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Overview

The basics

« From the ground-state to excited states: The Runge-Gross theorem

How TDDFT is used in practice

« Afirstlook at TDDFT in practice: Photochemistry

« TDDFT for optical spectra

« Some applications in next generation solar cells



Framework: What is TDDFT all about?

1964: Hohenberg and Kohn: Density Functional Theory (DFT)

work in terms of electron density (instead of many-particle wavefunctions)
DFT is a ground state theory

1984: Runge and Gross: Time-Dependent Density Functional Theory (TDDFT)
Given [WU(t=0)):V(r,t) < n(r,t)

like DFT, TDDFT is formally exact



Recall: Basic ground-state DFT

For practical calculations: Kohn-Sham framework
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The Runge-Gross Theorem

Generalizing the HK theorem to time-dependent systems

There exists a one-to-one correspondence between the external v(r,t) and the
electron density n(r,t), for systems evolving from a fixed many-body state.

Proof: (W(ty)) = [W'(ty)) = |Uy)
nir.ty) = n'(r.t)) = n“(‘r)
jr.ty) = 3'(r.ty) = 3" (r)
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Step 1: Different potentials v and v’ yield different current densities j and |

Step 2: Different current densities j and j’ yield different densities n and n’
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Using TDDFT in practice

Finding an equivalent of the Kohn-Sham formalism
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With a time-dependent Hamiltonian:
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Which functional to use ?

The easiest and probably most widely used functional is the

Adiabatic Local Density Approximation (ALDA)
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TDDFT in real time:
(1996:Bertsch; 2001: Octopus code )

« Consider a general time-dependent perturbation:
“"x;)ert (T t)

« Obtain orbitals, charge density, and potentials by solving
the Schrodinger equation explicitly in real time:

it + A) = exp (—iH(f + 7)—\) (1)

(Nonlinear TD Schrodinger equation)

« Can be used for linear response calculations, or for general
TD non-linear problems.



abs. strength [arb. units]

How well does it work”?

Example: Optical absorption of Benzene

Optical absorption
Benzene
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Experiment

\ Experimental data from:
Koch, E.E., Otto, A.
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A first application: Photochemistry

Recent experimental progress made it possible to produce
ultra-short intense laser pulses (few fs)

This allows one to probe bond breaking/formation, charge
transfer, etc. on the relevant time scales

Nonlinear real-time TDDFT calculations can be a valuable tool
to understand the physics of this kind of probe.

Visualizing chemical bonds: Electron localization function



Nonlinear optical response

* Electron localization function:

1
L+ [Dy(r, 1)/ D07, )]

ELF(r.t)=




Example: Ethyne C,H,




Example: Ethyne C,H,
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How can we calculate optical spectra?

Consider a perturbation 6V applied to the ground-state system:
on(r,t) = / d>r'dt x(r,r’;t —t') SV (', 1)
The induced dipole is given by the induced charge density:
a(t) = / &r Sn(r, t)7

Consider the perturbation due to an electric field:

OV (r,t) = —eFeyt(t) - 7



How can we calculate optical spectra”

The dipole susceptibility is then given by:
d(t) = / dt' a(t — ') Eogy(t)

The experimentally measured strength function S is related to the
Fourier transform of a.

2m
S(w) = oy W Im a(w)

In practice: We take an E-field pulse E_,; = E, 3(t), calculate d(t), and obtain
the spectrum S(w) I%/Ocalculating

d(w) = / dt e™t°t d(t)

J O




A typical dipole-function d(t) ...
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... and the resulting spectrum

Optical absorption
Benzene
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How good are ALDA-TDDFT spectra in nanosystems?

Metallic nanoclusters:
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How good are ALDA-TDDFT spectra in nanosystems?

SiH,  Si,H,  SisH,
"L* ‘H:
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From: |. Vasiliev et al.
Phys. Rev. B 65, 115416 (2002)




How good are ALDA-TDDFT spectra in nanosystems?
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Application to a biomolecule:

Chlorophyll a:




Application to a biomolecule:

Chlorophyll a:
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Electron transfer in sensitized
semiconductor surfaces

A ENERGY
|dea (Graetzel solar cells):

-1 €
excited state

hv

ground state

conduction band

valence band

semiconductor surface
Ti02 complex




Nanostructured TiO, surface

Figure 4 Scanning electron micrograph of the surface of a mesoporous anatase film
prepared from a hydrothermally processed TiO, colloid. The exposed surface planes
have mainly {101} orientation.

Source:
M. Gratzel, Nature 414, 338 (2001)



Functioning of a Gratzel cell
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Figure 3 Schematic of operation of the dye-sensitized electrochemical photovoltaic

cell. The photoanode, made of a mesoporous dye-sensitized semiconductor, receives

electrons from the photo-excited dye which is thereby oxidized, and whichiin turn

oxidizes the mediator, a redox species dissolved in the electrolyte. The mediator is

regenerated by reduction at the cathode by the electrons circulated through the Source:

external circuit. Figure courtesy of P. Bonhote/EPFL-LPI, M. Gratzel, Nature 414, 338 (2001)



Various dyes are extensively studied
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Figure 3. Spectral response curve of the photocurrent for the DY SC sensitized by N3 and the black dye. The incident
photon to current conversion efficiency is plotted as a function of wavelength

Source: M. Gratzel, Prog. Photovolt. Res. Appl. 8, 171-185 (2000)



Electron transfer in sensitized
semiconductor surfaces

Direct versus indirect transitions:
(a) (b)
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Electron transfer in sensitized
semiconductor surfaces

Our model: Squaraine DSSC
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Electron transfer in sensitized
semiconductor surfaces

Optical absorption of TiO, slab only:

I(w)
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(a) Experiment
O pt| Cal '\ ——— Squaraine in ethanol

. Squaraine on a TiO; film
Absorption:
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Im o, (w)

Look at the lower lying excitations:
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A more realistic system: Including the solvent







Including the solvent in MD and TDDFT computations

» Solvent is treated at the same level of theory as
molecule and surface slab.

» Solvent changes electrostatic conditions (dielectric
constant ...)

« Solvent participates actively:
- in formation surface dipoles, etc.
- dissociates
- is essential for geometry of solute



TDDFT calculation of optical spectra and related quantities

Various challenges:

« System is large (429 atoms, 1.666 electrons,
181.581 PWSs, resp. 717.690 PWs)

 Broad spectral region of interest

» Many excited states in spectral region

Computational tool:

* Recursive Lanczos algorithm for TDDFT
Ildeally suited for large systems, broad spectral region with large basis set
* Here: Adiabatic GGA functional



Conclusions

« TDDFT as a formally exact extension of ground-state DFT for
electronic excitations

* Allows to follow the electronic dynamics in real time

« Using TDDFT in linear response allows one to calculate spectra

* Open issues: Which functional to use?

* How to link the electron dynamics with nuclear dynamics?

* How can one apply TDDFT to (very) large systems?
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