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420 nm


[ Notomi et al. (2005). ]


Resonance

an oscillating mode trapped for a long time in some volume


(of light, sound, …)

frequency ω0


lifetime τ >> 2π/ω0

quality factor Q = ω0τ/2


energy ~ e–ω0t/Q


modal

volume V


[ Schliesser et al.,

PRL 97, 243905 (2006) ]


[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]


[ C.-W. Wong,

APL 84, 1242 (2004). ]




Why Resonance?

an oscillating mode trapped for a long time in some volume


• long time = narrow bandwidth … filters (WDM, etc.)

    — 1/Q = fractional bandwidth


• resonant processes allow one to “impedance match”

   hard-to-couple inputs/outputs


• long time, small V … enhanced wave/matter interaction

    — lasers, nonlinear optics, opto-mechanical coupling, 

         sensors, LEDs, thermal sources, … 




How Resonance?

need mechanism to trap light for long time


[ llnl.gov ]


metallic cavities:

good for microwave,

dissipative for infrared


ring/disc/sphere resonators:

a waveguide bent in circle,

bending loss ~ exp(–radius)


[ Xu & Lipson

     (2005) ]


10µm


 [ Akahane, Nature 425, 944 (2003) ]


photonic bandgaps

(complete or partial


+ index-guiding)


VCSEL

[fotonik.dtu.dk]


(planar Si slab)




Microcavity Blues

For cavities (point defects)

frequency-domain has its drawbacks:


• Best methods compute lowest-ω eigenvals,

   but Nd supercells have Nd modes

   below the cavity mode — expensive


• Best methods are for Hermitian operators,

   but losses requires non-Hermitian




Time-Domain Eigensolvers�
(finite-difference time-domain = FDTD)


Simulate Maxwell’s equations on a discrete grid,


+ absorbing boundaries (leakage loss)


• Excite with broad-spectrum dipole (  ) source


Δω


Response is many

sharp peaks,


one peak per mode

complex ωn
 [ Mandelshtam,


J. Chem. Phys. 107, 6756 (1997) ]


tricky

signal processing


decay rate in time gives loss




Finite-difference-time-domain (FDTD) is a method to model Maxwell’s 
equations on a discrete time & space grid using finite centered differences
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K.S. Yee 1966


A. Taflove & S.C. Hagness 2005


∇ × E = − ∂B
∂t

∇ ×H =
∂D
∂t

+ J

D = εE B = µH

FDTD: finite difference time domain




1)   at time t: Update D fields everywhere

      using spatial derivatives of H, then find E=ε-1D (ε 

constant)

Ex +=
 ∆t 


ε ∆y 
( Hz
j+0.5
 –  Hz

j-0.5
 )


Ey -=
 ∆t 

ε ∆x
( Hz

i+0.5
 –  Hz
i-0.5

 )


2) at time t+0.5: Update H fields everywhere using 
spatial derivatives of E (μ constant) 


Hz +=  
∆t 

µ
 ( Ex

j+1
– Ex
j
+ Ey

i

– Ey

i+1)

∆x
∆y


Hz


Ex


Ey


Ex


Ey

Hz


FDTD: Yee leapfrog algorithm

2d example:




Why Absorbers?

Finite-difference/finite-element volume discretizations

need to artificially truncate space for a computer simulation.


In a wave equation,

a hard-wall truncation

gives reflection artifacts.


An old goal: “absorbing 
boundary 
condition” (ABC) that 
absorbs outgoing waves.


Problem: good ABCs 
are hard to find in > 1d.




Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an artificial absorbing layer



 
   that is analytically reflectionless


Works remarkably well.


Now ubiquitous in FD/FEM

wave-equation solvers.


Several derivations, cleanest

& most general via “complex

coordinate stretching”

        [ Chew & Weedon (1994) ]




PML Starting point: propagating wave

• Say we want to absorb wave traveling in +x direction

   in an x-invariant medium at a frequency ω > 0.


 
fields  f (y, z)ei kx−ω t( )

(only x in wave

 equation is via


 terms.)

∂ / ∂x

(usually, k > 0)




PML step 1: Analytically continue

Fields (& wave equation terms) are analytic in x,

so we can evaluate at complex x & still solve same equations


 

x = x +
iσ
ω
x

 
fields  f (y, z)ei kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω
σ x

unchanged

(no reflection)


unchanged

(no reflection)




PML step 2: Coordinate transformation

Weird to solve equations for complex coordinates x,

so do coordinate transformation back to real x.


~


 

x(x) = x + iσ ( ′x )
ω

d ′x
x

∫

 

∂

∂x
→

∂

∂x
→

1

1+ iσ (x)
ω

















∂

∂x

 
fields  f (y, z)ei kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω

σ ( ′x )d ′x
x

∫

(allow x-dependent

PML strength σ)


nondispersive materials: k/ω ~ constant

⇒ decay rate independent of ω


1
 2




PML Step 3: Effective materials

In Maxwell’s equations,

coordinate transformations are equivalent to transformed materials



(Ward & Pendry, 1996: “transformational optics”)


∇ × E = iωµH, ∇ ×H = −iωεE + J,

x PML Jacobian


J =
1+ iσ /ω( )−1

1
1

















{ε,µ}→ J{ε,µ}JT

det J

{ε,µ}→ {ε,µ}
(1+ iσ /ω )−1

1+ iσ /ω
1+ iσ /ω

















for isotropic starting materials:


PML = effective anisotropic “absorbing” ε, µ


effective

conductivity


 

∂x
∂x









Understanding Resonant Systems


[ Schliesser et al.,

PRL 97, 243905 (2006) ]


• Option 1: Simulate the whole thing exactly


— many powerful numerical tools


— limited insight into a single system


— can be difficult, especially for


                 weak effects (nonlinearities, etc.)


• Option 2: Solve each component separately,


couple with explicit perturbative method


(one kind of “coupled-mode” theory)


• Option 3: abstract the geometry into its most generic form

 
…write down the most general possible equations

        …constrain by fundamental laws (conservation of energy)

     …solve for universal behaviors of a whole class of devices



… characterized via specific parameters from option 2




“Temporal coupled-mode theory”

•  Generic form developed by Haus, Louisell, & others in 

1960s & early 1970s

–  Haus, Waves & Fields in Optoelectronics (1984)

–  Reviewed in our Photonic Crystals: Molding the Flow of Light, 

2nd ed., ab-initio.mit.edu/book


•  Equations are generic ⇒ reappear in many forms in many 
systems, rederived in many ways (e.g. Breit–Wigner scattering 
theory)

–  full generality is not always apparent


(modern name coined by S. Fan @ Stanford)




TCMT example: a linear filter


420 nm


[ Notomi et al. (2005). ]

[ C.-W. Wong,


APL 84, 1242 (2004). ]


[ Takano et al. (2006) ] 


[ Ou & Kimble (1993) ]


= abstractly:

       two single-mode i/o ports 

            + one resonance


resonant cavity

frequency ω0, lifetime τ


po
rt 

1
 port 2




Temporal Coupled-Mode Theory�
for a linear filter


a
input
 output

s1+

s1–
 s2–


resonant cavity

frequency ω0, lifetime τ
 |s|2 = power


|a|2 = energy


da
dt

= −iω0a −
2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

assumes only:


• exponential decay


   (strong confinement)�

• linearity


• conservation of energy


• time-reversal symmetry










can be

relaxed




Temporal Coupled-Mode Theory�
for a linear filter


a
input
 output

s1+

s1–
 s2–


resonant cavity

frequency ω0, lifetime τ
 |s|2 = flux


|a|2 = energy


transmission T

= | � s2– |2 / | � s1+ |2 


1


ω0


T = Lorentzian filter


=

4
τ 2

ω −ω0( )2 + 4
τ 2

ω




Resonant Filter Example


Lorentzian peak, as predicted.


An apparent miracle:


~ 100% transmission

at the resonant frequency


cavity decays to input/output with equal rates

⇒ At resonance, reflected wave


destructively interferes

with backwards-decay from cavity


& the two exactly cancel.




Some interesting resonant 
transmission processes


Wireless resonant power transfer

[ M. Soljacic, MIT (2007) ]


witricity.com


Resonant

LED emission


luminus.com


(narrow-band) 

resonant

absorption in

a thin-film

photovoltaic


[ e.g. Ghebrebrhan (2009) ]


input

power


output

power

~ 40% eff.




Another interesting example: Channel-Drop Filters


[ S. Fan et al., Phys. Rev. Lett. 80, 960 (1998) ]


Perfect channel-dropping if:


Two resonant modes with:

• even and odd symmetry

• equal frequency (degenerate)

• equal decay rates


Coupler


waveguide 1


waveguide 2


(mirror plane)




Dimensionless Losses: Q


1


ω0


T = Lorentzian filter


=

4
τ 2

ω −ω0( )2 + 4
τ 2

ω


FWHM

1
Q
=
2
ω0τ

…quality factor Q


quality factor Q = # optical periods for energy to decay by exp(–2π)


energy ~ exp(–ω0t/Q) = exp(–2t/τ) 


in frequency domain: 1/Q = bandwidth


from temporal

coupled-mode theory:


Q = ω0τ / 2




More than one Q…


Qw

A simple model device (filters, bends, …):


Qr

Q
1

Qr
1

Qw
1= +

Q = lifetime/period

    = frequency/bandwidth


We want: Qr >> Qw


1 – transmission ~ 2Q / Qr


worst case: high-Q (narrow-band) cavities


losses

(radiation/absorption)


TCMT ⇒




Nonlinearities + Microcavities?

weak effects

∆n < 1%


very intense fields

& sensitive to small changes


A simple idea:


for the same input power, nonlinear effects


are stronger in a microcavity


That’s not all!


nonlinearities + microcavities


 
= qualitatively new phenomena




Nonlinear Optics

Kerr nonlinearities χ(3):  (polarization ~ E3)


• Self-Phase Modulation (SPM)


= change in refractive index(ω) ~ |E(ω)|2


• Cross-Phase Modulation (XPM)


= change in refractive index(ω) ~ |E(ω 2) |2


• Third-Harmonic Generation (THG) & down-conversion (FWM)


= ω → 3ω, and back


• etc…

ω


ω


ω


3ω


ω


ω


ω’s


Second-order nonlinearities χ(2):  (polarization ~ E2)

• Second-Harmonic Generation (SHG) & down-conversion



= ω → 2ω, and back

• Difference-Frequency Generation (DFG) = ω1, ω2 → ω1-ω2 

• etc…




Nonlinearities + Microcavities?

weak effects

∆n < 1%


very intense fields

& sensitive to small changes


A simple idea:


for the same input power, nonlinear effects


are stronger in a microcavity


That’s not all!


nonlinearities + microcavities


 
= qualitatively new phenomena


let’s start with a well-known example from 1970’s…




A Simple Linear Filter


in
 out


Linear response:

Lorenzian Transmisson




Filter + Kerr Nonlinearity?


in
 out


Linear response:

Lorenzian Transmisson
 shifted peak?


+ nonlinear

index shift

= ω shift


Kerr nonlinearity:

∆n ~ |E|2




stable


stable

unstable


Optical Bistability


Bistable (hysteresis) response

(& even multistable for multimode cavity)


Logic gates, switching,

rectifiers, amplifiers,


isolators, …


[ Felber and Marburger., Appl. Phys. Lett. 28, 731 (1978). ]


Power threshold ~ V/Q2

(in cavity with V ~ (λ/2)3,


for Si and telecom bandwidth 

power ~ mW)


[ Soljacic et al.,

PRE Rapid. Comm. 66, 055601 (2002). ]




TCMT for Bistability

[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]


a
input
 output
s1+
 s2–

resonant cavity


frequency ω0, lifetime τ, 

SPM coefficient α  ~ χ(3)



(from perturbation theory) 


|s|2 = power

|a|2 = energy


da
dt

= −i(ω0 −α a 2 )a − 2
τ
a +

2
τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

gives cubic equation

for transmission



… bistable curve




TCMT + Perturbation Theory


SPM = small change in refractive index


  … evaluate ∆ω by 1st-order perturbation theory 


⇒  all relevant parameters (ω, τ or Q, α) can be computed

  from the resonant mode of the linear system




Accuracy of Coupled-Mode Theory


semi-analytical


numerical


[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]




Optical Bistability in Practice


420 nm


[ Notomi et al. (2005). ]

[ Xu & Lipson, 2005 ]


Q ~ 30,000

V ~ 10 optimum


Power threshold ~ 40 µW


10µm


Q ~ 10,000

V ~ 300 optimum


Power threshold ~ 10 mW




THG in Doubly-Resonant Cavities


input/output channel

cavity

ω1


ω3=3ω1


Q1


Q3


χ(3)


Not easy to make at micro-scale


— must precisely tune ω3 / ω1


— materials must be ok at ω1 and 3ω1


But … what if we could do it?

      
 …  what are the consequences?


e.g. ring resonator

with proper geometry


[ publications from our group: H. Hashemi (2008) & A. Rodriguez (2007) ]




Coupled-mode Theory for THG

third harmonic generation


THG


down-

conversion


SPM
 XPM


SPM
 XPM


[ Rodriguez et al. (2007) ]




α=0: Critical Power for Efficient THG

TH

G
 c

on
ve

rs
io

n 
ef

fic
ie

nc
y
 THG


reflection

at ω1


input power Pin at ω1


Pcrit ~ V/Q2


~ mW for Si, 

telecom bandwidth

    & λ-scale cavity


third-harmonic generation in doubly-resonant χ(3) (Kerr) cavity


[ Rodriguez

et al. (2007) ]




Detuning for Kerr THG

ω

ca
v /

 ω
in



[ Hashemi et al (2008) ]


because of SPM/XPM,

the input power

changes resonant w

…

compensate by

pre-shifting resonance

so that at Pin = Pcrit

we have ω3= 3 ω1




Stability and Dynamics?�
brief review


Steady state-solution: a1 oscillating at ω1, a3 at ω3


— rewrite equations in terms of A1 = a1 eiω1t


 
 
 
 
    A3 = a3 eiω3t


then steady state = A1, A3 constant = fixed-point


A1


A3


cartoon phase space (A1, A3 are actually complex)


fixed point
fixed point

stable
 unstable




for simplicity, assume SPM = XPM coefficients:�
α11 = α33 = α13 = α31 = α




THG Stability Phase Diagram


unstable 100%-efficiency —

lower-efficiency stable solutions


SPM+XPM / THG


[ Hashemi et al (2008) ]




Bifurcation vs. SPM/XPM


/


TH
G

 e
ffi

ci
en

cy



stable


stable

unstable


[ Felber, 1978 ]


[ Hashemi et al (2008) ]




Limit Cycles

Steady state-solution: a1 oscillating at ω1, a3 at ω3



— rewrite equations in terms of A1 = a1 eiω1t


 
 
 
 
    A3 = a3 eiω3t


then steady state = A1, A3 constant = fixed-point


A1


A3


cartoon phase space (A1, A3 are actually complex)


fixed point

fixed point


stable


unstable


               limit cycle

= stable oscillating solution




Stability Phase Diagram


unstable 100%-efficiency —

lower-efficiency stable solutions


+ limit cycles


[ Hashemi et al (2008) ]




TH
G

 e
ffi

ci
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An Optical Kerr-THG Oscillator�
[ analogous to self-pulsing in SHG; Drummond (1980) ]


[ Hashemi et al 

     (2008) ]




to be continued…


Photonic Crystals book: http://jdj.mit.edu/book


(covers coupled-mode theory etc.)


Free FDTD software: http://jdj.mit.edu/meep

        & tutorials


PML notes:

    http://math.mit.edu/~stevenj/18.369/pml.pdf


Further reading:


Summary: a rich set of behaviors is possible by coupling


 
resonances, with powerful numerical & analytical tools…



