

2145-35

Spring College on Computational Nanoscience

17 - 28 May 2010

Magnetism at the Nanoscale

S. BLUEGEL Quantum Theory of Materials, IFF Juelich Germany

Magnetism at the nanoscale (Part I)

Stefan Blügel

Institut für Festkörperforschung & Institute for Advanced Simulation

Forschungszentrum Jülich

www.fz-juelich.de/iff//Bluegel_S

Lecture notes:

o S. Blügel and G. Bihlmayer,

Magnetism of Low-dimensional Systems: Theory, in: Handbook of Magnetism and Advanced Magnetic Materials, H. Kronmüller and S.S.P. Parkin (eds), pp 598-640 (John Wiley & Sons Ltd, Chichester, UK, 2006).

o http://www.fz-juelich.de/iff/datapool/pdfs/C1_Blugel.pdf

Magnetism from Large to Small:

www.fz-juelich.de/iff/e_th1

nanoscopic

macroscopic

Outline of the lectures

- Some fundamental facts about magnetism
- Itinerant magnetism in metals
- Reduction of dimensionality on magnetic moments
- Reduction of dimensionality on magnetic order
- Critical Temperature

Kondo effect

- Spin-Orbit related Phenomena: Magnetic Anisotropy
- Spin-Orbit related Phenomena: Dzyaloshinskii-Moriya Int
- Spin-polarized Density Functional Theory

1. Some Fundamentals of Magnetism

Magnetism is response of a solid to an external magnetic field

Magnetization:

Magnetism

$$\vec{M}(B_{\text{ext}},T) = \frac{1}{V} < \sum_{i} \vec{m}_{i}(B_{\text{ext}}) >$$

Linear Response:
$$\vec{M} = \vec{\vec{\chi}} * \vec{B}_{\rm ext}$$

Susceptibility: $\vec{\vec{\chi}}$

Solid

 $\delta m \parallel \vec{m}$

Longitudinal Susceptibility:

Transversal Susceptibility: $\vec{\vec{\chi}}_{\perp} = \vec{\vec{\chi}}^{+-} \quad \delta \vec{m} \perp \vec{m}$

 $\vec{\chi}_{\parallel}$

Magnetism of noninteracting moments

Magnetostatics: magnetic dipoles

Magnetic dipole \vec{m} at site creates $\vec{r}' = 0$ magnetic field at point \vec{r}

 $\vec{B} = \frac{\mu_o}{4\pi} \frac{3(\vec{m} \cdot \hat{r})\hat{r} - \vec{m}}{r^3}$

Energy of a dipole \vec{m} in an induction \vec{B} :

 $E = -\vec{m} \cdot \vec{B}$

Order of magnitude of dipolar interactions

 $E_{\rm dip} \approx 5 \times 10^{-5} \,\mathrm{eV} \approx k_{\rm B} \times 0.5 \,\mathrm{K} \ll k_{\rm B} T_{\rm C} \left(T_{\rm C} \approx 100 \,\mathrm{to} \,1000 \,\mathrm{K}\right)_{11}$

Magnetostatics never the origin of magnetism

Microscopic Exchange mechanism depends on materials

- e.g.: 1) Direct exchange
 - 2) Kinetic exchange
 - 3) Double exchange

4) Superexchange

- 5) RKKY interaction
- 6) Biquadratic exchange

7)

Origin of Exchange Interaction

www.fz-juelich.de/iff/e_th1

Historic Remark: Magnetite Fe₃O₄ www.fz-juelich.de/iff/e_

First magnetic material known to mankind

"Loadstone"

"Chinese South-Pointer" (220 BC)

Ferrimagnet with T_N ~ 860 K
Candidate for Spintronics with 100% spin-polarization at E_F

2. Itinerant Magnetism of Metals

Reminder : Bulk Magnetism

www.fz-juelich.de/iff/e_th1

bcc-Cr:

M= 0.59 μ_{B}

Fermi Surface of bulk Eu

www.fz-juelich.de/iff/e_th1

Fermi Surface **Minority Electrons** (spin-down)

G. Bihlmayer and Stefan Blügel, unpublished 21

Fermi surface of Pt(111)

www.fz-juelich.de/iff/e_th1

22

Reminder: Bulk Magnetism

www.fz-juelich.de/iff/e_th1

S. Blügel, G. Bihlmayer in: Handbook of Magnetism and Advanced Magnetic Materials (2007)

What happens in reduced Dimensions?

Outline of lecture

www.fz-juelich.de/iff/e th1

Outline of the lecture

Typical Ground State Energies

E(eV/atom)

Cohesive energy 5.5 • Local moment formation 1.0 • Alloy formation 0.5 • 0.2 Magnetic order ٠ Structural relaxation 0.05 Magnetic anisotropy 0.0005 ٠

[Of course: Thermal excitation, dynamics,....]

Systems in reduced dimensions

 $oldsymbol{J}_{\parallel}>>oldsymbol{J}_{\parallel}$

www.fz-juelich.de/iff/e_th1

Reduced Dim.: Restrict hopping $h_{i \rightarrow j}$ Restrict exchange interaction J_i

- two-dimensional films
- one-dimensional chains
- zero-dimensional cluster, molecules and atoms

Non-collinear result θ=72.5°

ICTP College (S. Lounis, Ph. Mavropoulos, Ru. Zeller, P.H. Dederichs, S.Blügel, PRB 78, 174436 (2007).

- Surface/interface orientation: (100), (110), (111)
- Substrate: Non-, Ferro-, Antiferromagnetic

Metal, Semiconductor, Oxide,

- Chemical Order/Disorder: Alloys, Compounds
- Structural Order/Disorder: Roughness, Islands, Steps
- Adsorbate: Adatoms, Clusters, Magnetic Molecules,

Chains, Films

● Films <==> Multilayers, Laterally Patterned Structures

Some topics selected

3. General Aspects

Magnetism of Atoms (#=0)

www.fz-juelich.de/iff/e_th1

"almost all" atoms are magnetic

1	Periodic Table															MIA	0 Z He	
2	э Ц	4 Be		01	ft	he	E	5 B	ັດ	7 N	°o	9 F	10 Ne					
s	Na	¹² Mg	шв	IVB	VB	мв	МІВ		- 1111 -		• IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	¹⁸ Ar
4	19 K	zo Ca	21 Sc	22 Ti	23 V	24 Cr	zs Mn	²⁶ Fe	27 Co	zs Ni	²⁹ Си	30 Zn	∃1 Ga	32 Ge	39 As	34 Se	≫s Br	ж Кr
5	³⁷ Rb	38 Sr	39 Y	4⊡ Zr	41 ND	42 Mo	43 Tc	44 Ru	₄≘ Rh	46 Pd	47 Ag	⁴⁸ Cd	49 Іп	डा Sn	sı Sb	52 Te	ິ	54 Xe
6	SS Cs	se Ba	57 • La	72 Hf	^{7э} Та	74 W	75 Re	76 0 5	77 Ir	78 Pt	79 Au	®⊐ Hg	≋ı TI	82 Pb	89 Bi	⁸⁴ Po	≋ At	®5 Rn
7	87 Fr	≋ Ra	≋9 +Ac	104 Raf	105 Ha	106 106	107 107	108 108	109 109	110 1 10								
 Lanthanide Series 			s≈ Ce	59 Pr	®⊐ Nd	⁶¹ Pm	sz Sm	ං Eu	⁶⁴ Gd	∝ Tb	∞ Dy	67 Ho	e≋ Er	⊜ Tm	70 Yb	71 Lu		
+ Actinide Series			90 Th	91 Pa	92 U	39 Np	94 Pu	≫ Am	≋ Cm	97 Bk	38 Cf	99 Es	100 Fm	Md	102 No	1009 Lr]	

Magnetism of Atoms (#=0)

35

www.fz-juelich.de/iff/e_th1

"almost all" atoms are magnetic **1.Hund's Rule**

(Exchange Interaction)

Example: 3d Transition Metal Series

CTP College Comp. Nanoscience May 2010

$$\begin{split} & \underbrace{\mathbf{Fr}_{1}\sigma_{1},\cdots\mathbf{r}_{i}\sigma_{i},\cdots,\mathbf{r}_{j}\sigma_{j},\cdots\mathbf{r}_{5}\sigma_{5}) = \\ & = -\Psi(\mathbf{r}_{1}\sigma_{1},\cdots\mathbf{r}_{j}\sigma_{j},\cdots,\mathbf{r}_{i}\sigma_{i},\cdots\mathbf{r}_{5}\sigma_{5}) \\ & = \underbrace{\Psi^{\mathrm{Mn}}(\mathbf{r}_{1},\cdots,\mathbf{r}_{5})}_{\mathrm{antisymmetric}} \cdot \underbrace{\chi_{\uparrow\uparrow\uparrow\uparrow\uparrow}}_{\mathrm{symmetric}} \\ & \lim_{\mathbf{r}_{i}\rightarrow\mathbf{r}_{j}}\Psi^{\mathrm{Mn}}(\mathbf{r}_{1},\cdots,\mathbf{r}_{5}) \longrightarrow 0 \\ & U(\mathbf{r}_{i},\mathbf{r}_{j}) = \frac{1}{2}\int d\mathbf{r}_{1}\cdots\mathbf{r}_{5}\frac{|\Psi^{\mathrm{Mn}}(\mathbf{r}_{1},\cdots,\mathbf{r}_{5})|^{2}}{|\mathbf{r}_{i}-\mathbf{r}_{j}|} \\ & = \mathbf{small} \end{split}$$

Magnetism in Reduced Dimension

www.fz-juelich.de/iff/e_th1

"New Magnets" in reduced dimensions

Bandwidths of bulk metals

www.fz-juelich.de/iff/e_th1

Role of coordination number

www.fz-juelich.de/iff/e_th1

1. Surfaces $J_{\parallel} \sim J_{\perp}$

V(100), Cr(100), Fe(100), Co(100), Ni(100)

Surfaces: Magnetic Moments

www.fz-juelich.de/iff/e_th1

	Μ [μ _B]	Cr (bcc)	Fe	Co (hcp)	Ni (fcc)
	(100)	2.55	2.88	1.85	0.68
	Bulk	±0.60	2.13	1.62	0.61
M ($M^{100)}/M^{Bulk} =$	4.25	1.35	1.14	1.12

ICTP College Comp. Nanoscience May 2010

Figures: Manfred Niesert

Surfaces: Magnetic Moments

www.fz-juelich.de/iff/e_th1

	Cr	Fe	Со	Ni
	(bcc)	(bcc)	(hcp)	(fcc)
(100)	2.55	2.88	1.85	0.68
(110)		2.43		0.74
(111) (0001)		2.48	1.70	0.63
Bulk	±0.60	2.13	1.62	0.61

V(100): LDOS

www.fz-juelich.de/iff/e_th1

V bulk and surface (100) : nonmagnetic

G. Bihlmayer, T. Asada, S. Blügel, PRB 62, R11937 (2000)

Topological Antiferromagnetism of stepped Cr(001) www.fz-juelich.de/iff/e_th

Experiment (Wiesendanger) Scanning Tunneling Microscopy (STM)

200 nm Spin-resolved Image

S. Blügel et al., Phys. Rev. B 39, 1392 (1989)

Kleiber et al., Phys. Rev. Lett. 85, 4606 (2000)

Susanne Handschuh, PhD thesis, Uni Köln

(100) Surfaces of VRu, VRh, VPd Alloys

Local Density of States

ICTP College Comp. Nanoscienc I. Turek, S. Blügel, and J. Kudrnovsk'y, PRB 57, R11065 (1998)49

Magnetic Moment

ICTP College Comp. Nanoscienc I. Turek, S. Blügel, and J. Kudrnovsk'y, PRB 57, R11065 (1998) 50

Magnetism at the nanoscale (Part II)

Stefan Blügel

Institut für Festkörperforschung & Institute for Advanced Simulation

Forschungszentrum Jülich

www.fz-juelich.de/iff//Bluegel_S

• Reduction of local symmetry: S ****

• Finiteness of nano-object: L

- Alloying
- Relaxation

IC1

2. Thin Films

 $\begin{aligned} J_{\parallel} >> J_{\perp} & : \text{ e.g. 3d on Ag(100)} \\ J_{\parallel} << J_{\perp} & : \text{ e.g. 3d on W(100)} \\ J_{\parallel} \sim J_{\perp}, J_{s} > 0 & : \text{ e.g. 3d on Fe(100)} \\ J_{\parallel} \sim J_{\perp}, J_{s} < 0 & : \text{ e.g. 3d on Cr(100)} \end{aligned}$

2D-Ferromagnetism of 3d-Monolayers on NM(100) juelich.de/iff/e_th1

ICTP Co S. Blügel, D. Drittler, R. Zeller, and P.H. Dederichs, Appl. Phys. A 49, 547 (1989) 56

Ferromagnetic LDOS 3d/Ag(100)

www.fz-juelich.de/iff/e_th1

ICTP Co S. Blügel, D. Drittler, R. Zeller, and P.H. Dederichs, Appl. Phys. A 49, 547 (1989) 57

2D-Ferromagnetism of 3d, 4d, 5d Monolayers on NM(100) www.fz-juelich.de/iff/e_th1

Monolayer vs Adatom: 3d, 4d, 5d/Ag(100)

P. Lang, V. S. Stepanyuk^{*}, K. Wildberger, R. Zeller, P. H. Dederichs, SSC **92**, 755 (1994)₅₉

3. Deposited Clusters

Properties depend on

- cluster shape
- cluster size
- substrate

K. Wildberger, V.S. Stepanyuk, P. Lang, R. Zeller, P.H. Dederichs, PRL 75, 509 (1995)

4. Magnetic Phases

2D-Antiferromagnetism of Monolayers on NM(100),www.fz-juelich.de/iff/e_th1

∆E=E_{AFM}-E_{FM}(mRy/surface atom)

30

20

10

Ω

-10

-20

-30

Ti

ν

3d monolayers on

Ag (100)

△ Cu (100)

Cr

Fe

Mn

Blügel, Weinert, Dederichs, PRL 60 (1988)

Co

Σ

AFM

Ni

Experiment: Monolayer Mn/W(110)

Pseudomorphic Growth:

STM topography image

Imaging the Magnetic Ground State of 1ML-Mn/W(110) www.fz-juelich.de/iff/e_th1

Non-magnetic W-Tip

Magnetic Fe-Tip

First experimental Proof of the 2D-AFM!

S.Heinze et al., Science 288 (2000)

4. Magnetic Frustration

Frustrated itinerant Magnetism

www.fz-juelich.de/iff/e_th1

Geometric Frustration

Cr/Mn on fcc(111) or hcp(0001)

Pseudo-hexagonal Mn: c(8x2)Mn ML on Cu(100)

T. Flores et.al, Surf. Sci. 279 (1992)

Localized Antiferromagnets With TAF-Lattice: VBr₂, LiCrO₂

Incommensurate Spin Spirals (SSDW) www.fz-juelich.de/iff/e_th

Spiral magnetic structure $M^{n} = M \begin{pmatrix} \cos \varphi \sin \vartheta \\ \sin \varphi \cos \vartheta \\ \cos \vartheta \end{pmatrix}, \quad \varphi = \vec{q} \vec{R}^{n}$ $H_{2-spin} = -\sum_{ij} J_{ij} S_i S_j \longrightarrow E(q)$

Ph. Kurz, F. Förster, L. Nordström, G. Bihlmayer, and S. Blügel, PRB 69, 024415 (2004).

Huge number of possible Magnetic Structures www.fz-juelich.de/iff/e_th1

$$\vec{m}(\vec{r} + \vec{R}_i) = m(\vec{r}) \times \frac{1}{\sqrt{3}} \sum_{k=1}^{3} exp(i\vec{Q}_M^{(k)}\vec{R}_i) \hat{e}^{(k)}$$

3Q-Structure: 3D Spin Structure on a 2D Lattice www.fz-juelich.de/iff/e_th1

ICTP Colle Ph. Kurz, G. Bihlmayer, K. Hirai and S. Blügel, PRL 86, 1106 (2001)

5. Finiteness: Nanowires

Non-collinear magnetism

www.fz-juelich.de/iff/e_th1

Mn on Ni(001)

collinear result:

Saddle point

Odd numbered wires: antiparallel

www.fz-juelich.de/iff/e_th1

Even-numbered wires: Frustration

www.fz-juelich.de/iff/e_th1

even = non-collinear

Initial state

Final state

From youtube.com: look at Domino effects!

$$H = -\frac{1}{2} \sum_{i \neq j} J_{ij} \vec{s}_i \vec{s}_j$$
$$H = -J_1 \sum_{i=2}^N \cos(\theta_i - \theta_{i-1}) - J_2 \sum_{i=1}^N \cos(\theta_i)$$

Magnetic exchange interactions J extracted from ab-initio calculations:

- 1- Using total energy differences
- 2- Using infinitesimal rotations

(Lichtenstein, Katsnelson, Antropov, Gubanov, JMMM, 67, 65 1987)

 $J_1 = J(Mn-Mn) = -138 meV$ $J_2 = J(Mn-Ni) = 4x13 meV$

See also Mills, PRL, 20, 18 (1968), Politi & Pini, PRB 79, 12405 (2009)

Multi-scale modelling: Map DFT to Classical Heisenbergiff/e_th1

6. Magneto-volume effect

7. Magneto-Alloying effect

S. Blügel, Appl. Phys. A 63, 595 (1996).

Stability of magnetic film at surface

www.fz-juelich.de/iff/e_th1

$$\Delta E_{\rm I \to F} = -\frac{1}{2}I(M_{\rm F}^2 - M_{\rm I}^2)$$

1

perfect monolayer film

Stability of film against interdiffusion

www.fz-juelich.de/iff/e_th1

c(2x2)3dCu/Cu100: Stability against interdiffusion under the stability against interdiffusion under the stability against interdiffusion of the stability against inte

www.fz-juelich.de/iff/e_th1

c(2x2)MnCu/Cu(100) Surface Alloy

2 Surface Alloys expected: o magnetically stabilized : c(2x2)MnCu/Cu(100) o nonmagnetic c(2x2)TiCu/Cu(100)

STM of MnCu(100) c(2x2) surface alloy www.fz-juelich.de/iff/e_th1

R.G.P van der Kraan and H. van Kempen, Surf.Sci 338, 19 (1995)

M. Wuttig, Y. Gauthier, S. Blügel, PRL 70, 3619 (1993).

8. Magnetic Anisotropy

Magnetic anisotropy

www.fz-juelich.de/iff/e_th1

Magnetism: Yes or No?

Exchange: $E(\Theta) = const$

Magnetic Anisotropy:

 $E(\Theta) = K_0 + K_1 \sin^2 \Theta + K_2 \sin^4 \Theta$

Isotropic versus Anisotropic Interaction

www.fz-juelich.de/iff/e_th1

Anisotropy Energy

Ni uelich de/iff/e th1

Anisotropy constants Fe, Co, Ni

www.fz-juelich.de/iff/e_th1

T=4.2K		Fe	Со	Ni
		(bcc)	(hcp)	(fcc)
K_1	$[\mathrm{erg}/\mathrm{cm}^3]$	$5.48 imes 10^{5(a)}$	$7.66\! imes\!10^{6(b)}$	$-12.63 \times 10^{5(a)}$
	$[\mathrm{meV}/\mathrm{atom}]$	$4.02 imes 10^{-3}$	$5.33 \! imes \! 10^{-2}$	$-8.63 imes 10^{-3}$
K_2	$[\mathrm{erg}/\mathrm{cm}^3]$	$1.96\! imes\!10^{3(a)}$	$1.05\! imes\!10^{6(b)}$	$5.78 imes 10^{5(a)}$
	$[\mathrm{meV/atom}]$	$1.44 { imes} 10^{-5}$	$7.31 \! imes \! 10^{-3}$	$3.95 { imes} 10^{-3}$
K_3	$[\mathrm{erg}/\mathrm{cm}^3]$	$0.9 imes 10^{3(a)}$	_	$3.48 \times 10^{4(a)}$
	[meV/atom]	$6.6{ imes}10^6$	_	$2.38 { imes} 10^{-4}$
K_4	$[\mathrm{erg}/\mathrm{cm}^3]$	_	$1.2{ imes}10^{5(c)}$	_
	[meV/atom]	_	8.4×10^{-4}	6.9×10^{-4}
M_0	[G]	$1749.7 imes 10^{0(b)}$	$1459.5 imes 10^{0(d)}$	524.8 $\times 10^{0(b)}$
	$[\mu_B/{ m atom}]$	$2.215\! imes\!10^{0}$	$1.729\! imes\!10^{0}$	$0.615\! imes\!10^{0}$
M_1	[G]	$-4.3 imes 10^{-1(a)}$	$-6.75{ imes}10^{0(d)}$	$5.1 \times 10^{-1(a)}$
	$[\mu_B/\mathrm{atom}]$	$-5.4{ imes}10^{-4}$	$-8.0 imes10^{-3}$	6.0×10^{-4}

Comparison of magn. Anisotropy energies www.fz-juelich.de/iff/e_th1

System		MAE	MAE
		$[MJ/m^3]$	$[\mu { m eV}/{ m TM} { m atom}]$
Bulk	Fe	0.017	1.4
	Co	0.042	2.7
	Ni	0.85	65
Multilagen	m Co/Ni	2	
	Co/Pd, Co/Pt	5	300
Permanentmagnete	YCo_5	7	760
	$Nd_2Fe_{14}B$	12	
	${ m SmCo}_5$	30	

Magnetic Anisotropy
$$E = \sum_{i} \vec{S}_{i} \cdot \vec{K}_{i} \cdot \vec{S}_{i}$$
 $E = \sum_{i} \vec{S}_{i} \cdot \vec{K}_{i} \cdot \vec{S}_{i}$ $\sum_{i} \mathbf{Spin-Orbit Interaction: } H_{so} \propto \frac{1}{r} \frac{dV}{dr} L \cdot S = \xi_{nl} L \cdot S$ (Magneto-crystalline)Dipol Interaction: $E_{d}(\Theta) = \frac{\mu_{B}^{2}}{2} \sum_{i,j,i\neq j} \frac{m_{i}m_{j}}{R_{i,j}^{3}} (1-3\cos^{2}\Theta_{ij})$

Symmetry-dependence

E.g. Uniaxial Symmetry $E(\Theta) = K_0 + K_1 \sin^2 \Theta + K_2 \sin^4 \Theta$

$$n-th = \sum \frac{|\langle u|H_{so}|o\rangle|^{n}}{(\varepsilon_{u}-\varepsilon_{o})^{n-1}}$$
 2nd 4th

Puting Ashoe

Example: unsupported 3d ML

www.fz-juelich.de/iff/e_th1

6. Chains

ICTP College Comp. Nanoscience May 2010

- magnetic anisotropy & easy axis measured under applied field
- easy axis perpendicular to wire, oscillates with wire-width
- MAE: large for 1-wire, small for 2-wire, larger for thicker wires

Co chain on Pt(667)

S. Baud, Ch. Ramseyer, G. Bihlmayer, S. Blügel, PRB 73, 104427 (2006).

Co chain on Pt(667) : relaxed

www.fz-juelich.de/iff/e_th1

S. Baud, Ch. Ramseyer, G. Bihlmayer, S. Blügel, PRB 73, 104427 (2006).

ICTP College Comp. Nanoscience May 2010

- Enhanced magnetism in reduced dimension
- Many different phases
- Competition due to competing interactions
- New physics due to symmetry breaking and finiteness