
2145-33

Spring College on Computational Nanoscience 

Risto NIEMINEN

17 - 28 May 2010

COMP/Applied Physics 
Aalto University School of Sciences & Technology 

Espoo 
Finland

 
 

 

Nanostructured Carbon and Complex Oxides



Spring College in Computational Nanoscience
Trieste, May 17-28, 2010

Computational nanoscience:
carbon nanostructures, complex oxides

Risto Nieminen

COMP/Applied Physics
Aalto University School of Science and Technology



1. Transport in functionalised nanotubes
(Javad Hashemi, poster)

2. Magnetic impurities in graphene

3. Complex oxides:
- perovskite interfaces and superlattices
(Riku Oja, poster)

- defects in transparent conducting oxides



CARBON NANOBUDS



NanoBudsTM on FEI Titan TEM at 
80kV with image Cs-corrector - Movie

Image :B.Freitag FEI;  samples : Prof. Kauppinen HUT
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Fullerenes remain attached to CNTs
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Bonding scenarios of fullerenes on 
nanotubes based on DFT calculations



Functionalisation of carbon nanobuds

Electron transport in carbon nanobuds

Transport through nanotube crossings

Transport (percolation) in nanotube networks



Applications:

Low-cost printed electronics: transistors

Gas sensing



Tools:

DFT for  geometries and electronic structure

Quantum transport – Green’s function approach

- Conductance of functionalised tubes/buds
- Tunnelling between crossing tubes

Statistical models for percolation transport









Conductance sensitive to the bud

Buds can bind gas-phase molecules

Enhanced sensitivity to sensing



(Paula Havu, Javad Hashemi)













Possible Kondo effect in graphene: 
the knowledge of the realistic 
electronic structure is required

Motivations:
�

Tuning of the local electronic and 
magnetic structure of graphene

�

Recent TEM experiments on migration 
of individual metal atoms chemisorbed 
on graphene

�

Y. Gan, L. Sun, F. Banhart, Small (2008)

K. Sengupta and  G. Baskaran, 
PRB 77 (2008) 045417

TK ~ exp(-1/NJ)

2. Transition metal atoms 
on a defected graphene sheet

(Arkady Krasheninnikov)



Transition metal atoms on
a defected graphene sheet

Similar to Pt, Pd, Ni, and other metal 
nanoparticles on carbon nanotubes, 
very interesting catalytic properties 
should be expected

Further motivations :

�

Understanding the interaction of 
transition metal atoms with sp2-
bonded carbon is important for a 
better control over growth of carbon 
nanotubes and graphene

�

C. Bittencourt et al., Chem. 
Phys. Lett. 462 (2008) 260



TM atoms on graphene: 
the simulations

Spin-polarized DFT with GGA/PAW, plane waves ( VASP)
Krasheninnikov et al, PRL 102 (2009) 126807



Transition metal adatoms on a pristine 
graphene sheet

Fe, Co, Ni Pt

� Sevincli et al., PRB 77, 195434 (2008), 
� K. T. Chan et al., PRB 77, 235430 (2008), 
� Suarez-Martinez et al., to be published.

Au        Pt        Fe         Co        Ni
-----------------------------------------------------------
Ead (eV)  -0.13   -1.51    -1.03    -1.50    -1.46

M (�B) 0.99    0.00     1.99      1.14     0.00

Migration barriers 0.2-0.8 eV :
Mobile at room temperature;
Difficult to achieve control over the 
precise position of adatoms;

Fe, 
spin 
density 

�
�

The results are in agreement with several recent works:



Metal atoms at single vacancies in 
graphene sheets: the structure

The structure is not flat;
TM atoms are ”too big” to fit in
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Metal atoms at single vacancies in 
graphene sheets: 

the bonding
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Bonding is strong!�
� Binding energy (<0) is 

the lowest for metals 
which form carbides 
Ti (3d24s2, 4 valence el.) 
has the lowest energy

�



TM atoms at double vacancies

One exception: V
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TM atoms at double vacancies

V
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Bonding is strong, as in the 
case of single vacancies!�

� V binds weakly due to 
two bonds only 

� Ti and Au complexes 
are almost flat  



TM@vacancies: binding and magnetism

Qualitative picture
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Ti:   4 e, M=0
V:   5 e, M=1
Cr:  6 e, M=2
Mn: 7 e, M=3
Fe:  8 e, M=0: e-e repulsion



Magnetism: the quantitative picture

Both d-states of transition metal 
atoms and �/�-states of neigh-
boring C atoms contribute to 
the magnetization;

Total magneti-
zation density

Mn@DV

For Au and Cu, a considerable 
part  of the magnetization
comes from s and p states;

Energy-resolved
magnetization
density



Mobility of atom@SV/DV complexes

Au        Pt        Fe        Co        Ni
-----------------------------------------------------------
@SV       2.1     3.1       3.6        3.2       3.1
experim.  2.4* 2.6*
@DV       5.1     6.0       5.3       6.3        6.2

* Y. Gan, L. Sun, F. Banhart, Small (2008)

Naked SV    ~ 1.4 eV          
Naked DV    ~  7    eV

Nudged elastic band method, DFT GGA/PAW�

TM@SV complexes are be immobile at room and 
even moderate (100-200C) elevated temperatures

�

TM@DV are immobile even at high temperatures �



Possible experimental 
realization

Knock-out of individual atoms is possible�

�

electron beam in modern TEMs can be focused onto a sub-Å2 area�

Focused ion beams can also be used

Graphene flakes with adsorbed metal 
atoms can be synthesized as in 

�

Y. Gan, L. Sun, F. Banhart, Small (2008)

Increasing the temperature (plus e-
beam sputtering of metal particles) will
make the metal atoms mobile 

�

Vacancies should pin the metal atoms�



3 (a) Ferroelectric perovskites
(Riku Oja, poster)

• Perovskites exhibit
interesting dielectric
and electromechanical
phenomena

• Applications in 
memories and 
sensors

• Very sensitive to small
deformations, high
accuracy required in 
DFT

General ABO3 perovskite in the cubic
(non-polarized) phase



Perovskite superlattices
• Charge-imbalanced

interfaces may lead to 2D 
metallicity [1]

• Anomalous volume and 
permittivity [2] caused by
interfacial ionic
displacements [3]

Lattice expansion: ionic distances
in NaNbO3/SrTiO3 superlattice

with two n interfaces
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[1] A. Ohtomo et al., Nature 419 378 (2002)
[2] J. Narkilahti et al., Phys. Rev. B 79
014106 (2009)
[3] R. Oja and R. M. Nieminen, Phys. Rev. B 
80 205420 (2009)



Strain-induced ferroelectricity
• Incipient ferroelectrics may become

ferroelectric when epitaxially strained
• In cooperation with University of Oulu, first

verification of strain-induced ferroelectricity [4]

[4] M. Tyunina, J. 
Narkilahti, M. Plekh, 

R. Oja, R. M. 
Nieminen, A. Dejneka, 

and V. Trepakov, 
Phys. Rev. Lett. (in 

press)
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Current studies
• Using hybrid functionals (B1-WC) for correct

estimate of displacements and bandgaps in 
ferroelectrics

• Calculating quantum transport (tunneling) 
through ferroelectric layer
– Conductivity determined by layer thickness and 

perovskite-electrode interface properties
– Polarization direction may affect electrical conductivity

if the interfaces are different [5], [6].

[5] M. Ye. Zhuravlev et al., Appl. Phys. Lett. 95 052902 (2009)
[6] V. Garcia et al., Nature 460 81 (2009)



3 (b) Comparative Study of n-type 
Transparent Conductive Oxides: SnO2, 

In2O3, ZnO

(Péter Ágoston, Karsten Albe, Martti Puska)



�ITO        (In2O3:Sn)

�FTO       (SnO2:F) 

�ATO       (SnO2:Sb) 

�AZO       (ZnO:Al) 

Transparent Conducting Oxides - properties

Typical Materials:

Key properties:
�n-type conductivity

�Non-stoichiometry

�Vis-Transparency

C. Körber et. al. Sensors and Actuators B 139 2 665-672  (2009)



Transparent Conducting Oxides - applications

Thin film 
Solar Cell

Flat Panel DisplayOrganic LED

Gas SensorOrganic solar cell Low-e glass



“deep” donor

“shallow” donor

Defect/impurity-related ionisation levels in insulators



deep shallow resonant
effective mass like

Possibilities for n-type TCO material



Small band gap
�dopable

�not transparent

Large band gap
�not dopable
�transparent

Possibilities for n-type TCO material



n-type TCO materials

Rutile Tin Oxide

Wurzite Zinc Oxide

Bixbyite Indium OxideCadmium Oxide

Gallium Oxide Germanium OxideLarge band-gap



Previous work 

C. Kilic A. Zunger Phys. Rev. Lett. 88, 095501 (2002)

E
C

M
B (experim

ent)

D
oping lim

it (FTO
)

SnO2



S. Lany & A. Zunger Phys. Rev. Lett. 98, 045501 (2007)

�Persistent Photoconductivity (PPC) 

�Similar behavior of ZnO and In2O3

�Explanation for n-type behavior

Previous work



Singh et. al. Phys. Rev. Lett. 101,  055502 (2008)

SnO2

�Similar picture for SnO2

�No n-type behavior

�Hydrogen as a donor

�Hydrogen is everywhere and difficult to detect

Previous work



Janotti et. al. Nature Materials. 6,  (2007)

Previous work: substitutional hydrogen



LDA band gap problem



Defect states in LDA



Motivation

� Conduction mechanism of TCO materials 

� n- and p-type doping of TCO materials

� Role of stoichiometry

� Role of unwanted impurities

Very unsatisfactory from the theoretical point of view!



Native defects in TCOs:
computational results



Effect of XC-functional

Inclusion of Hartree-Fock exchange into the XC-functional

Hybrid Functionals

PBE0
HSE06
B3LYP

Hartree-Fock exchange is really non-local!



Vienna ab-initio simulation package (Vasp)   

� basis set : plane wave / periodic boundaries

� ion cores : projector augmented wave (PAW)

� VXC : HSE06, PBE0, GGA+(U), LDA, GGA

� U-J :                         7.0 (In2O3), 3.6 (SnO2), 4.1 (ZnO) 

� k-points : 2 x 2 x 2 MP grid (Gamma only for HF-XC) 

� Ecut : 500 eV

� cell sizes    : 72(-750), 80(-640)

Methodology: Density Functional Theory



Intrinsic conductivity of n-type TCOs: role 
oxygen vacancies

Agoston et al. Phys. Rev. Lett. 103, 245501 (2009)

�Constant formation energies for the neutral charge state

�Strongly reduced formation energies for doubly positive charge states



Intrinsic conductivity of n-type TCOs

�Defect states shift upwards with increasing complexity of XC-functional

�Defects remain mainly deep donors



Acceptor defects: compensation

�Stability of acceptor defects increases with increasing Fermi energy

�High formation energies for acceptor defects

�The materials are now highly n-type dopable which is not the case in LDA



�Doping limits agree with experiment for In2O3 but not for SnO2
�New doping strategies for SnO2

Acceptor defects



Vacancy relaxation in n-type TCOs

�Relaxation energy increase with the complexity of XC-functional

�Relaxation in neutral charge state only for ZnO



Cell size dependent defect state position: 
finite-size scaling for charged defects



Summary and conclusions

�Hybrid functionals increase the n-type propensity for TCOs

�The effect is due to the underestimated bandgap, ionization potential

�The relaxation energies are not well described in LDA/GGA

� LDA/GGA + U is not the way to describe these materials

�Oxygen vacancies are shallow donor defects in In2O3

�Oxygen vacancies are moderately shallow in SnO2

�Probably, additional contributions to n-type conductivity in SnO2, ZnO

�Other (deep) donors in ZnO (H, PPC) cannot be excluded 


