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 [ here,�
forces from oscillating fields (light),�

not electrostatic forces ]




Radiation Pressure�
[ Maxwell, 1871 ]


photon has momentum hω/c

(classically, E×H / c2 = momentum density)


incident photon


reflected photon

gains 2 ×


photon momentum

⇒ radiation pressure
∆(photon momentum)


+ ∆(mirror momentum)

= 0


(mirror)




Observations of Radiation Pressure�
[ observed since 1901 ]


important in determining

stellar structure


[ image: NASA ]


very large scales:

very small scales:


[ image: nist.gov ]


laser cooling

of atoms


radiation-pressure cooling of 
microdisk resonators


via opto-mechanical coupling


[ Schliesser et al., PRL 97, 243905 (2006) ]


(for detecting tiny displacements,

gravitational waves, etc.)




we also want forces�
from confined light�

(not free-space propagation)�
to enhance/control interactions




Gradient Forces�
and Evanescent Coupling


gradient force

in optical tweezers


physics.nyu.edu/~dg86


force ~ –∇(–p⋅E)

~ α∇(|E|2)/2


for particle polarizability α 


evanescent coupling

between two waveguides


in between waveguides 
is a nonzero Maxwell 

stress tensor

~ E2 + B2


~ force/area


interaction between

two waveguides is key…


s




Evanescent-Coupling Forces�
from frequency shifts


evanescent coupling

between two waveguides


in between 
waveguides is a 

nonzero Maxwell 
stress tensor


~ E2 + B2


~ force/area


s


equivalently: 

finite s affects mode frequency ω, 

∆s = change in photon energy hω, 


hence a force


force/length

= –(# photons/length) d(hω)/ds 


= –(U / hω) d(hω)/ds

= –U/ω dω/ds


for a total energy/length U

(can also be derived classically)


[ Povinelli et al., Opt. Express 13, 8286 (2005) ]




Attraction and Repulsion 
Between Waveguides�

[ Povinelli et al., Opt. Lett. 30, 3042 (2005) ]
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nm
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(λ=1.55µm, power = 100mW)


mechanical displacement calculation

(SOI air-bridge waveguides)


optical force calculations


symmetric/antisymmetric modes

haveattractive/repulsive force




Recent Experimental Realizations 

waveguide/substrate force


[ Li et al. Nature 456, 480 (2008) ]


measure displacement

via phase-velocity

change due to substrate


waveguide/microdisk force


[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]




Computing forces via stress tensors


100nm


SiO2


Si


Si


200nm
 a = 1µm


incident light


d


E


100nm


example system:


Frequency-domain approach:


planar current source J


1)  put in planar current 
source J at ω to generate 
incident wave.


2) 
compute resulting E, H


4) 
repeat for each desired ω 
… yuck


3) 
integrate Maxwell stress 
tensor over bounding box 
to get force at ω


 

Fi = EiEj + HiH j − δ ij
E 2

+ H 2

2











dAj

j
∑∫∫



Computing whole spectrum at once


100nm


SiO2


Si


Si


200nm
 a = 1µm


incident light


d


E


100nm


example system:


Time-domain approach:


pulse current source J


1)  put in planar current 
source J as a short pulse to 
generate incoming pulse.


2)  record resulting E(t), 
H(t) on bounding box


4) 
integrate Maxwell stress 
tensor over bounding box to 
get force at each ω


 

Fi = EiEj + HiH j − δ ij
E 2

+ H 2

2





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


dAj

j
∑∫∫

3) 
Fourier transform to obtain 
E(ω), H(ω) on bounding box
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wavelength (µm)


“repulsive” (upwards)


“attractive”

(downwards)


100nm


SiO2


Si


Si


200nm
 a = 1µm


incident light


d


E


100nm


Classical Optical Force on Membrane




What happens when there is�

no input power,�
no light,�

no net charge�
…�

⇒ no electomagnetic force?�

No, there is an EM force.




Fluctuation-Induced Interactions


d


p1


Attractive forces between otherwise neutral atoms


thermal/quantum

fluctuating dipole:
 p2


induced dipole


van der Waals force

(close proximity)


€ 

U ~ − 1
d6

€ 

F ~ − 1
d7



Fluctuation-Induced Interactions


Casimir–Polder force

(separations >> resonant wavelength)


d


p1
 p2


€ 

U ~ − 1
d7

Attractive forces between otherwise neutral atoms


€ 

F ~ − 1
d8

fluctuating dipole:

induced dipole


finite speed = wave effects




Casimir Effect

macroscopic objects  


(many interacting dipoles)


E


d


Geometry & materials important:

Electromagnetic field must satisfy 
boundary conditions at material 
interfaces.


Hendrik Casimir (1948)


  

€ 

F /A = −
cπ 2

240d4

d


perfect metal plates


attractive, monotonically decreasing


pressure ~ 1 atm at d=50nm




[U. Mohideen et. al.

 PRL, 81 (1998)]


[Chan et. al., 

Science 91, (2001)] 


 

Microelectromechanical Systems

•  Van Blockland, Overbeek 1978                    

 first clear qualitative observation 

•  Lamoreaux 1997 – first high-precision 

stiction 

problems!


study complicated geometries:

reduce stiction? new effects?


how?


Experiments             Applications




Selected pre-2007 theoretical work

1950 

Casimir force  
between plates 

1960 

Stress-tensor method 
for dielectric slabs 

2006 

Cylinder-plate for 
perfect metals  

2000 

Various perturbative 
methods developed   

[Casimir, H. B. G, 

Acta. Phys. (1948)] 


[Lifshitz, Pitaveskii, & Dzyaloshinskii

Statistical Physics: Part 2, 1956]  


repulsive forces via                       
electric & magnetic conductor


[Boyer, Acta. Phys. (1974)]


multi-layer 
generalizations


[Emig, Jaffe, Kardar, Scardicchio

     PRL 96, 080403 (2006)]


cylinder-plate

repulsive forces in fluids


perfect-metal 

plates


repulsive forces �
via excited atoms


[Sherkunov, 2005]


1970  2003 

corrugated plates


[Emig, Kardar. et. al.,


PRL 87, 260402 (2001)]


Casimir pistons


[ Hertzberg, Cavalcanti 
(2004), Kardar, Jaffe,


and others ]




[ D. Norris, UMN (2001) ]


optical insulators


trapping/guiding

light in vacuum


unusual effects,

novel devices


V


[ Schliesser et al.,

PRL 97, 243905 (2006) ]


[ Eichenfield et al.

 Nature Photonics 

1, 416 (2007) ]


classical electromagnetic effects can be

altered by λ-scale structures


coupled to

mechanical

force/vibration


many recent advances in nanofabrication


Nanophotonics




Ways forward�
(2007–Present)


• Problem: how to practically evaluate forces in arbitrary cases.


• Many semi-analytic approaches in last 5–10 years


[ Emig/Jaffe/Kardar/Rahi, Lambrecht/Marachevsky, … ]


• Another approach: exploit mature, scalable methods from classical EM


[ Rodriguez/McCauley/Reid/White/Johnson ]


How to relate quantum fluctuations to classical nanophotonics?




d


current fluctuations  EM field fluctuations


J  = δ(x-x’)


€ 

∇ ×∇ ×−ω 2ε(x,ω)[ ]Gij (ω,x − x ' ) = δ(x − x ' ) ˆ e j

classical “photon” Green’s function
 electric response 

to current source


E(x)


€ 

U(x)
ω
~ Ei(x)

2
ω

i
∑

€ 

U = dω d3x U(x,ω)
V
∫

0

∞

∫
energy 
density 

total energy   force 

€ 

T(x,ω) ij ~ ε(x,ω) EiE j ω
−
1
2
δij EiEi ω

 

  
 

  

€ 

Fi = dω
0

∞

∫ T ij dS j
j
∑

S
∫∫

stress 
tensor 

  

€ 

Ei(x)E j (x
' )

ω
= ω 2 ImGij (ω,x − x

' )

  

€ 

Hi(x)H j (x
' )

ω
= −ω 2(∇×)il (∇×) jm ImGlm (ω,x − x

' )

Fluctuation-Dissipation 

Theorem


Goal: compute electromagnetic fluctuation-induced forces 


Fluctuation–Dissipation Theorem




€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J
finite element 

Solve Maxwell’s equations in a localized basis:

standard problem in classical electromagnetism!


finite difference 
solving some PDEs:


choice of basis functions 

(depends on problem)

– ultimately, solving linear eq.


boundary element methods 
(integral equa@ons) 

[H. Reid, Jacob White (MIT)]


Computing Green’s Functions




€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J

€ 

∂f (x, t)
∂x

=
fn+1
m − fn−1

m

2Δx
derivatives →


€ 

∇ ×∇ ×−ω 2ε[ ]Gij (ω,x,x ' ) = δ(x − x ' ) ˆ e j

Decoupling Maxwell’s equations [J = δ(x-x’)]


€ 

Ax = b
Linear matrix equation 


Yee grid

(1966)


Green’s Functions via finite differences




N degrees of freedom,

solving Green’s = O(N) time

[e.g. via multigrid method]

need at every x (N points)



= O(N2) time


U = trace of Green’s function

    = integral of mean energy density

       by fluctuation-dissipation theorem

                      [ e.g. Tomas, PRA (2002) ]


 

 dw d3x d(w
2ε)

dwvolume
∫∫∫

0

∞

∫ E(x)2

= Green’s function

= E at x from current at x

= solving one linear system


δ(x-x’)eiωt


—at every point in space (pixel) and at every 
frequency ω, solve for the Green’s function


(employ direct or iterative solvers, depending 
on system size)


€ 

Ax = b

Casimir Energy Density




  

€ 

F = dω
 
Τ 

S
∫∫

0

∞

∫ ⋅ d
 
Α 

stress tensor method

δ(x-x’)eiωt


surface surrounding body S


stress tensor


= Green’s function

      evaluated only on the surface

        << N times

        << O(N2) work

              O(N2-1/d ) … (actually, can do better with additional tricks)


 
 E2 + H2  terms

are we done yet?


Casimir Stress Tensor

want force, not energy




  

€ 

F = dω
 
Τ 

S
∫∫

0

∞

∫ ⋅ d
 
Α 

€ 

Τ ∝ E 2 + B2

stress tensor method
 δ(x-x’)eiωt


surface surrounding body S


€ 

F = dω
0

∞

∫ f (ω)

Casimir integrand f(ω)

(after surface, spatial integration) 


turns out f(ω) is ill-behaved…


• wildly oscillatory 

• contributions up to

  Nyquist frequency


• comes from wave

  interference &

  resonances…


frequency ω (c/d)


fo
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Problems with real frequency




Wick rotation (contour integration): 


 
 
 
real ω to imaginary ω → iξ 


— move contour away from poles


Im ω = iξ


Re ω


0 at ∞ 

= 

causality ⇒ poles only in lower-half plane


€ 

Gω ~
eiωr / c

r
→Giξ ~

e−ξr / c

r

vacuum Green’s function:


exponentially decaying

non-oscillatory

no resonance/interference


fre
qu

en
cy

 in
te

gr
an

d

Im ω = ξ (c/d)


well-behaved

exponentially 
decaying


decay scale 

~ 1/d


d


Complex frequency: Wick rotation




€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J

time-evolve ME

→ E in response 

to J = δ(t)δ(x-x’)


pulse 

δ(t) at x’


E(x,ω)


Fourier transform 
scaDered  
field 

Entire frequency response in a single shot
time domain equivalent…

Why?


FDTD solvers widespread (off the shelf), 

highly efficient, and extremely versatile

      e.g. anisotropic dielectrics, many 
boundary       

            conditions, highly parallelizable


MEEP: http://ab-initio.mit.edu/wiki/index.php/Meep


[Rodriguez, McCauley et al. PRA 80 012115 (2009)]

[McCauley, Rodriguez et al. PRA 81 012119 (2010)]


want response

integrated over

many frequencies:


however…there’s a wrinkle…


Time domain




Wick Rotation?


Green’s function inverts:
∇ ×∇ × −ω 2ε(ω , x)
ω and ε only appear together!


⇒ change from ω to ω f(ω) is

     equivalent to changing material to f(ω)2 ε(ω f(ω), x)


(+ Jacobian factor in frequency integral)


Can get all the advantages of complex-frequency but

for real frequency/time with transformed materials


complex contour deformation




Wick Rotations in the Time Domain


ω → iξ


€ 

ε →−ε
Wick rotations
 Gain media


exponentially growing solutions

if negative at all frequencies


Try different contour?


€ 

ω →ξ 1+
iσ
ξ

€ 

1+
iσ
ξ

 

 
 

 

 
 ε

€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H −σεE − J

time domain: real-frequency response in dispersive medium


= conduc@ve medium 

[Rodriguez, McCauley et al. PNAS 106 6883 (2010)]


most off-the-shelf FDTD software

already supports conductive media




… many interesting things to 
compute …�

… almost any geometry you can 
imagine is unstudied …




What about repulsive forces?


Theorem:

[ Kenneth, 2006 ]


in a mirror-symmetric

metal/dielectric [ε(iw) ≥ 1] structure,

the Casimir force is always attractive


… but what about

asymmetric structures?


lots of interesting

structures, e.g. with


lateral forces,

even Casimir “ratchets”


[ Emig, arXiv

cond-mat/0701641 (2007) ]




True Casimir Repulsion Between 
Metallic Objects in Vacuum 

field lines do not interact with plate


oxide


metal

array of pillars on oxide: 

still a repulsive force


[ arxiv.org:1003.3487 ]




Casimir Forces in Fluids


repulsive


attractive

h


Bromobenzene


g
 Metal


silica


h = 400nm


Δx


[ A. McCauley, A. W.  Rodriguez, PRA 97 160401 (2008) ]


gravity and 

geometry


eccentric geometries


Repulsive forces

(between dielectrics in fluids)


[A. W. Rodriguez, J. Munday, et. al. 

PRL 101 190404 (2008) ]


geometry-enabled in-plane 
suspension

— preferred orientation       

     (torque calculations) 


Known: dielectric configuration satisfying

εα(iξ) ≤ εfluid(iξ) ≤ εβ(iξ) then Casimir force repulsive


[ Dzyaloschinski, Lifshitz, Pitaevskii, 1956]




[A. W. Rodriguez, A. McCauley, et. al. PRL 104 160402 (2010) ]


nanoparticle diclusters


Stable non-touching bonding




finis�
[ papers: http://math.mit.edu/~stevenj �

students/postdocs: A. Rodriguez, A. McCauley, H. Reid�
collaborators: F. Capasso & M. Loncar (Harvard),�

 
               J. White & R. Jaffe & M. Kardar (MIT),�

          T. Emig (Köln), D. Dalvit (LANL) ]


• MEMS devices + nanophotonics opening

   new regimes of optical-force interactions/devices



& many problems are relatively unexplored.


• In electromagnetism, where powerful

  off-the-shelf solvers are widely available,

  fine details of computations are often

  less important than how you formulate the problem



