2002)

 Numerical pseudo-atomic orbitals (large flexibility in basis set choice)

- Implements O(N) methodology
- Atomic forces and stress \rightarrow MD simulations
- Very efficient: capable of trating large systems
 with modest computers
- Parallelized
- Freely available for the academic community

The SIESTA Team

- Emilio Artacho
- Julian Gale
- Alberto García
- Javier Junquera
- Richard Martin
- Pablo Ordejón
- Daniel Sánchez-Portal
- José M. Soler

(Cambridge University) (Curtin Inst. of Tech., Perth) (ICMAB, Barcelona) (U. Cantabria, Santander) (U. Illinois, Urbana) (ICMAB, Barcelona) (UPV, San Sebastián) (UAM, Madrid)

The SIESTA Manager

Jose Antonio Torres

(UAM and Nanotec, Madrid)

The impact of SIESTA

Basic methodology paper:

J. Soler *et al*, J. Phys: Condens. Matter, **14**, 2745 (2002)

- More than 4000 registered users
- Over 1500 published papers have used the code
- Over 2000 citations

Siesta resources:

Web page: http://www.uam.es/siesta

- SIESTA methodological papers
 J. Soler *et al*,
 J. Phys: Condens. Matter, 14, 2745 (2002)
- Pseudos and basis database
- Mailing list (including past mailing archives)
- Registration and Download of sources
- User's Guide
- Documentation of previous Tutorials and Courses

PLAN OF THE COURSE TALK:

Theory:

- Introduction to DFT and SIESTA
- Basis sets: Numerical PAO's of finite range
- Numerical algorithms in SIESTA
- Orden-N methods
- Basic execution important parameters
- Molecular Dynamics and Structural Relaxation
- Analysis, Visualization and Post-processing
- Instalation, Compilation, Parallelization

Example run (after coffee):

- Basis set: $H_2O a$ case study
- Molecular dynamics: H_2 on Si(001) 2x1 surface

Introduction to DFT and SIESTA

What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory

Treatment of the electron – electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) – valence.

Basis set

To expand the wave functions: Numerical PAOS of finite range Numerical evaluation of matrix elements Efficient and self-consistent computations of H and S. Supercells

To deal with periodic and non-periodic systems

DFT in practice

1. Choose a *basis set*

$$\psi_n(\vec{r}) = \sum_{\mu} c_{n\mu} \phi_{\mu}(\vec{r})$$

Plane Waves - APWs - LMTOs - GridsGaussians - Slaters(Numerical) Pseudo-Atomic Orbitals

2. Solve the *self-consistent* one electron problem: Building H and obtaining the eigenstates:

SCF

$$\hat{h} = -\frac{1}{2}\nabla^{2} + V_{ext}(\vec{r}) + V_{H}(\vec{r}) + V_{XC}(\rho(\vec{r})) \qquad \qquad \hat{h}_{\mu\nu} = \left\langle \phi_{\mu} \middle| \hat{h} \middle| \phi_{\nu} \right\rangle$$

$$\hat{h}_{\mu\nu} C_{n\mu} = \mathcal{E}_{n} \hat{S}_{\mu\nu} C_{n\mu}$$

$$\rho(\vec{r}) = \sum_{n}^{\infty} |\psi_{n}(\vec{r})|^{2}$$

Capabilities

Electronic structure information

- Band structures (k-point sampling)
- Population analysis
- Charge distributions
- Electrostatic Potentials

Atomic forces and stress

- Relaxations
 - Atomic coordinates
 - Cell shape & size
- Phonons, elastic constants, ...

New features (3.0beta)

- Non-equilibrium electronic transport (TranSIESTA)
- Van der Waals functional (Langreth-Lundqvist)
- Virtual Crystal Approximation
- Filters to reduce the 'egg-box' effect

- Density of States
- Spin distributions
- Non-collinear spin states
- STM image simulation....
- Molecular Dynamics:
 - E, V
 - T, V (Nose Thermostat)
 - P (Parrinello-Rahman)
 - T, P
- Upcoming release
 - Hybrid QM/MM module (finite and periodic)
 - Real-time TD-DFT
 - Spin-orbit coupling
 - Massively parallel performance

Basis Sets:

Pseudo-Atomic orbitals of finite range

Main references on Basis Sets for SIESTA

phys. stat. sol. (b) 215, 809 (1999)

Subject classification: 71.15.Mb; 71.15.Fv; 71.24.+q; S1.3; S5; S5.11

Linear-Scaling ab-initio Calculations for Large and Complex Systems

E. ARTACHO¹) (a), D. SÁNCHEZ-PORTAL (b), P. ORDEJÓN (c), A. GARCÍA (d), and J. M. SOLER (e)

PHYSICAL REVIEW B, VOLUME 64, 235111

Numerical atomic orbitals for linear-scaling calculations

Javier Junquera,¹ Óscar Paz,¹ Daniel Sánchez-Portal,^{2,3} and Emilio Artacho⁴

PHYSICAL REVIEW B 66, 205101 (2002)

Systematic generation of finite-range atomic basis sets for linear-scaling calculations

Eduardo Anglada, 1,2 José M. Soler, 1 Javier Junquera, 3 and Emilio Artacho4

Atomic orbitals:

LCAO:

 $\psi_n(\vec{r}) = \sum c_{n\mu} \phi_\mu(\vec{r})$

 $\phi_{Ilmn}\left(\vec{r}\right) = R_{Iln}\left(\left|\left.\vec{r}_{I}\right|\right.\right)Y_{lm}\left(\left|\hat{r}_{I}\right|\right)$

Radial part: degree of freedom to play with

Size: Number of orbitals for a given *Im n* Range: Spatial extension of the orbitals Shape: of the radial part Spherical harmonics: well defined (fixed) objects

Atomic orbitals: advantages and pitfalls

 $\phi_{Ilmn}\left(\vec{r}\right) = R_{Iln}\left(\left|\left.\vec{r}_{I}\right|\right.\right)Y_{lm}\left(\hat{r}_{I}\right)$

ADVANTAGES

- Very efficient (number of basis functions needed is usually very small).
- Large reduction of CPU time and memory
- Straightforward physical/chemical interpretation (population analysis, projected density of states,...)
- They can achieve very high accuracy

DISADVANTAGES

- Equations and codes are more complex
- Lack of systematic for convergence (non unique way of enlarge the basis set)
- Human and computational effort searching for a good basis set before facing a realistic project.
- Depend on the atomic position (Pulay terms).
- Basis Set Superposition Errors

Numerical Pseudo-atomic orbitals

Numerical solution of the Kohn-Sham Hamiltonian for the isolated pseudoatom with the same approximations (xc, pseudos) as for the condensed system

$$\left(-\frac{1}{2r}\frac{d^{2}}{dr^{2}}r+\frac{l(l+1)}{2r^{2}}+V_{l}\left(r\right)\right)R_{l}\left(r\right)=\varepsilon_{l}R_{l}\left(r\right)$$

This equation is solved in a radial grid using Numerov's method

(Pseudo) Atomic Orbitals

with finite range

Sankey & Niklewski, Phys. Rev. B 41 3979 (89)

Hard wall potential confinement (FIREBALLS)

Artacho *et al.*, Phys. Stat. Sol. **215**, 809 (99)
J. Junquera *et al*, Phys. Rev. B **64**, 235111 (01)
E. Anglada *et al.*, Phys. Rev. B **66**, 205101 (02)

Radial and Angular flexibility

$$\phi_{Ilmn}\left(\vec{r}\right) = R_{Iln}\left(\left|\left.\vec{r}_{I}\right|\right.\right)Y_{lm}\left(\left.\hat{r}_{I}\right)\right)$$

Minimal bases: One radial function per occupied shell in the free atom
 Single-ζ (eg: Si: one 3s orbital and three 3p orbitals)

• Several radial functions to describe an atomic shell (same angular part):

• • •

Multiple- ζ

• Higher angular momenta:

Polarization Functions

Size (number of basis set per atom)

Depending on the required accuracy and available computational power

Improving the quality of the basis \Rightarrow more atomic orbitals per atom

Atom	Valence	SZ		DZ		Р	
	configuration						
		# orbitals	symmetry	# orbitals	symmetry	# orbitals	symmetry
Si	$3s^2 \ 3p^2$	1	s	2	s	1	d_{xy}
		1	p_x	2	p_x	1	d_{yz}
		1	p_y	2	p_y	1	d_{zx}
		1	p_z	2	p_z	1	$d_{x^2-y^2}$
						1	$d_{3z^2-r^2}$
	Total	4		8		(DZ+P) 13	
Atom	Valence						
	configuration						
		# orbitals	symmetry	# orbitals	symmetry	# orbitals	symmetry
Fe	$4s^2 \ 3d^6$	1	S	2	s	1	p_x
		1	d_{xy}	2	d_{xy}	1	p_y
		1	d_{yz}	2	d_{yz}	1	p_z
		1	d_{zx}	2	d_{zx}		
		1	$d_{x^2-y^2}$	2	$d_{x^2-y^2}$		
		1	$d_{3z^2-r^2}$	2	$d_{3z^2-r^2}$		
	Total	6		12		(DZ+P) 15	

Convergence as a function of the size of the basis set: Bulk Si

Cohesion curves

PW and NAO convergence

Atomic orbitals show nice convergence with respect the size

Polarization orbitals very important for convergence (more than multiple- ζ) Double- ζ plus polarization equivalent to a PW basis set of 26 Ry

Range: the spatial extension of the atomic orbitals

 $\phi_{m
u}$ (r

Order(N) methods \Rightarrow locality, that is, a finite range for matrix and overlap matrices

If the two orbitals are sufficiently far away

$$egin{aligned} S_{
u\mu} &= \langle \phi_
u \mid \phi_\mu
angle = \int dec{r} \,\, \phi^*_
u \left(ec{r}
ight) \phi_\mu \left(ec{r}
ight) = 0 \ H_{
u\mu} &= \langle \phi_
u \mid \hat{H} \mid \phi_\mu
angle = \int dec{r} \,\, \phi^*_
u \left(ec{r}
ight) \hat{H} \phi_\mu \left(ec{r}
ight) = 0 \end{aligned}$$

Neglect interactions:

 $\phi_{\mu}\left(\vec{r}
ight)$

Below a tolerance

Beyond a given scope of neighbours

Problem: introduce numerical instabilities for high tolerances.

Strictly localized atomic orbitals:
Vanishes beyond a given cutoff radius
O. Sankey and D. Niklewski, PRB 40, 3979 (89)
Problem: accuracy and computational efficiency depend on the range of the basis orbitals

How to define all the r_c in a balance way?

How to control de range of the orbitals in a balanced way: the energy shift

$$\left(-\frac{1}{2r}\frac{d^2}{dr^2}r + \frac{l(l+1)}{2r^2} + V_l(r)\right)R_l(r) = \left(\varepsilon_l + \delta\varepsilon_l\right)R_l(r)$$

Energy increase = Energy shift PAO.EnergyShift (energy)

Cutoff radius, r_c , = position where each orbital has the node A single parameter for all cutoff radii

> The larger the Energy shift, the shorter the r_cs Typical values: 100-200 meV

> > E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)

Shape of the orbitals: r_c

Energy vs. r_c - Molecules

 H_2O

Shape of the orbitals: r_c

Energy vs. r_c - Solids

Convergence with the range

J. Soler et al., J. Phys: Condens. Matter, 14, 2745 (2002)

The shape and range might be also controlled by an extra charge and/or by a confinement potential

Extra charge δQ

Orbitals in anions tend to be more expanded Orbitals in cations tend to be more contracted This parameter might be important in some oxides

Confinement potentials

Solve the Schrödinger equation for the isolated atom inside a confinement potential.

Optimization of the parameters that define the basis set: the Simplex code

Set of parameters $\left\{ \delta \ Q, r_c, \ldots \right\}$

$$E_{Tot} = E_{Tot} \quad \{\delta Q, r_c, \dots\}$$

Isolated atom Kohn-Sham Hamiltonian + Pseudopotential Extra charge Confinement potential SIMPLEX MINIMIZATION ALGORITHM

Full DFT calculation of the system for which the basis is to be optimized (solid, molecule,...)

Basis set

Publicly available soon...

Recap on basis sets

Choosing the basis set:

- Number of orbitals per atom:
 - # radial functions per angular momentum shell: SZ, DZ, TZ...
 - # of angular momentum shells: Polarization
- Radial cutoff: Energy shift parameter or explicit optimization
- Radial shape:
 - scheme for Multilple-Z and polarization
 - parameters defining net charge, shape of confining potentials, matching radii, etc.

Current effort for searching for systematics.

DZP basis set, typical errors similar to those from the DFT functional or the pseudopotentials.

• Excellent description of BULK with standard DZP bases

		0.5 GPa	0.1 GPa	0.02 GPa	PW	Exp
Cu	$a_0(\text{\AA})$	3.63	3.65	3.67	3.67	3.61
	B(GPa)	178	164	128	134	137
	$\Delta E(eV)$	0.19	0.06	0.04	0.0	
Ag	$a_0(\text{\AA})$	4.12	4.16	4.17	4.17	4.09
	B(GPa)	112	101	97	86	101
	$\Delta E(eV)$	0.21	0.05	0.03	0.0	
Au	$a_0(\text{\AA})$	4.14	4.17	4.18	4.16	4.08
	B(GPa)	199	161	158	140	173
	$\Delta E(eV)$	0.39	0.20	0.16	0.0	

• The decay of the wave functions into vacuum is different from that in the bulk

•The (111) surface shows surface states which extend into vacuum

SIESTA Basic Execution

To run Siesta you need:

1.- Access to the executable file

2.- An input file: written in ascii (plain text) using: Flexible Data Format (FDF) (A. García and J. M. Soler)

3.- A pseudopotential file for each kind of element in the input file. Two different formats:

Unformatted binary (.vps)

Formatted ASCII (.psf) (more transportable and easy to look at)

Schematic flowchart of a SIESTA run

FDF

Data can be given in any order

- Data can be omitted in favor of default values
- Syntax: 'data label' followed by its value

Character string:	SystemLabel	h2o
Integer:	NumberOfAtoms	3
Real:	PAO.SplitNorm	0.15
Logical:	SpinPolarized	.false.
Physical magnitudes	LatticeConstant	5.43 Ang

FDF Example (very basic info)

SystemName Water molecule SystemLabel h2o NumberOf Atoms 3 NumberOfSpecies 2 %block ChemicalSpeciesLabel 8 n # Species index, atomic number, species label 1 1 H 2 %endblock ChemicalSpeciesLabel AtomicCoordinatesFormat Ang %block AtomicCoordinatesAndAtomicSpecies 0.000 0.000 0.000 1 0.757 0.586 0.000 2 -0.757 0.586 0.000 2 %endblock AtomicCoordinatesAndAtomicSpecies

Output: First MD step

siesta: siesta: Begin MD step = 1 siesta: InitMesh: MESH = 32 x 30 x 24 = 23040 InitMesh: Mesh cutoff (required, used) = 50.000 50.384 Ry * Maximum dynamic memory allocated = 3 MB siesta: Program's energy decomposition (eV): siesta: Eions 815.854478 = siesta: Ena 175.154399 = siesta: Ekin = 341.667405 siesta: Enl = -52.736793 siesta: DEna = -0.000001siesta: DUscf 0.000000 = siesta: DUext 0.000000 = -109.951257siesta: Exc = siesta: eta*DQ = 0.000000 siesta: Emadel = 0.000000 siesta: Eharris = -466.430254 -461.720725 siesta: Etot = -461.720725siesta: FreeEng =

Output: Self-consistency

siesta:	iscf	Eharris(eV)	E_KS(eV)	FreeEng(eV)	dDmax Ef(eV)	
siesta:	1	-466.4303	-461.7207	-461.7207	1.4383 -4.2475	
timer: H	Routir	ne,Calls,Time,	% = IterSCF	1	7.930 72.22	
siesta:	2	-466.8703	-465.2425	-465.2425	0.1755 -0.1474	
siesta:	3	-465.9264	-465.4655	-465.4655	0.0515 -1.5862	
siesta:	4	-465.8472	-465.5656	-465.5656	0.0176 -1.9935	
siesta:	5	-465.8397	-465.6346	-465.6346	0.0087 -2.1116	
siesta:	6	-465.8388	-465.6857	-465.6857	0.0083 -2.1448	
siesta:	7	-465.8387	-465.7240	-465.7240	0.0067 -2.1531	
siesta:	8	-465.8387	-465.7527	-465.7527	0.0051 -2.1545	
siesta:	9	-465.8387	-465.7742	-465.7742	0.0038 -2.1543	
siesta:	10	-465.8387	-465.7903	-465.7903	0.0028 -2.1539	
siesta:	11	-465.8387	-465.8024	-465.8024	0.0021 -2.1535	
siesta:	12	-465.8387	-465.8115	-465.8115	0.0016 -2.1533	
siesta:	13	-465.8387	-465.8183	-465.8183	0.0012 -2.1531	
siesta:	14	-465.8387	-465.8234	-465.8234	0.0009 -2.1530	
siesta:	15	-465.8387	-465.8272	-465.8272	0.0006 -2.1530	
siesta:	16	-465.8387	-465.8301	-465.8301	0.0005 -2.1530	
siesta:	17	-465.8387	-465.8322	-465.8322	0.0004 -2.1530	
siesta:	18	-465.8387	-465.8338	-465.8338	0.0003 -2.1530	
siesta:	19	-465.8387	-465.8351	-465.8351	0.0002 -2.1530	
siesta:	20	-465.8387	-465.8360	-465.8360	0.0001 -2.1530	
siesta:	21	-465.8387	-465.8367	-465.8367	0.0001 -2.1530	
siesta:	22	-465.8387	-465.8372	-465.8372	0.0001 -2.1530	

Output: Eigenvalues, forces, stress

siesta: Eigenvalues (eV):

ik is eps

1 1 -24.74 -12.70 -8.71 -6.23 1.68 4.09 14.68 21.97 24.22 27.21 28.65 32.19 49.89 70.65 96.18

siesta:	Atomic	forces	(eV,	/Ang):	
siesta:	1	0.0000	01	-0.50487	0.000000
siesta:	2	0.7196	64	0.27983	0.000000
siesta:	3	-0.7196	663	0.27982	9 0.00000
siesta:					
siesta:	Tot	0.0000	002	0.05478	8 0.000000
siesta:	Stress	tensor	(eV,	/Ang**3):	
siesta:	-0.0)12622	0.	. 000000	0.000000
siesta:	0.0	000000	-0	.002309	0.000000
siesta:	0.0	000000	0.	. 000000	0.014000

Output: timer (real and cpu times)

timer:	CPU execut	ion tim	nes:		
timer:	Routine	Calls	Time/call	Tot.time	%
timer:	siesta	1	13.660	13.660	100.00
timer:	Setup	1	0.850	0.850	6.22
timer:	bands	1	0.000	0.000	0.00
timer:	KSV_init	1	0.000	0.000	0.00
timer:	IterMD	1	12.800	12.800	93.70
timer:	hsparse	2	0.005	0.010	0.07
timer:	overfsm	2	1.095	2.190	16.03
timer:	IterSCF	23	0.461	10.600	77.60
timer:	kinefsm	2	1.010	2.020	14.79
timer:	nlefsm	2	2.780	5.560	40.70
timer:	DHSCF	23	0.128	2.950	21.60
timer:	DHSCF1	1	0.060	0.060	0.44
timer:	DHSCF2	1	0.190	0.190	1.39
timer:	REORD	186	0.001	0.130	0.95
timer:	POISON	24	0.020	0.480	3.51
timer:	DHSCF3	23	0.110	2.520	18.45
timer:	rhoofd	23	0.030	0.690	5.05
timer:	CELLXC	23	0.027	0.610	4.47
timer:	vmat	23	0.018	0.410	3.00
timer:	diagon	22	0.002	0.050	0.37
timer:	rdiag	22	0.002	0.040	0.29
timer:	DHSCF4	1	0.180	0.180	1.32
timer:	dfscf	1	0.150	0.150	1.10

>> End of run: 3-JUL-2002 17:06:32

Saving and reading information

Some information is stored in files to restart simulations:

- Density matrix: DM.UseSaveDM
- Localized wave functions (Order-N): ON.UseSaveLWF
- Atomic positions and velocities: MD.UseSaveXV
- Conjugent gradient history (minimizations): MD.UseSaveCG

All of them are logical variables EXTREMLY USEFUL TO SAVE LOT OF TIME!

Converging the calculation:

- XC functional: LDA, GGAs
- Pseudopotential
 - Method of generation
 - Number of valence states
 - Number of angular momenta
 - Core matching radii
 - Nonlinear core corrections
- Real space mesh cutoff (V_{xc})
- Number of k-points
- Supercell size (solid & vacuum)
- Electronic temperature

- Basis set
 - Number of functions
 - Highest angular momentum
 - Number of zetas
 - Range
 - Shape (Optimized!)
- Spin polarization
- SCF convergence tolerance
- Geometry relaxation tolerance / MD temp...
- O(N) R_c and minimization tolerance

Real-space grid: Mesh cut-off

Used to compute $\rho(\mathbf{r})$ in order to calculate:

- XC potential (non linear function of $\rho(\mathbf{r})$)
- Solve Poisson equation to get Hartree potential
- Calculate three center integrals (difficult to tabulate and store)

 $\langle \mathbf{\Phi}_{i}(\mathbf{r}-\mathbf{R}_{i}) | \mathbf{V}_{local}(\mathbf{r}-\mathbf{R}_{k}) | \mathbf{\Phi}_{i}(\mathbf{r}-\mathbf{R}_{i}) \rangle$

- IMPORTANT this grid is NOT part of the basis set...

It is an AUXILIARY integration grid and, therefore, convergence of energy is not necessarily variational respect to its fineness.

- Mesh cut-off: highest energy of PW that can be represented with such grid.

Convergence with mesh cutoff

Important tips:

- Convergence is rarely achieved for less than 100 Ry.
- Values between 150 and 200 Ry provide good results in most cases
- GGA and pseudo-core require larger values than other systems
- To obtain very fine results use GridCellSampling
- Filtering of orbitals and potentials coming soon

We know that ΔE goes to zero as Δx goes to zero, but what about the ratio $\Delta E/\Delta x$?:

- Tipically covergence of forces is somewhat slowler than for the total energy
- This has to be taken into account for very precise relaxations and phonon calculations.
- Also important and related: tolerance in forces (for relaxations, etc) should not be smaller than tipical errors in the evaluation of forces.

k-point sampling

- Only time reversal symmetry used in SIESTA (k=-k)
- Convergence in SIESTA not different from other codes:
 - Metals require a lot of k-point for perfect convergence (explore the Diag.ParallelOverK parallel option)
 - Insulators require fewer k-points
- Gamma-only calculations should be reserved to really large simulation cells
- As usual, an incremental procedure might be the most intelligent approach:
 - Density matrix and geometry calculated with a *"reasonable"* number of k-points should be close to the converged answer.
 - Might provide an excellent input for more refined calculations

k-point sampling: Al

kgrid_cutoff (Moreno and Soler, PRB 45, 13891 (1992)): Automatic generation of integration grid kgrid_Monkhorst_Pack (Monkhorst and Pack, PRB 13, 5188 (1997)): Grid defined by hand

Convergence of the density matrix

DM.MixingWeight:

$$\rho_{in}^{n+1} = \alpha \rho_{out}^n + (1-\alpha)\rho_{in}^n$$

 α is not easy to guess, has to be small (0.1-0.3) for insulator and semiconductors, tipically much smaller for metals

DM.NumberPulay (DM.NumberBroyden) : N

$$ar{
ho}_{in}^n = \sum_{i=1}^N eta_i
ho_{in}^{(n-N+i)} ar{
ho}_{out}^n = \sum_{i=1}^N eta_i
ho_{out}^{(n-N+i)}$$

$$ho_{in}^{n+1} = lpha ar{
ho}_{out}^n + (1-lpha) ar{
ho}_{in}^n$$
 such that $\left\| ar{
ho}_{in}^n - ar{
ho}_{out}^n
ight\|$ is minimum

N between 3 and 7 usually gives the best results

Convergence of the density matrix

DM.Tolerance: you should stick to the default 10⁻⁴ or use even smaller values

- ... except in special situations:
- Preliminary relaxations
- Systems that resist complete convergence, but you are *almost* there
- in particular if the Harris energy is very well converged
- Warning: above 10⁻³ errors may be too large.
- ALWAYS CHECK THAT THINGS MAKE SENSE.

MD and Relaxations in SIESTA

Moving the atoms in SIESTA

- Structural Relaxations: Find out positions that minimize the energy (Several methods: CG, dynamical quench, Broyden, ...)
- 2) Molecular Dynamics:

Constant Energy (microcanonical ensamble) Constant Temperature (canonical ensamble) Constant Pressure (variable cell size/shape) Constant T and P Annealing / Quenching

3) Calculation of phonon frequencies and modes (through the Dynamical Matrix obtained by finite diferences)

Analysis, Visualization and Post-processing in SIESTA

Output information

- 1) Electronic structure information (band structures, atomic charges, spins, ...)
- 2) Atomic forces; vibrational modes (through the VIBRA postprocessing tool)
- 3) Molecular Dynamics and Relaxation history: *.ANI files (xyz format, readable using many visualization programs, like Molekel)

Output information

- 4) More sophisticated electronic information in real space (DENCHAR and other tools):
 - Charge Density (total, atomic, difference)
 - Potentials (electrostatic, total, local,...)
 - Wave functions, including complex wfs for k-points different from Gamma

Now, just try it!!

Thank you!