

2145-33

Spring College on Computational Nanoscience

17 - 28 May 2010

Nanostructured Carbon and Complex Oxides

Risto NIEMINEN

COMP/Applied Physics Aalto University School of Sciences & Technology Espoo Finland Spring College in Computational Nanoscience Trieste, May 17-28, 2010

Computational nanoscience: carbon nanostructures, complex oxides

Risto Nieminen

COMP/Applied Physics Aalto University School of Science and Technology

1. Transport in functionalised nanotubes (Javad Hashemi, poster)

2. Magnetic impurities in graphene

- 3. Complex oxides:
 - perovskite interfaces and superlattices (Riku Oja, poster)
 - defects in transparent conducting oxides

CARBON NANOBUDS

NanoBuds[™] on FEI Titan TEM at 80kV with image C_s-corrector - Movie

Individual Fullerene

Cluster of Fullerenes

Image :B.Freitag FEI; samples : Prof. Kauppinen HUT

Pulling out CNBs from Hydrofobic Protein Thin Film: Fullerenes remain attached to CNTs

Bonding scenarios of fullerenes on nanotubes based on DFT calculations

Functionalisation of carbon nanobudsElectron transport in carbon nanobudsTransport through nanotube crossingsTransport (percolation) in nanotube networks

Applications:

Low-cost printed electronics: transistors

Gas sensing

Tools:

DFT for geometries and electronic structure

Quantum transport – Green's function approach

Conductance of functionalised tubes/buds
Tunnelling between crossing tubes

Statistical models for percolation transport

FIG. 1: Typical carbon nanobud (CNB) structures studied in this work. The CNB consists of an imperfect C60 attached to an armchair (8,8) single-wall nanotube (SWNT) via a neck region, made of a (6,0) SWNT. The number of unit cells in the neck region can vary; panel (a) shows a zero-unit-cell neck (CNB0), while (b) shows a two-unit-cell neck (CNB2).

FIG. 3: Projected density of states (PDOS) for the bud and neck part of the CNB3 system (middle panel). There is a strong correlation between PDOS and the transmission shown in the top panel. Bottom: The probability of the eigenchannel scattering states at the dip in transmission indicated by an arrow in the top panel. Comparing left (T = 0.74) and right panel (T = 0.26) shows that stronger suppression of transmission is related to stronger localization of states in the bud and neck.

FIG. 4: The transmission for SWNT, CNB3 and CNB15 calculated with a tight-binding model. The trends from first principles are well captured for the smaller CNB3 system. Significantly increasing the system size results in a large number of dips which below E_F display some degree of periodicity.

Conductance sensitive to the bud Buds can bind gas-phase molecules

Enhanced sensitivity to sensing

Introduction: Nanotube Cross Junctions

(Paula Havu, Javad Hashemi)

Nanotube bundle network. Figure: Nano Materials Group, Aalto University Section Experiments:

- Metal-metal (MM) junctions and semiconductor-semiconductor (SS) junctions 100-2300 kΩ.
- Semiconductor-metal (SM) 32 MΩ.

- M.S.Fuhrer et al. Science 288, 494 (2000).
- B.Gao, et al. Phys. Rev. Lett. 92, 216804 (2004).
- P. N. Nirmalraj et al. NanoLett. 9, 3890 (2009).

Model

2 nanotubes:

- (8,8)-metallic
- (14,0)-semiconducting

• Up to 896 atoms

- Electronic structure from the density functional theory calculations
 - All electron code FHI-aims [1] with PBE xc-functional
 - Van der Waals correction [2]
 - Transport calculations from Landauer-Büttiker formula

$$G = \frac{2e^2}{\pi} \int_{-\infty}^{\infty} T(E) \left(-\frac{\partial f(E)}{\partial E} \right) dE$$

1) V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, Comp. Phys. Comm. 180, 2175-2196 (2009).

2) Tkatchenko et al. PRL 102 073005 (2009)

As a function of distance

 At shorter nanotube distances more atoms are at the junction region

0.004

• MM: f

As a function of distance

- MM: first conductance increases and then degreases.
- SS: similar oscillations in conductance, but smaller amplitude
- SM: conductance increases

2. Transition metal atoms on a defected graphene sheet (Arkady Krasheninnikov)

Motivations:

- Possible Kondo effect in graphene: the knowledge of the realistic electronic structure is required
- Tuning of the local electronic and magnetic structure of graphene
- Recent TEM experiments on migration of individual metal atoms chemisorbed on graphene
 - Y. Gan, L. Sun, F. Banhart, Small (2008)

 $T_{K} \sim exp(-1/NJ)$

K. Sengupta and G. Baskaran, PRB 77 (2008) 045417

Transition metal atoms on a defected graphene sheet

Further motivations :

- Similar to Pt, Pd, Ni, and other metal nanoparticles on carbon nanotubes, very interesting catalytic properties should be expected
- Understanding the interaction of transition metal atoms with sp²bonded carbon is important for a better control over growth of carbon nanotubes and graphene

C. Bittencourt *et al.,* Chem. Phys. Lett. **462** (2008) 260

TM atoms on graphene: the simulations

Spin-polarized DFT with GGA/PAW, plane waves (VASP)

Krasheninnikov et al, PRL 102 (2009) 126807

Transition metal adatoms on a pristine graphene sheet

	Au	Pt	Fe	Со	Ni
E _{ad} (eV)	-0.13	-1.51	-1.03	-1.50	-1.46
Μ (μ _B)	0.99	0.00	1.99	1.14	0.00

Migration barriers 0.2-0.8 eV :

Mobile at room temperature; Difficult to achieve control over the precise position of adatoms;

The results are in agreement with several recent works:

□ Sevincli *et al.*, PRB 77, 195434 (2008),

□ K. T. Chan *et al.*, PRB 77, 235430 (2008),

□ Suarez-Martinez *et al.*, to be published.

Metal atoms at single vacancies in graphene sheets: the structure

Metal atoms at single vacancies in graphene sheets: the bonding

- Bonding is strong!
- Binding energy (<0) is the lowest for metals which form carbides
- Ti $(3d^24s^2, 4 \text{ valence el.})$ has the lowest energy

TM atoms at double vacancies

TM atoms at double vacancies

- Bonding is strong, as in the case of single vacancies!
- V binds weakly due to two bonds only
- Ti and Au complexes are almost flat

TM@vacancies: binding and magnetism

Magnetism: the quantitative picture

Mn@DV

Energy-resolved Total magnetimagnetization zation density

Both *d*-states of transition metal atoms and σ/π -states of neighboring C atoms contribute to the magnetization;

For Au and Cu, a considerable part of the magnetization comes from *s* and *p* states;

Mobility of atom@SV/DV complexes

Nudged elastic band method, DFT GGA/PAW

	Au	Pt	Fe	Со	Ni
@SV experim.	2.1 2.4*	3.1 2.6*	3.6	3.2	3.1
@DV	5.1	6.0	5.3	6.3	6.2

* Y. Gan, L. Sun, F. Banhart, Small (2008)

Naked SV $\sim 1.4 \text{ eV}$ Naked DV $\sim 7 \text{ eV}$

TM@SV complexes are be immobile at room and even moderate (100-200C) elevated temperatures

TM@DV are immobile even at high temperatures

Possible experimental realization

- electron beam in modern TEMs can be focused onto a sub-Å² area
- Knocic ut of individual atoms is possible

- Graphene flakes with adsorbed metal atoms can be synthesized as in
 - Y. Gan, L. Sun, F. Banhart, Small (2008)
- Increasing the temperature (plus ebeam sputtering of metal particles) will make the metal atoms mobile
- Vacancies should pin the metal atoms
 - Focused ion beams can also be used

3 (a) Ferroelectric perovskites (Riku Oja, poster)

General ABO₃ perovskite in the cubic (non-polarized) phase

- Perovskites exhibit interesting dielectric and electromechanical phenomena
- Applications in memories and sensors
- Very sensitive to small deformations, high accuracy required in DFT

Perovskite superlattices

- Charge-imbalanced interfaces may lead to 2D metallicity [1]
- Anomalous volume and permittivity [2] caused by interfacial ionic displacements [3]

[1] A. Ohtomo et al., Nature **419** 378 (2002)
[2] J. Narkilahti et al., Phys. Rev. B **79**014106 (2009)
[3] R. Oja and R. M. Nieminen, Phys. Rev. B **80** 205420 (2009)

Strain-induced ferroelectricity

- Incipient ferroelectrics may become ferroelectric when epitaxially strained
- In cooperation with University of Oulu, first verification of strain-induced ferroelectricity [4]

Current studies

- Using hybrid functionals (B1-WC) for correct estimate of displacements and bandgaps in ferroelectrics
- Calculating quantum transport (tunneling)
 through ferroelectric layer
 - Conductivity determined by layer thickness and perovskite-electrode interface properties
 - Polarization direction may affect electrical conductivity if the interfaces are different [5], [6].

[5] M. Ye. Zhuravlev et al., Appl. Phys. Lett. **95** 052902 (2009)[6] V. Garcia et al., Nature **460** 81 (2009)

3 (b) Comparative Study of *n*-type Transparent Conductive Oxides: SnO_2 , In_2O_3 , ZnO

(Péter Ágoston, Karsten Albe, Martti Puska)

<u>Transparent Conducting Oxides - properties</u>

C. Körber et. al. Sensors and Actuators B 139 2 665-672 (2009)

<u>Transparent Conducting Oxides - applications</u>

Defect/impurity-related ionisation levels in insulators

Possibilities for *n*-type TCO material

Possibilities for *n*-type TCO material

n-type TCO materials

Previous work

SnO₂

C. Kilic A. Zunger Phys. Rev. Lett. 88, 095501 (2002)

Previous work

Persistent Photoconductivity (PPC)

 \rightarrow Similar behavior of ZnO and In₂O₃

>Explanation for *n*-type behavior

S. Lany & A. Zunger Phys. Rev. Lett. 98, 045501 (2007)

Previous work

Previous work: substitutional hydrogen

Janotti et. al. Nature Materials. 6, (2007)

LDA band gap problem

Defect states in LDA

Motivation

- Conduction mechanism of TCO materials
- > n- and p-type doping of TCO materials
- > Role of stoichiometry
- > Role of unwanted impurities

Very unsatisfactory from the theoretical point of view!

Native defects in TCOs: computational results

Effect of XC-functional

Inclusion of Hartree-Fock exchange into the XC-functional

→ Hybrid Functionals

Hartree-Fock exchange is really non-local!

Methodology: <u>Density Functional Theory</u>

<u>Vienna ab-initio simulation package (Vasp)</u>

• basis set : plane wave / periodic boundaries projector <u>augmented</u> wave (PAW) • ion cores : • V^{XC} HSE06, PBE0, GGA+(U), LDA, GGA . 7.0 (In₂O₃), 3.6 (SnO₂), 4.1 (ZnO) • *U-J* : : 2 x 2 x 2 MP grid (Gamma only for HF-XC) • **k**-points • E_{cut} 500 eV 72(-750), 80(-640) • cell sizes :

Intrinsic conductivity of *n*-type TCOs: role oxygen vacancies

Agoston et al. Phys. Rev. Lett. 103, 245501 (2009)

Constant formation energies for the neutral charge state

Strongly reduced formation energies for doubly positive charge states

Intrinsic conductivity of *n*-type TCOs

»Defect states shift upwards with increasing complexity of XC-functional

»Defects remain mainly deep donors

Acceptor defects: compensation

>Stability of acceptor defects increases with increasing Fermi energy

>High formation energies for acceptor defects

>The materials are now highly n-type dopable which is not the case in LDA

Acceptor defects

>Doping limits agree with experiment for In_2O_3 but not for SnO_2 >New doping strategies for SnO_2

Vacancy relaxation in *n*-type TCOs

Relaxation energy increase with the complexity of XC-functional

»Relaxation in neutral charge state only for ZnO

Cell size dependent defect state position: finite-size scaling for charged defects

Summary and conclusions

>Hybrid functionals increase the *n*-type propensity for TCOs

>The effect is due to the underestimated bandgap, ionization potential

>The relaxation energies are not well described in LDA/GGA

> LDA/GGA + U is not the way to describe these materials

»Oxygen vacancies are shallow donor defects in In₂O₃

»Oxygen vacancies are moderately shallow in SnO₂

»Probably, additional contributions to *n*-type conductivity in SnO₂, ZnO

>Other (deep) donors in ZnO (H, PPC) cannot be excluded