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classical electromagnetic effects can be
greatly altered by A-scale structures
especially with many interacting scatterers
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easy to study numerically, theory practically exact,
well-developed scalable 3d methods for arbitrary materials



Just solve this: Maxwell’s equations

oB oD
Faraday: VxE=-— Ampere: VxH=—+]
ot ( ot
nonzero
- uenq&
\“m\, VD=
L . : , Gauss: p
constitutive equations (here, linear media): V:-B=0

D=c¢E B=uH

/ \ magnetic permeability

...usually = y, at infrared/visible (A ~ ym)
electric permittivity

€. = € / €, = relative permittivity or dielectric constant

ct=1/¢
= n? (square of refractive index) oMo

¢, u depend on frequency (dispersion) theorists: often & = uy = 1
...negligible for transparent media in narrow bandwidth and/or .= &



Limits of validity at the
nanoscale?

e Continuum material models (¢ etc.) have generally proved

very successtul down to ~ few nm feature sizes
| For metal features at < 20nm scale, some predictions of
small nonlocal effects (ballistic transport), but this is mostly neglected |

e Phenomena from resonant ~ nm features << A (e.g. spontaneous emission)
usually can be incorporated perturbatively / semiclassically

(e.g. spontaneous emission ~ stochastic dipole source,
spontaneous emission rate ~ local density of states
~ power radiated by dipole)



first, some perspective...



Development of Classical EM Computations

@ Analytical solutions

vacuum, single/double interfaces
various electrostatic problems, ...

scattering from small particles,
periodic multilayers (Bragg mirrors), ...

... & other problems with
very high symmetry
and/or separability

Lord Rayleigh and/or small parameters




Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions: series expansions

e.g. Mie scattering of light by a sphere

Also called spectral methods:
Expand solution in rapidly converging Fourier-like basis

 spectral integral-equation methods:

exactly solve homogeneous regions (Green’s func.),

Gustav Mie & match boundary conditions via spectral basis
(1908) (e.g. Fourier series, spherical harmonics)
e spectral PDE methods:

spectral basis for unknowns in inhomogeous space
(e.g. Fourier series, Chebyshev polynomials, ...)
& plug into PDE and solve for coefficients



Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions & spectral methods

Expand solution in rapidly converging Fourier-like basis
e.g. Mie scattering of light by a sphere
Strength: can converge exponentially fast
— fast enough for hand calculation
— analytical insights, asymptotics, ...

Gustav Mie  Limitation: fast (“spectral”) convergence requires
(1908) basis to be redesigned for each geometry
(to account for any discontinuities/singularities
... complicated for complex geometries!)

(Or: brute-force Fourier series, polynomial convergence)



Development of Classical EM Computations

1 Analytical solutions
2 Semi-analytical solutions & spectral methods

3 Brute force: generic grid/mesh

integral equations:

— boundary elements mesh
surface unknowns coupled
by Green’s functions

PDEs: discretize space into grid/mesh
— simple (low-degree polynomial)
approximations in each pixel/element

<—finite differences
(or Fourier series)

& finite elements—

lose orders of magnitude in performance ... but re-usable code
$ computer time << $$$$ programmer time



Computational EM:
Three Axes of Comparison

— eigenproblems: harmonic modes ~ ¢ (J = 0)

e What problem is solved? — frequency-domain response: E, H from J(x)e=*"
— time-domain response: E, H from J(x, 1)

— PDE or integral equation?

— finite differences (FD)
* What discretization?  — finite elements (FEM) / boundary elements (BEM)

infinitely many unknowns ~ — spectral / Fourier
— finitely many unknowns  — ...

— dense linear solvers (LAPACK)
e What solution method?? — sparse-direct methods
— iterative methods



A few lessons of history

e All approaches still in widespread use

— brute force methods in 90%+ of papers, typically the first resort to
see what happens in a new geometry

— geometry-specific spectral methods still popular, especially when
particular geometry of special interest

— analytical techniques used less to solve new geometries than to prove
theorems, treat small perturbations, etc.

* No single numerical method has “won” 1n general

— each has strengths and weaknesses, e.g. tradeoff between simplicity/
generalizability and performance/scalability

— very mature/standardized problems (e.g. capacitance extraction) use
increasingly sophisticated methods (e.g. BEM), research fields (e.g.
nanophotonics) tend to use simpler methods that are easier to modify
(e.g. FDTD)



Understanding Photonic Devices

_ [ Xu & Lipson, 2005 ]
[ Notomi et al. (2005). ]

420 nm [Mangan, et al.,
OFC 2004 PDP24 |

Model the whole thing at once? Too hard to understand & design.

Break it up into pieces first: periodic regions, waveguides, cavities



Building Blocks: Eigenmodes

e Want to know what solutions exist in different regions
and how they can interact: look for time-harmonic modes ~ ¢~

. L 1g -~ -
VxE= —/,dé)—He iwH First task:
J get r1d of this mess
. J - -0
VxH=e§—E+/e —Ilwel
[

1 _ . + constraint
Vx—-VxH=wH V-H=0
E N

eigen-operator eigen-value eigen-field
(Hermitian for lossless/real &!)




Electronic & Photonic Eigenproblems

Electronic Photonic
2 2
) ]. - (0, -
-—V ' +VWYy=EyYy Vx-VxH=(—| H
2m £ C
nonlinear eigenproblem simple linear eigenproblem
(V depends on e density lyl?) (for linear materials

with negligible dispersion)
(+ nasty quantum entanglement)
—many well-known

computational techniques

Hermitian = real E & w, ... Periodicity = Bloch’s theorem...



Building Blocks: Periodic Media
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common thread:

waveguides ,
translational

dlscrete periodicity: photonic cry stals Symmetry
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Periodic Hermitian Eigenproblems

[ G. Floquet, “Sur les équations différentielles linéaries a coefficients périodiques,” Ann. Ecole Norm. Sup. 12,4788 (1883). ]
[ F. Bloch, “Uber die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555-600 (1928). |

if eigen-operator 1s periodic, then Bloch-Floquet theorem applies:
= l IE-;—a)t r I
can choose: H(X,t) = e( )H]';(X)

\

planewave . .
periodic “envelope

Corollary 1: k 1s conserved, i.e. no scattering of Bloch wave

Corollary 2: H " given by finite unit cell, gigi@
so w are discrete w, (k) Q0O



Periodic

Bloch waves:
Band Diagram

Medium

Electronic and Photonic Crystals

atoms 1n diamond structure | dielectric spheres, diamond lattice

photon frequency

electron energy

wavevector

wavevector

weakly-interacting bosons
strongly interacting fermions  many design degrees of freedom



A 2d Model System

00000000 Q\dielectric “atom”
O O O O 0O 00O OO e2egs
00000000 square lattice
QQQQQQO@@ perioda
QQQQQQQ@@

000000000 m™°
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Bloch waves

The magic of periodicity
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the light seems to form several coherent beams

that propagate without scattering
... and almost without diffraction (supercollimation)



A slight change? Shrink A by 20%
an “optical insulator” (photonic bandgap)
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light cannot penetrate the structure at this wavelength!

all of the scattering destructively interferes



Solving the Maxwell Eigenproblem

2
Finite cell = discrete eigenvalues o, (V + ik) X l(V + ik) xH = D H
Want to solve for (D”(k)’ constraint: (V + lk) Hn =0

& plot vs. “all” k for “all” n,
e _ (o
where field H (x) pl(kX — 1)

063
0.5-\
043

Photonic Band Gap
03]
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@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 1

(1) Limit range of k: irreducible Brillouin zone

OO0 OO  _Bloch’s theorem: solutions are periodic in K

© O O0OO

0000 /

© O O0OO 97
first Brillouin zone a

= minimum [K| “primitive cell”

irreducible Brillouin zone: reduced by symmetry

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2a

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H 1n finite basis (V)
N R ,
H)=H(x,) = Yy ,b,(x) sone: AH) = w’[H)
m=1

2
finite matrix problem: Ah=w"Bh

tlg)-[tg A, -(b,Ab) B, -(b,b)

me

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2b

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis
— must satisfy constraint: (V +iK)-H=0

Planewave (FFT) basis Finite-element basis

) constraint, boundary conditions:
H(x,)= Y H.e™ "
(X t) = c€ Nédélec elements

[ Nédélec, Numerische Math.
35,315 (1980) ]

constraint: H G’ (G + k) =()

: : - : nonuniform mesh
uniform “grid,” periodic boundaries, : .
: fiaure: Payrllous ot more arbitrary boundaries,
simple code, O(N log N) ' "

J. Lightwave Tech.
21536 (o000 | complex code & mesh, O(N)

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 3a

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w*Bh

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N?) storage, O(/N?) time

Faster way:
— start with initial guess eigenvector hy,
— iteratively improve
— O(Np) storage, ~ O(Np?) time for p eigenvectors

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w*Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3¢

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w*Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue w, minimizes:

*
variational ) . h Ah minimize by preconditioned
/ min-max Wo = IIlhlIl h' Bh conjugate-gradient (or...)
theorem




Band Diagram of 2d Model System

0 (radius 0.2a rods, e=12)
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Origin of the Band Gap

Hermitian eigenproblems:
solutions are orthogonal and satisty a variational theorem

Electronic Photonic
. ... field oscillations
* MINIMI1ZEC * Minimizce. ] ]
kinetic + potential energy field m high ¢
e.o. “bonding” state 12
(e.g g ) o f\v <E[
@’ =min C

2

k f g‘l:f
* higher bands orthogonal to lower —
must oscillate (high kinetic) or be in low ¢ (high potential)
(e.g. “anti-bonding” state)



Origin of Gap 1n 2d Model System
orthogonal: node 1n high ¢ 0;:£/\0é
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The Iteration Scheme 1s Important
(minimizing function of 10*-10%+ variables!)

hAh
2_ .
@y =min ey = 1D

Steepest-descent: minimize (4 + o Vf) over a ... repeat

Conjugate-gradient: minimize (h + o d)
— d 1s Vf + (stuff): conjugate to previous search dirs

Preconditioned steepest descent: minimize (h + o d)
— d = (approximate A™") Vf ~ Newton’s method

Preconditioned conjugate-gradient: minimize (2 + o d)
— d is (approximate A1) [Vf + (stuff)]




The Iteration Scheme 1s Important
(minimizing function of ~40,000 variables)

1000000
100000
10000 -

1000 - ===:.;::::::::::::;:::::::::::: -
100 no preconditioning
103
'3
0.1 :
().()lj

0.001 E

% error

preconditioned )})

0004 conjugate- gradientj{{ no conjugate-gradient

0.00001

UIXXXX)I% S S S—
| 10 100 1000

# 1terations



The Boundary Conditions are Tricky

\ E, 18 continuous

— K 18 discontinuous

(D, =€¢E, 1s continuous)

Use a tensor &:

—1\~1
[ Meade et al. (1993) | <‘9 > ) E,|




The e-averaging 1s Important

100-
: correct averaging
0. e backwards averaging changes order
5 LT of convergence
= from Ax to Ax?
E 1 g
S reason in a nutshell:
averaging
0.1 tensor averaging v = smoothing &
- N = changing structure
... must pick smoothing
1 St_
0.01 with zero 1%-order

10 100 perturbation
resolution (pixels/period)

[ Farjadpour et al. (2006) ]



Intentional “defects” are good

microcavities waveguides (“‘wires™)

a




Intentional “defects” 1in 2d

(Same computation, with supercell = many primitive cells)

waveguides

microcavities

10! 0 O
10: 0 ©
10! 0 ©

|

O 0:0:0 O
O 0:0:0 O
(boundary conditions ~ irrelevant O O Eoi O O

for exponentially localized modes)



to be continued. ..

Further reading:

Photonic Crystals book: hitp://jdj.mit.edu/book

Bloch-mode eigensolver: http://idj.mit.edu/mpb




