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Theory of GW

 



Charged N+1/ N-1 
excitations and the 
GW approximation



Overview

• Brief overview on the theoretical basis and 
main concepts

• GW in practice

• Example: amorphous SiO2



The Many-Body Problem

N-electrons interacting through the Coulomb potential:

Field operators representation:

H =
N∑

i=1

T (xi) +
N∑

i!=j=1

V (xi, xj) +
∑

α

N∑

i=1

Vext(xi, Rα)

Ĥ =
∫

d3xψ̂†(x)T (x)ψ̂(x) +
1
2

∫ ∫
d3xd3x′ψ̂†(x)ψ̂†(x′)V (x, x′)ψ̂(x′)ψ̂(x) +

∑

α

∫
d3xψ̂†(x)Vext(x, Rα)ψ̂(x)



Many-Body Problem in 
terms of Green functions 

The Feynman rules for finding the contribution of nth order 
perturbation theory are simpler.

The use of Green functions imply the loss of detailed 
information although they still contain:

1.) The expectation value of any single-particle operator 
in the ground state
2.) The ground state energy
3.) The excitation spectrum.



One-particle Green Function

iGαβ(xt, x′t′) =
〈Ψ0|T [ψ̂Hα(xt)ψ̂†

Hβ(x′t′)]|Ψ0〉
〈Ψ0|Ψ0〉

ψ̂Hα(xt) = ei bHt/!ψ̂α(x)e−i bHt/!

Heisenberg operators
spin index

Time ordering



Dyson’s Equations

Solving a Dyson equation 
corresponds to summing an 
infinite class of diagrams!

= +

Gαβ(12) = G0
αβ(12) +

∫
d3d4G0

αλ(13)Σλµ(34)Gµβ(42)

Σ



The Quasi-Particle concept
Suppose an interaction invariant under translation and a 
system spatially uniform. 

The quantities 1, 2, ... ,depends only on coordinate differences thus a 
four dimensional Fourier transform can be defined.

Dyson Equation in Fourier space:

G(k) = G0(k) + G0(k)Σ(k)G(k)

G(k) =
1

[G0(k)]−1 − Σ(k)
G(k, ω) =

1
ω − ε0k − Σ(k, ω)

HQP



• HQP -> N+1/N-1 electronic excitations



Approximations to the 
self-energy



Hartree

=
Single-particle equation, solvable, 

shifts non-interacting particle 
energies.

”Σ”



Hartree-Fock

= +

Hartree Exchange

[ ]
Σ ≡ Σx(12) = iv(12)G(12)

Creation of an electron/hole at the vacuum level that 
propagates filling a mean bare-coulomb-interacting 

electronic see



Beyond

Converge with the bare Coulomb potential is very long 
and difficult ~ Multiple SCF Configuration Interaction ...

Expansion with a screened Coulomb potential:

Hedin Equations or GWΓ

UNAFFORDABLE but for small molecules 



GWΓ

P (12) = −i

∫
G(23)G(42)Γ(341)d(34)

W (12) = v(12) +
∫

W (13)P (34)v(42)d(34)

Σ(12) = i

∫
W (1+3)G(14)Γ(423)d(34)

Γ(123) = δ(12)δ(13) +
∫

δΣ(12)
δG(45)

G(46)G(75)Γ(673)d4567

G(12) = G0(12) +
∫

d3d4G0(13)Σ(34)G(42)

Set of five equations to be solved self-consistently



Vertex corrections, or 
the filled bubble

Response of the system 
when an interacting 

electron-hole pair is created

P (1, 2) = −i

∫
G(23)G(42)Γ(341)d(34)

Assuming: Γ(123) = δ(12)δ(13)



RPA, or the empty 
bubble

Response of the system 
when a non-interacting 
electron-hole pair is created

P (1, 2) = −iG(12)G(21)



Hedin Equations within 
GW approximation

P (12) = −iG(12)G(21)

W (12) = v(12) +
∫

W (13)P (34)v(42)d(34)

Σ(12) = iW (1+2)G(12)

G(12) = G0(12) +
∫

d3d4G0(13)Σ(34)G(42)

Creation of an electron/hole at the vacuum level 
that propagates filling a polarized electronic see
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= +

GW ~ Hartree-Fock with a 
“dressed” self-energy

#The dress (W) is non-local, energy dependent

Exchange+correlation

[ ]





Why do we need GW?

1.) Hartree-Fock does not include correlations. 

2.) Multiple scf Configuration Interaction contains all, computational 
too much demanding, affordable only for small molecules.

3.) DFT -> needs an ad-hoc build of “Universal Functionals”, available 
functionals fail for the band energy gap, for charged defect formation 
energies, etc.



GW is not “La vie en rose”

A part, deep theoretical questions on diagrams taken 
into account, there still do not exist an univocal 

agreement on its practical implementation and its range 
of use.

GW as it is, from Hedin’s equation, is still 
computationally unaffordable for “realistic” systems.



GW objects are:

• Non-local (functions of |r-r’|,|r’’-r’’’|, GG’q)

• Energy dependent

• Calculation of the self-energy needs or a 
real time integration or an energy 
convolution (thin grid due to poles).

• Usually needs sums on unoccupied states 
(slow convergence)





Main approximations

• Pseudo-potentials

• No Self-Consistency! -> dependency on 
the starting point. 

• Diagonal approximation -> starting point 
wave functions

• Not real-time or real energy convolution.

Not enough benchmarks



Main “hidden” 
approximations

• LDA/GGA pseudo-potentials, core-valence 
interaction never consistent!

• How long wavelength limit (and 
neighborhood) is treated.



Great success for bulk 
semiconductors/insulators

Kresse et al PRB 75 235102 (2007)



Some interesting results for molecules

Thygesen et al PRB 81, 085103 (2010)



Example



Amorphous SiO2

Prototypical strong glass, forming tetrahedral SiO4 
disordered networks

Used in many fields : microelectronic industry (for metal-
oxide-semiconductor devices), optical fiber technologies 

and nano-imprint lithography, etc.

L. Martin-Samos, G. Bussi, A. Ruini, M.J. Caldas and E. Molinary



Disorder?

• Thermal (crystals and glasses)
- Bond length and bond angle variations (vibrations) 
Equilibrium defects, etc

• Frozen-in (glasses)

 Degree of freedom frozen-in at the glass transition

- Bond length and bond angle distributions
- Medium range “structures”

- Long range -> homogeneous system (Liquid like)
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Disorder in semiconductors 
and insulators

Observed in a-Si:H



Connected network of 
SiO4 tetrahedra

Short range: 
tetrahedron

Medium range: rings

Long range: Periodic/homogeneous



In tetrahedral crystal 
systems the band gap 

increases with the density

a-SiO2 (dens.~2.2 g/cm3), quartz (dens. ~2.6 g/cm3), 
critobalite (dens. ~2.2 g/cm3) 



In tetrahedral crystal 
systems the band gap 

increases with the density

a-SiO2 (dens.~2.2 g/cm3), quartz (dens. ~2.6 g/cm3), 
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Experimental findings

No band tails near fundamental/mobility gap are found
Gap’s between Quartz and silica -> no marked differences

Absorption edge ~ 8.54(4) – 8.95(5)

Mobility gap  ~ 8.9(1)-9.62(2)-11.53(3)

1) onset of photo-conductivity: Z.A. Weinberg et al, Phys Rev B 19, 3107 (1979)
2) X ray photoemission: V. J. Nithianandam and S. E. Schnatterly, Phys. Rev. B 38, 5547 (1988)

3) R. Evrard and A. N. Trukhin, Phys. Rev. B 25, 4102 (1982) 
4) optical absorption: K. Saito and A.J. Ikushima, Phys Rev B 62 8584 (2000)

5) photoinjection threshold: T. H. DiStefano and D. E. Eastman, Solid State Commun 9 2259 (1971)



Theoretical results

• Parametrized Hamiltonians on model systems: small 
disorder degree closes the mobility gap while strong 
disorder open it (1).

• DFT: no localized tails in conduction, slight localization at 
valence. a-SiO2 gap slightly smaller than quartz (2).

• “GW”: cristobalite slightly smaller gap than quartz (3-4).

1) F. Fazileh et al, PRB 73 035124 (2006)
2) J. Sarnthein, A. Pasquarello and R. Car PRL 74 4682 (1995)

3) L. E. Ramos, J. Furthmuller and F. Bechstedt PRB 69 085102 (2004)
4) E. K. Chang, M. Rohlfing and S. Louie PRL 85 2613 (2000)



Approach

Relaxation in 
DFT-LDA

GW 
Many-Body Corrections to the 

band structure

Effective quench rate: 2.6 1013 K/s
Effective quench rate: 1.1 1015 K/s

Fusion

Quench

MD 
runs

108 atoms silica glass models
 Crystal ref. : 108 atoms !-quartz + 24 atoms/192 atoms cristobalite

Silica 
structure 

(*)

(*) L. Martin-Samos, Y. Limoge, J.P. Crocombette, G. Roma, N. Richard, E. Anglada, E. Artacho, Phys. Rev. B 71 014116 (2005) 

www.sax-project.org

Mean-Field 
Electronic structure

www.quantum-espresso.org



Localized tails: quench rate effects
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Si-O bonds

O 2p non-bonding
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Signature of localization at valence edges

Localized tails: quench rate effects
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The mobility edge is hill defined

Localized tails: quench rate effects
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Disorder degree and density
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Defects?

No rigid shift
No simple stretching



Summary

• GW is, at the moment, the best alternative. 
However, we are now constructing the 
benchmarks -> recipe? GWs!!!

• Its ingredients are known, to improve it we know 
the direction to go, contrary to ad-hoc functionals.

• It has been proved that it is strongly transferable. 

• Combined with Bethe-Salpeter equation it gives 
impressive agreement with photo-absorption 
experiments  



2-particle excitations

Coherent linear superposition of vertical single-pair 
excitations

Higher orders

Only the linear part:

Effective 2-particle Hamiltonian?



2-particle Green-function and 
the polarization propagator

Creation

Destruction

Lehman representation



4-point polarizability

P (1, 1′, 2, 2′) = P 0(1, 1′, 2, 2′) +

+
∫

P 0(1, 1′, 3, 3′)W (3, 3′, 4, 4′)P (4, 4′, 2, 2′)d3d3′d4d4′



4-point polarizability
Quasi-particle state basis:

Dyson equation

Modified polarizability (reducible)



The Bethe-Salpeter Equation

Effective 2-particle Hamiltonian:

Equivalent eigenvalue equation

((P̄ 0)−1 − Ξ)P = 1

H2p





Transition n.1: 85% HOMO-LUMO

hole electron

homo DFT lumo DFT

Substituted Corannulene molecule





Thank you!




