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Motivations

Metallic Carbon nanotubes:
-Highest current density (~109 A/cm2)
-Interconnects for tomorrow electronics but saturation of the 

current at high bias:

1 μm long tube
PRL 84, 2941 (2000)

VSD (Volts)

• What is the origin of the saturation?
• Can we improve the nanotube performances?
• Graphene at high bias: maximum current density? Graphene

interconnects?



OUTLINE

•metallic carbon nanotubes:
-transport measurements at high bias
-scattering processes (DFT vs. experiments)
-Boltzmann for phonons and electrons, hot phonons
-cooling hot-phonons to improve performances

•graphene: 
-transport measurements 
-Boltzmann for phonons and electrons
-analysis of scattering lengths 



OUTLINE

PART 2:  Transport at high field in doped graphene
-experimental results on high-mobility graphene devices
-Boltzmann modeling of high field transport in graphene

PART 3: Transport in graphene at high field near the 
charge neutrality point

-Boltmann (semiclassical) vs. quantum (tunneling) transport
-Zener current in ballistic and disordered graphene: theory and 

experiment

PART 1:  Transport at high field in metallic nanotubes
-transport measurements at high bias
-scattering processes (DFT vs. experiments)
-Boltzmann for phonons and electrons, hot phonons
-cooling hot-phonons to improve performances



metallic tubes on substrate
Experimental I/V of a nanotube transistor

Park et al., Nano Lett. 4, 517 (04)

V<0.2 V, ballistic regime
• resistance weakly depends on 

length in short tubes
• electron scattering length: 

300 nm – 1600 nm
due to defects and acoustic phonons

V>0.2 V, non-ballistic regime
• resistance depends on length
• electron scattering length: 

10-15 nm
due to optical phonons ~ 0.2 eV



Graphene and tube: electrons and phonons 

• Fermi surface: circles around
K and K’=2K

• Optical phonon relevant for 
transport: Γ and K
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Metallic tubes: electronic structure
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In nanotubes the electron and phonon states are well described by 
those of graphene with k.Ch = 2π i, (i integer)
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Metallic tubes: (m-n)=3 i, (I integer)

Semicond. tubes:(m-n) ≠ 3 i, (i integer)

metallic tubesgraphene



collision processes for transport
phonon

electron

electron

phonon
electron

electron

phonon
phonon

phonon

electron-phonon:

phonon-phonon (anharmonicity):

DFT (GW) calculations, validated with phonon 
measurements

defect

electron

electron

electron-defects (extrinsic):

extracted from experimental low-field conductivity



1 μm long tube
PRL 84, 2941 (2000)

VSD (Volts)

saturation current in tubes

If phonon emission instantaneous once the threshold is 
reached,(long tubes, Vsd not too large) 

full saturation model
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1 μm long tube
PRL 84, 2941 (2000)

VSD (Volts)

saturation current in tubes

If phonon emission instantaneous once the threshold is 
reached,(long tubes, Vsd not too large) 

meV15.0   with  μA,24
2
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Phonon lifetime in graphite/graphene
[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]

experimental Raman  
spectrum of graphite •The Raman G line in graphite E2g phonon 

at Γ and is well fitted by a Lorenzian with 
FWHM=13cm-1

•The width is due to the finite lifetime
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Graphene EPC at Γ

EPC2 

(eV/A)2

DFT 45.6
Raman line 

width 45.5

•Similar result from analysis of phonon 
dispersions near Γ (Kohn anomaly)



Phonon lifetimes in nanotubes

• The G peak splits in G+ and G-

• G- broad and downshifted in 
metallic tubes

The 2-fold degenerate E2g mode 
of graphite splits in metallic tubes: 
• G+ transverse mode, perp. to the tube 

axes, not coupled to electrons 
• G- longitudinal mode, parall. to the tube 

axes, coupled to electrons

Raman spectrum of tubes

Raman  spectrum of graphite



By using the refolded EPC of graphite:

Raman G peak linewidth in nanotubes
[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]
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phonons-phonons (anharmonicity) 
interaction from DFT

[Bonini, Lazzeri, Marzari, Mauri, Phys. Rev. Lett. 99, 176802 (2007)]

A'1

E2g

Graphene~Graphite

phonon
phonon

phonon

Time resolved terahertz spectroscopy [PRL 95, 187403 
(05)] on graphite: ps7~anharmonicτ



Scattering times for nanotubes with
a diameter of 2 nm 

• bottleneck: relaxation from optical to acoustic phonon
• heating of optical phonons is expected

electron-phonon
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anharmonicity
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We use the scattering times in Boltzmann 
semiclassical transport theory 

for both electrons and phonons
[Lazzeri, Mauri, Phys. Rev. B 165419 (2006)]

• We compute the IV curve of metallic 
nanotube transistors with:

– cold phonons: supposing that optical phonons 
are thermalized at room temperature 

– hot phonons: allowing for the possibility that 
optical phonons are heated by the electrons



results (300 nm long nanotube)

• under transport optical phonons are very hot
• other phonons (non coupled to electrons) are cold: 

tube not in thermal equilibrium!
• we can boost performances with a heat sink



a heat sink: isotopic disorder 12Cx
13C1-x

[Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

• isotopic disorder scatters phonons but not electrons
• is the disorder-decay-time shorter than τth (3-5 ps)? 
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a heat sink: isotopic disorder 12Cx
13C1-x

[Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

• is the disorder-decay-time shorter than τth (3-5 ps)? 
yes

with x=0.5

thiso ττ =< ps3ps9.0~

thiso ττ =< ps5ps2~

K-A’1

Γ-E2g



a heat sink: isotopic disorder 12Cx
13C1-x

[Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

• improvement in the performances (decrease of 
differential resistivity)

with x=0.5

experiment



Conclusions part 1

•full saturation is possible, since lel ~ 1000 nm >> lph ~ 100 nm
•at high bias, since τepc << τanharmonic, phonons become hot and 
increase the resistance
•isotopic disorder reduces the hot phonons and the resistance

metallic carbon nanotubes



PART 2:

Transport at high field in doped graphene



Vg=0

Vg=-24

• differential resistance increases by current never fully saturates

• current 350μA/350nm ~ 1 μA/nm. In nanotubes 20μA/(π2nm) ~ 
3μA/nm

350 nm 1300 nm

graphene at high bias in high mobility samples 
(~104cm2V-1s-1)

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]



1 μm long tube
PRL 84, 2941 (2000)

VSD (Volts)

tube: saturation current

If phonon emission instantaneous once the threshold is reached,
(long tubes) and 

elastic scattering negligible, 
meV15.0   with  μA,24
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graphene: saturation current
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•if phonon emission instantaneous once the threshold is reached 
and elastic scattering negligible
•this model overestimates the current in graphene

full saturation model



Boltzmann theory for electrons and phonons
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•intrinsic parameters: electron-phonon and phonon-phonon 
(anharmonic) scattering length from DFT (and GW) calculations

•extrinsic parameters: elastic scattering length  modeled as in 
[Hwang, Das Sarma, PRB 77, 195412 (2008)]. Free parameters 
(density of charged and neutral defects) fitted to reproduce the
low-bias experimental conductivity. Two models (C and Cδ) 
equally good at low bias.



Boltzmann theory for electrons and phonons
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

V4p=2V

Boltzmann

•Boltzmann reproduces partial saturation 
seen in expt.
•no hot phonon (optical phonons thermalized
with other phonons), but we do not exclude 
self-heating [Nanolett. 9, 1833 and 10,466] 
•electron distribution different from full 
saturation

Vg=+-24V



Scattering lengths in graphene
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•saturation starts for the value of V4pt for which  lΩ = lel

•saturation is complete if the phonon emission is instantaneous, 

lph << lΩ, and the elastic scattering is negligible, lΩ << lel. This 

is impossible in graphene since lel<< lph

4pteV
L Ω

=

V4pt=1V



why is the elastic scattering more 
important in graphene than in tubes?
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Conclusions part 1 & 2

•full saturation is possible, since lel ~ 1000 nm >> lph ~ 100 nm
•at high bias, since τepc << τanharmonic, phonons become hot and 
increase the resistance
•isotopic disorder reduces the hot phonons and the resistance

•no full saturation, since lel ~ 100 nm  << < lph ~ 600 nm 
•current per lateral length 1μA/nm no hot-phonons since elastic 
•scattering challenges and reduces the electron-phonon 
scattering

• higher currents are possible by reducing lel or by increasing Vg

metallic carbon nanotubes

graphene



PART 3:
Transport at high field 

near the charge neutrality point 



Zener (Klein) tunneling in tubes

metallic semicond.

semi-classical 
(Boltzmann)
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Zener (Klein) tunneling in graphene
Ek e

dt
d

−= constant=⊥k

⊥=Δ kvF2

Zener tunneling is present for any value of the electric field



Zener tunneling in graphene: ballistic
transmission (per lateral length)  along a 1μm long graphene 
channel with TB model and Non-Equilibrium Green-functions
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electric current (I) 
per lateral length (lw)

-with Vg=0 (εF=0)  only Zener

-with Vg>5Volt (εF>0)  non-tunneling 
current dominates
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Zener tunneling in graphene: ballistic
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-defects kill the non-tunneling 
current but enhance the Zener one

-now even at finite doping

1  with >∝ ααVI

Zener tunneling in graphene with defects
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Zener tunneling in graphene experiment

1μm

Undoped sample (Vg=0)

-high mobility sample (μ=7000cm2V-1s-1) 

-after 10KeV e-bombardment: low mobility (μ=260cm2V-1s-1)

VI ∝

2.1VI ∝



Zener tunneling in graphene experiment

22 undoped devices (Vg=0)
exponent α vs. mobility

αVI ∝



Zener tunneling in graphene experiment

experiment
low-mobility (μ=1700cm2V-1s-1 ) 

as a function of Vg

3.1VI ∝

theory
long-range defects
as a function of Vg



conclusions part 2 [PRL 103, 076601 (2009)]
• in graphene, no full saturation, since lel ~ 100 nm  << lph ~ 600 nm 

• no hot-phonons since elastic scattering challenges and reduces 
the electron-phonon scattering
• current per lateral length 1μA/nm
• higher currents are possible by reducing lel or by increasing Vg

conclusions part 3 [arXiv:1003.2072]

• in high mobility (ballistic) samples the transport is dominated by 
Zener tunneling only at the exact charge neutrality point

• in low mobility (disordered) samples defects reduce (filter) the 
non-tunneling current and made visible the Zener tunneling also 
at finite (low) doping


