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Nanophotonics: classical electromagnetic effects can be
greatly altered by λ-scale structures

especially with many interacting scatterers 

[ D. Norris, UMN (2001) ]

optical “insulators”

trapping/guiding
light in vacuum

[ R. F. Cregan
 (1999) ]

[ Luo (2003) ]

flat “superlenses”

easy to study numerically, theory practically exact,
well-developed scalable 3d methods for arbitrary materials



Just solve this: Maxwell’s equations

Faraday: Ampere:

Gauss:
constitutive equations (here, linear media):

magnetic permeability
…usually ≈ µ0 at infrared/visible (λ ~ µm)

electric permittivity
εr = ε / ε0 = relative permittivity or dielectric constant
                = n2 (square of refractive index)

c2 = 1 / ε0 µ0

ε, µ depend on frequency (dispersion)
…negligible for transparent media in narrow bandwidth

theorists: often ε0 = µ0 = 1
        and/or εr = ε 

(nonzero
frequency)



Limits of validity at the 
nanoscale?

• Continuum material models (ε etc.) have generally proved
   very successful down to ~ few nm feature sizes
       [ For metal features at < 20nm scale, some predictions of
         small nonlocal effects (ballistic transport), but this is mostly neglected ]

• Phenomena from resonant ~ nm features << λ (e.g. spontaneous emission)
   usually can be incorporated perturbatively / semiclassically
  (e.g. spontaneous emission ~ stochastic dipole source,
                 spontaneous emission rate ~ local density of states

            ~ power radiated by dipole)



first, some perspective…



Development of Classical EM Computations

1 Analytical solutions

Lord Rayleigh

vacuum, single/double interfaces
various electrostatic problems, …

scattering from small particles,
periodic multilayers (Bragg mirrors), …

… & other problems with
very high symmetry
and/or separability
and/or small parameters



Development of Classical EM Computations
1 Analytical solutions

2 Semi-analytical solutions: series expansions

Gustav Mie
(1908)

e.g. Mie scattering of light by a sphere
Also called spectral methods:
Expand solution in rapidly converging Fourier-like basis
• spectral integral-equation methods:
      exactly solve homogeneous regions (Green’s func.),
      & match boundary conditions via spectral basis
      (e.g. Fourier series, spherical harmonics)
• spectral PDE methods:
      spectral basis for unknowns in inhomogeous space
      (e.g. Fourier series, Chebyshev polynomials, …)
      & plug into PDE and solve for coefficients



Development of Classical EM Computations
1 Analytical solutions

2 Semi-analytical solutions & spectral methods

Gustav Mie
(1908)

Expand solution in rapidly converging Fourier-like basis

Strength: can converge exponentially fast
— fast enough for hand calculation
— analytical insights, asymptotics, �…

Limitation: fast (“spectral”) convergence requires
basis to be redesigned for each geometry
(to account for any discontinuities/singularities
  … complicated for complex geometries!)

(Or: brute-force Fourier series, polynomial convergence)

e.g. Mie scattering of light by a sphere



Development of Classical EM Computations
1 Analytical solutions

2 Semi-analytical solutions & spectral methods
3 Brute force: generic grid/mesh

←finite differences
  (or Fourier series)

     & finite elements→

PDEs: discretize space into grid/mesh
— simple (low-degree polynomial)
     approximations in each pixel/element

lose orders of magnitude in performance … but re-usable code
$ computer time  << $$$$ programmer time

integral equations:
— boundary elements mesh
     surface unknowns coupled
     by Green’s functions



Computational EM: �
Three Axes of Comparison

• What problem is solved?
— eigenproblems: harmonic modes ~ e–iωt    (J = 0)
— frequency-domain response: E, H from J(x)e–iωt
— time-domain response: E, H from J(x, t)
— PDE or integral equation?

• What discretization?
— finite differences (FD)
— finite elements (FEM) / boundary elements (BEM)
— spectral / Fourier
— …

• What solution method?
— dense linear solvers (LAPACK)
— sparse-direct methods
— iterative methods

infinitely many unknowns
→ finitely many unknowns



A few lessons of history
•  All approaches still in widespread use

–  brute force methods in 90%+ of papers, typically the first resort to 
see what happens in a new geometry

–  geometry-specific spectral methods still popular, especially when 
particular geometry of special interest

–  analytical techniques used less to solve new geometries than to prove 
theorems, treat small perturbations, etc.

•  No single numerical method has “won” in general
–  each has strengths and weaknesses, e.g. tradeoff between simplicity/

generalizability and performance/scalability
–  very mature/standardized problems (e.g. capacitance extraction) use 

increasingly sophisticated methods (e.g. BEM), research fields (e.g. 
nanophotonics) tend to use simpler methods that are easier to modify 
(e.g. FDTD) 



Understanding Photonic Devices

420 nm

[ Notomi et al. (2005). ]
[ Xu & Lipson, 2005 ]

10µm

[Mangan, et al., 
OFC 2004 PDP24 ]

Model the whole thing at once?  Too hard to understand & design.

Break it up into pieces first: periodic regions, waveguides, cavities

20 µm



Building Blocks: Eigenmodes
• Want to know what solutions exist in different regions
   and how they can interact: look for time-harmonic modes ~ e–iωt

0

First task:
get rid of this mess

eigen-operator
(Hermitian for lossless/real ε!)

eigen-value eigen-field

+ constraint

1



Electronic & Photonic Eigenproblems

Electronic Photonic

simple linear eigenproblem
(for linear materials

with negligible dispersion)

nonlinear eigenproblem
(V depends on e density |ψ|2)

(+ nasty quantum entanglement)
—many well-known
       computational techniques

Hermitian = real E & ω, … Periodicity = Bloch’s theorem…



Building Blocks: Periodic Media

homogeneous
media

discrete periodicity: photonic crystals

waveguides

common thread:

translational
symmetry



Periodic Hermitian Eigenproblems
[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]

[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:

can choose:

periodic “envelope”
planewave

Corollary 1: k is conserved, i.e. no scattering of Bloch wave

Corollary 2:        given by finite unit cell,
 so ω are discrete ωn(k)



Electronic and Photonic Crystals
atoms in diamond structure
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strongly interacting fermions
weakly-interacting bosons
… many design degrees of freedom



A 2d Model System

square lattice,
period a

dielectric “atom”
ε=12 (e.g. Si)

a

a

E

H
TM



The magic of periodicity: Bloch waves

the light seems to form several coherent beams
that propagate without scattering

… and almost without diffraction (supercollimation) 



A slight change? Shrink λ by 20%�
an “optical insulator” (photonic bandgap)

light cannot penetrate the structure at this wavelength!
all of the scattering destructively interferes 



Solving the Maxwell Eigenproblem

Hn(x) ei(k⋅x – ωt)where field =

constraint:

1

Want to solve for ωn(k),
& plot vs. “all” k for “all” n, 

Finite cell  discrete eigenvalues ωn

Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 1
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

—Bloch’s theorem: solutions are periodic in k

kx

ky
first Brillouin zone

= minimum |k| “primitive cell”
Γ

M

X

irreducible Brillouin zone: reduced by symmetry



Solving the Maxwell Eigenproblem: 2a
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis (N)

3 Efficiently solve eigenproblem: iterative methods

solve:

finite matrix problem:



Solving the Maxwell Eigenproblem: 2b
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

— must satisfy constraint:

Planewave (FFT) basis

constraint:

uniform “grid,” periodic boundaries,
simple code, O(N log N)

Finite-element basis
constraint, boundary conditions:

Nédélec elements
[ Nédélec, Numerische Math.

35, 315 (1980) ]

nonuniform mesh,
more arbitrary boundaries,

complex code & mesh, O(N)
[ figure: Peyrilloux et al.,

J. Lightwave Tech.
21, 536 (2003) ]



Solving the Maxwell Eigenproblem: 3a
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Faster way:
— start with initial guess eigenvector h0
— iteratively improve
— O(Np) storage, ~ O(Np2) time for p eigenvectors

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N2) storage, O(N3) time

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
     Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3c
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
     Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue ω0 minimizes:

minimize by preconditioned
 conjugate-gradient  (or…)

variational
/ min–max
theorem



Band Diagram of 2d Model System�
(radius 0.2a rods, ε=12)
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Origin of the Band Gap
Hermitian eigenproblems: 
    solutions are orthogonal and satisfy a variational theorem

Electronic Photonic

• minimize 
    kinetic + potential energy

(e.g. “bonding” state)

• minimize: field oscillations
field in high ε

• higher bands orthogonal to lower —
    must oscillate (high kinetic) or be in low ε (high potential)

 (e.g. “anti-bonding” state)



Origin of Gap in 2d Model System
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H
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Γ X M Γ

Ez

– +

Ez

gap for
n > ~1.75:1

lives in high ε

orthogonal: node in high ε



The Iteration Scheme is Important
(minimizing function of 104–108+ variables!)

Steepest-descent:  minimize (h + α ∇f) over α … repeat 

Conjugate-gradient:  minimize (h + α d)
— d is ∇f + (stuff): conjugate to previous search dirs

Preconditioned steepest descent:  minimize (h + α d) 
— d = (approximate A-1) ∇f   ~  Newton’s method

Preconditioned conjugate-gradient:  minimize (h + α d)
— d is (approximate A-1) [∇f + (stuff)]



The Iteration Scheme is Important
(minimizing function of ~40,000 variables)

# iterations

%
 e

rro
r

preconditioned
conjugate-gradient no conjugate-gradient

no preconditioning



The Boundary Conditions are Tricky

ε?

E|| is continuous

E⊥ is discontinuous
(D⊥ = εE⊥ is continuous)

Use a tensor ε: 

E||

E⊥[ Meade et al. (1993) ]



The ε-averaging is Important

resolution (pixels/period)

%
 e

rro
r

backwards averaging

tensor averaging

no averaging

correct averaging
changes order 
of convergence
from ∆x to ∆x2

reason in a nutshell:
averaging 

= smoothing ε
= changing structure

… must pick smoothing
with zero 1st-order

perturbation

[ Farjadpour et al. (2006) ]



Intentional “defects” are good

microcavities waveguides (“wires”)



Intentional “defects” in 2d
(Same computation, with supercell = many primitive cells)

(boundary conditions ~ irrelevant
  for exponentially localized modes)



to be continued…

Photonic Crystals book: http://jdj.mit.edu/book

Bloch-mode eigensolver: http://jdj.mit.edu/mpb

Further reading:


