

2145-9

Spring College on Computational Nanoscience

17 - 28 May 2010

Applications of GW. GW quasi-particle spectra from occupied states only: latest developments.

P. UMARI CNR-IOM DEMOCRITOS Theory at Elettra Group, Basovizza Trieste Italy

Introduction 000	Polarizability basis 000000000	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion

GW quasi-particle spectra from occupied states only: latest developments

Paolo Umari

CNR-IOM DEMOCRITOS Theory@Elettra Group, Basovizza-Bazovica, Trieste, Italy

May 24, 2010

GW quasi-particle spectra from occupied states only: $1/37 \ \mbox{latest}$ developments

Polarizability basis	GW without empty states	Lanczos chains	Polarizability basis	Conclusion

Outline

- Introduction
- Optimal polarizability basis
- GW without empty states
- Examples
- Polarizability basis: optimal vs plane waves

向下 イヨト イヨト

-

Introduction	Polarizability basis	GW without empty states	Lanczos chains	Polarizability basis	Conclusion

Photoemission spectroscopy

・ロト ・回ト ・ヨト GW quasi-particle spectra from occupied states only: 3/37 latest developments

Introduction ●○○	Polarizability basis 00000000	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
Many-Body Pe	rturbation Theory				

Direct photoemission

Onida, L. Reining, A. Rubio,

Rev. Mod. Phys.74, 601 (2002)

Quasi-particle energies

 $\blacksquare \ N \to N \pm 1$

 $\bullet E_{N\pm 1}^* - E_N$

Many-Body Perturbation Theory (MBPT)

(4) (5) (4) (5) (4)

-

Introduction 000	Polarizability basis	GW without empty states 0	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
GWA						

M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett 55, 1418 (1985)

$$E_n \simeq \epsilon_n + \langle \Sigma_{G^{\circ}W^{\circ}}(E_n) \rangle_n - \langle V_{xc} \rangle_n$$

$$\Sigma_{G^\circ W^\circ}(\mathbf{r},\mathbf{r}';\omega) = rac{i}{2\pi}\int d\omega' G^\circ(\mathbf{r},\mathbf{r}';\omega-\omega') W^\circ(\mathbf{r},\mathbf{r}';\omega')$$

$$\mathsf{W}^\circ = v + v \cdot \mathsf{\Pi}^\circ \cdot v$$
 where $\mathsf{\Pi}^\circ = P^\circ \cdot (1 - v \cdot P^\circ)^{-1}$

$$P^{\circ}(\mathbf{r},\mathbf{r}';\omega) = \frac{1}{2\pi} \int d\omega' G^{\circ}(\mathbf{r},\mathbf{r}';\omega-\omega') G^{\circ}(\mathbf{r},\mathbf{r}';\omega')$$

$$G^{\circ}(\mathbf{r},\mathbf{r}';\omega) = \sum_{i} \frac{\psi_{i}(\mathbf{r})\psi_{i}^{*}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i\delta}$$

For accurate(?) calculations: analytic continuation method

M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)

Introduction ○○●	Polarizability basis	GW without empty states 0	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
GWA						

Two big challenges:

- Computational cost:
 - We must represent operators $\hat{O}(\mathbf{r},\mathbf{r}')$
 - prohibitive for large systems
- Sums over empty states
 - In principle sums over all empty-states
 - prohibitive for large systems
 - analogous to DFPT

글 에 에 글 어

Introduction 000	Polarizability basis ●00000000	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
Polarization ba	asis				

If an optimal representation of P° can be found:

$$P^{\circ}(\mathbf{r},\mathbf{r}';\omega)\simeq\sum_{lphaeta}\Phi_{lpha}(\mathbf{r})P^{\circ}{}_{lphaeta}(\omega)\Phi_{eta}(\mathbf{r}')$$

$$\mathsf{\Pi}^{\circ}(\mathbf{r},\mathbf{r}';\omega)\simeq\sum_{lphaeta}\Phi_{lpha}(\mathbf{r})\mathsf{\Pi}^{\circ}{}_{lphaeta}(\omega)\Phi_{eta}(\mathbf{r}')$$

$$W^{\circ}(\mathbf{r},\mathbf{r}';\omega) \simeq \int d\mathbf{r}'' d\mathbf{r}''' \sum_{\alpha\beta} v(\mathbf{r},\mathbf{r}'') \Phi_{\alpha}(\mathbf{r}'') \Pi^{\circ}{}_{\alpha\beta}(\omega) \Phi_{\beta}(\mathbf{r}''') v(\mathbf{r}''',\mathbf{r}')$$

then a huge speed-up can be achieved

Introduction	Polarizability basis	GW without empty states	Lanczos chains	Results	Polarizability basis	Conclusion
000	0●0000000	0	000000000	0000	000	
Polarization ba	asis					

The same optimal basis for $\Pi^{\circ}(\mathbf{r}, \mathbf{r}'; \omega)$ and $P^{\circ}(\mathbf{r}, \mathbf{r}'; \omega)$ with:

$$P^{\circ}(\mathbf{r},\mathbf{r}';\omega) = \sum_{v,c} rac{\psi_v(\mathbf{r})\psi_c(\mathbf{r})\psi_v(\mathbf{r}')\psi_c(\mathbf{r}')}{\epsilon_c - \epsilon_v + \omega}$$

we want to build a basis for the products in real space of valence and conduction states $% \left({{{\boldsymbol{x}}_{i}}} \right)$

・ 同 ト ・ 三 ト ・ 三 ト

-

Introduction 000	Polarizability basis		Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
Old idea: building an optimal representation						

1. Wannier transformation:

$$\begin{array}{l} \psi_v \to w_v \\ \psi_c \to w_c \end{array}$$

2. Reject the small overlaps:

 $w_v(\mathbf{r})w_c(\mathbf{r}) \rightarrow \bar{\Phi}_{vc}(\mathbf{r})$

3. Orthonormalization

$$\bar{\Phi}_{vc} \rightarrow \Phi_{\mu}$$

we use a treshold s_2 for rejecting almost linear dependent terms

э

Introduction 000	Polarizability basis ○○○●○○○○	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
Implementation	1				

Analytic continuation approach

M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 (1999) 211

- Γ-sampling only, real wavefunctions
- Implemented in the Quantum-ESPRESSO code; a community project for high-quality quantum simulation software, coordinated by P. Giannozzi. See http://www.quantum-espresso.org

See: PU, G.Stenuit, S.Baroni, Phys. Rev. B 79, 201104(R) (2009)

- - E - - E - - -

Isolated benzene molecule

Convergence within 10 meV is achieved with $E_c^2 \ge 30$ eV (300 states) and a polarizability basis set of only 340 elements ($s_2 \le 0.1$).

latest developments

Paolo Umari

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

amorphous Si_3N_4

- model obtained by Car-Parrinello MD
- 152 atoms at exp. density
- 344 valence states
- US pseudopotentials
- Neutron, IR, Raman

GW quasi-particle spectra from occupied states only: $12/37 \ \mbox{latest}$ developments

Introduction 000	Polarizability basis ○○○○○●○○	Lanczos chains 000000000	Results 0000	Polarizability basis 000	Conclusion
Example: Si ₃ N	4				

amorphous Si_3N_4

Paolo Umari

GW quasi-particle spectra from occupied states only: $13/37 \ensuremath{$ latest developments

 Introduction
 Polarizability basis
 GW without empty states
 Lanczos chains
 Results
 Polarizability basis
 Conclusion

 000
 000000000
 0
 000000000
 0000
 0000
 000

 New idea: without empty states

An optimal polarizability basis can be found solving:

$$\int d\mathbf{r}' P(\mathbf{r},\mathbf{r}';t=0) \Phi_{\mu} = q_{\mu} \Phi_{\mu}(\mathbf{r})$$
 with: $q_{\mu} > q^*$

where:

$$P(\mathbf{r},\mathbf{r}';t=0) = Q_v(\mathbf{r},\mathbf{r}')Q_c(\mathbf{r},\mathbf{r}') = Q_v(\mathbf{r},\mathbf{r}')(\delta(\mathbf{r}-\mathbf{r}') - Q_v(\mathbf{r},\mathbf{r}'))$$

we can approximate:

$$P(\mathbf{r},\mathbf{r}';t=0) \approx Q_v(\mathbf{r},\mathbf{r}')Q_e(\mathbf{r},\mathbf{r}')$$

with

$$Q_e \approx \sum_{\mathbf{G},\mathbf{G}'} Q_c |\mathbf{G}\rangle R_{\mathbf{G},\mathbf{G}'}^{-1} \langle \mathbf{G}' | Q_c \Theta (G^2 - E) \Theta (G'^2 - E)$$

with:

$$R_{\mathbf{G},\mathbf{G}'} = \int d\mathbf{r} \langle \mathbf{G} | Q_c | \mathbf{r} \rangle \langle \mathbf{r} | Q_c | \mathbf{G}' \rangle$$

	Polarizability basis	GW without empty states	Lanczos chains		Polarizability basis	Conclusion	
	00000000						
New idea: benzene							

IP of the benzene molecule

GW quasi-particle spectra from occupied states only: $15/37 \ \mbox{latest}$ developments

	Polarizability basis	GW without empty states	Lanczos chains	Polarizability basis	Conclusion
		•			
Caffeine					

IP of the caffeine molecule

GW quasi-particle spectra from occupied states only: 16/37 latest developments

3

イロト イヨト イヨト イヨト

Introduction	Polarizability basis	GW without empty states	Lanczos chains	Results	Polarizability basis	Conclusion
000	00000000	0	●○○○○○○○○	0000	000	
The solution I						

We work on the imaginary frequency axis

M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)

Polarizability basis

- we work with real wavefunctions (Γ-point)
- Let $\{\Phi_{\mu}\}$ be a basis for the irreducible polarizability P
- $\{\Phi_{\mu}\}$ is also a basis for the reducible polarizability Π
 - plane waves
 - localized basis sets
 - optimal basis sets

Introduction	Polarizability basis	GW without empty states	Lanczos chains	Results	Polarizability basis	Conclusion
000	00000000	0	○●○○○○○○○	0000	000	
The solution II						

Sternheimer approach for P

The polarizability matrix $P^{\circ}_{\mu\nu}(i\omega)$:

$$P^{\circ}_{\mu
u}(i\omega) = -4\Re\sum_{v,c}rac{\int d\mathbf{r}d\mathbf{r}' \Phi_{\mu}(\mathbf{r})\psi_v(\mathbf{r})\psi_c(\mathbf{r})\psi_v(\mathbf{r}')\psi_c(\mathbf{r}')\Phi_{
u}(\mathbf{r}')}{\epsilon_c - \epsilon_v + i\omega}.$$

the projector over the conduction manifold Q_c :

$$Q_c(\mathbf{r},\mathbf{r}') = \sum_c \psi_c(\mathbf{r})\psi_c(\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}') - \sum_v \psi_v(\mathbf{r})\psi_v(\mathbf{r}'),$$

with the notation:

$$\langle \mathbf{r} | \psi_i \Phi_{\nu} \rangle = \psi_i(\mathbf{r}) \Phi_{\nu}(\mathbf{r}).$$

We can now eliminate the sum over c :

$$P^{\circ}_{\mu
u}(i\omega) = -4\Re\sum_{v}\langle \Phi_{\mu}\psi_{v}|Q_{c}(H-\epsilon_{v}+i\omega)^{-1}Q_{c}|\psi_{v}\Phi_{
u}
angle,$$

白 と く ヨ と く ヨ と …

Introduction 000	Polarizability basis 00000000	GW without empty states 0	Lanczos chains	Results 0000	Polarizability basis 000	Conclusion
The solution III						

The computational load can be hugely reduced:

with an optimal basis:

$$\langle r|Q_c|\psi_v\Phi_\mu\rangle\approx\sum_{\alpha}t^0_{\alpha}(\mathbf{r})T_{\alpha,v\mu},$$

We can easily solve:

$$\langle t^{\mathbf{0}}_{\alpha} | (H - \epsilon_v + i\omega)^{-1} | t^{\mathbf{0}}_{\beta} \rangle$$

for every ϵ_v and every ω For each t^0_{α} : Lanczos-chain: $t^1_{\alpha}, t^2_{\alpha}, t^3_{\alpha}, ...$

$$\langle t^i_{\alpha}|H-\epsilon_v+i\omega|t^j_{\alpha}\rangle=\delta_{i,j}(d^i-\epsilon_v+i\omega)+\delta_{i,j+1}f^i+\delta_{i,j-1}f^j.$$

Introduction 000	Polarizability basis 00000000		Lanczos chains	Results 0000	Polarizability basis 000	Conclusion
The solution III						

Equivalent Lanczos approach for the self-energy:

$$\langle \mathbf{r} | \psi_n(v \Phi_\mu) \rangle \approx \sum_{\alpha} s^0_{\alpha}(\mathbf{r}) S_{\alpha,n\mu},$$

with:

$$\langle \mathbf{r}|(v\Phi_{\mu})
angle = \int d\mathbf{r}' v(\mathbf{r},\mathbf{r}')\Phi_{\mu}(\mathbf{r}')$$

Implemented in the *quantum-Espresso* package www.quantum-espresso.org See: PU, G. Stenuit, and S. Baroni, Phys. Rev. B **81**, 115104 (2010)

周 と くき とくき と

Introduction 000	Polarizability basis 000000000	Lanczos chains	Results 0000	Polarizability basis 000	Conclusion
Caffeine					

Convergence with respect to Lanczos steps

GW quasi-particle spectra from occupied states only: 21/37 latest developments

-

	Polarizability basis	GW without empty states	Lanczos chains	Polarizability basis	Conclusion
			000000000		
Coffeine					

IP of the caffeine molecule

GW quasi-particle spectra from occupied states only: 22/37 latest developments

3

イロン イヨン イヨン イヨン

	Polarizability basis	GW without empty states	Lanczos chains	Polarizability basis	Conclusion
			0000000000		
Benzene					

IP of the benzene molecule

GW quasi-particle spectra from occupied states only: 23/37 latest developments

Introduction 000	Polarizability basis 000000000	Lanczos chains	Results 0000	Polarizability basis 000	Conclusion
Benzene					

IPs of the benzene molecule

- $E = 10 \text{ Ry } q^* = 0.035 \text{ a.u.}$ N = 2900
- $E = 10 \text{ Ry } q^* = 14.5 \text{ a.u.}$ N = 500
- Extrapolations
- Plane waves *E* = 5 Ry *N* = 1500

GW quasi-particle spectra from occupied states only: 24/37 latest developments

Extension to extended systems

- Head(G = 0, G' = 0) and wings (G = 0, G' ≠ 0) of the symmetric dielectric matrix are calculated using Lanczos chains (k-points sampling implemented)
- Wings are projected over the polarizability basis vectors
- \blacksquare Element $\mathbf{G}=\mathbf{0}$ added to the polarizability basis

•
$$v(\mathbf{G}) = \frac{1}{\Omega} \int d\mathbf{q} \frac{1}{|\mathbf{G}+\mathbf{q}|^2}$$

 \blacksquare Grid on imaginary frequency can be denser around $\omega=0$

Introduction 000	Polarizability basis 000000000	Lanczos chains 00000000●	Results 0000	Polarizability basis 000	Conclusion
Benzene					

Extension to extended systems: test

- Bulk Si: 64 atoms cubic cell
- Optimal polarizability basis:
 E*=2Ry, q*=2.7 a.u. (#2000)
- k-points sampling for: head and wings, DFT charge density

state	LDA	GW	Expt.
Γ_{1v}	-11.94	-11.63	-12.5
X_{1v}	-7.80	-8.77	
X_{4v}	-2.88	-2.90	-2.9,-3.3
Γ_{25v}	0.	0.	0.
X_{1c}	0.67	1.36	1.25

Introduction 000	Polarizability basis 00000000		Lanczos chains 000000000	Results ●○○○	Polarizability basis 000	Conclusion
Tetraphenylporphyrin						

GW quasi-particle spectra from occupied states only: 27/37 latest developments

< A

B > < B >

Introduction 000	Polarizability basis	Lanczos chains 000000000	Results	Polarizability basis 000	Conclusion
Tetraphenylpor	phyrin				

TPP photoemission spectrum

Experimental PS spectrum: C. Cudia Castellarin and A. Goldoni

Introduction 000	Polarizability basis 00000000		Lanczos chains 000000000	Results ○●○○	Polarizability basis 000	Conclusion
Tetraphenylporphyrin						

Tetraphenylporphyrin: analysis

Introduction 000	Polarizability basis 000000000		Lanczos chains 000000000	Results ○0●○	Polarizability basis 000	Conclusion
Tetraphenylporphyrin						

Tetraphenylporphyrin: analysis

G. Stenuit, C. Castellarin-Cudia,O.Plekan, V. Feyer, K.C. Prince, A. Goldoni, and PU, PCCP (accepted) (2010).

Introduction 000	Polarizability basis 000000000	Lanczos chains 000000000	Results ○○○●	Polarizability basis 000	Conclusion
Indene					

Indene molecule

GWW is now a standard tool for PS analysis:

GW quasi-particle spectra from occupied states only: 31/37 latest developments

Paolo Umari

Introduction 000	Polarizability basis 00000000	Lanczos chains 000000000	Results 0000	Polarizability basis ●00	Conclusion
H_2O molecule					

Polarizability basis for H_2O : optimal

GW quasi-particle spectra from occupied states only: 32/37 latest developments

B > < B >

2

Introduction 000	Polarizability basis 00000000	Lanczos chains 000000000	Results 0000	Polarizability basis 0●0	Conclusion
H ₂ O molecule					

Polarizability basis for H₂O: plane-waves

GW quasi-particle spectra from occupied states only: 33/37 latest developments

-2

イロン イヨン イヨン イヨン

Introduction 000	Polarizability basis 000000000	Lanczos chains 000000000	Results 0000	Polarizability basis 00●	Conclusion
H_2O molecule					

VIP convergence: plane-waves

-GW quasi-particle spectra from occupied states only: 34/37 latest developments

< A

< E

Conclusions

- Concept and importance of optimal polarizability basis
- Lanczos chain approach
- Large systems affordable without loss of accuracy

-

Acknowledgments

- G. Stenuit (CNR-INFM DEMOCRITOS)
- S. Baroni (CNR-INFM DEMOCRITOS & SISSA)
- L. Giacomazzi (CNR-INFM DEMOCRITOS & ICTP)
- X.-F. Qian (MIT)
- A. Goldoni (Elettra)
- C. Cudia Castellarin (Elettra)
- V Feyer Elettra
- K.C. Prince (Elettra)

• • = • • = •

Don't go to the beach!

- Dr. L. Martin Samos's lecture: today 14:00
- TDDFT&GWW hands on: tomorrow 15:30 (Adriatico)

