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Metallic Carbon nanotubes:
-Highest current density (~10° A/cm?)

-Interconnects for tomorrow electronics but saturation of the
current at high bias:

 What is the origin of the saturation?
« Can we improve the nanotube performances?

« Graphene at high bias: maximum current density? Graphene
Interconnects?



OUTLINE

emetallic carbon nanotubes:
-transport measurements at high bias

-scattering processes (DFT vs. experiments)
-Boltzmann for phonons and electrons, hot phonons

-cooling hot-phonons to improve performances

egraphene:
-transport measurements
-Boltzmann for phonons and electrons
-analysis of scattering lengths



OUTLINE

PART 1: Transport at high field in metallic nanotubes

-transport measurements at high bias

-scattering processes (DFT vs. experiments)
-Boltzmann for phonons and electrons, hot phonons

-cooling hot-phonons to improve performances

PART 2: Transport at high field in doped graphene

-experimental results on high-mobility graphene devices
-Boltzmann modeling of high field transport in graphene

PART 3: Transport in graphene at high field near the
charge neutrality point
-Boltmann (semiclassical) vs. quantum (tunneling) transport

-Zener current in ballistic and disordered graphene: theory and
experiment




metallic tubes on substrate

Park et al., Nano Lett. 4, 517 (04)
Experimental I/V of a nanotube transistor
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V>0.2 V, non-ballistic regime

e resistance depends on length

e electron scattering length:

10-15 nm
due to optical phonons ~ 0.2 eV

V<0.2 V, ballistic regime

e resistance weakly depends on
length in short tubes

e electron scattering length:
300 nm — 1600 nm
due to defects and acoustic phonons



ENERGY

Graphene and tube: electrons and phonons
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 Fermi surface: circles around
K and K'=2K

e Optical phonon relevant for
transport: I" and

A phonon at K
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Metallic tubes: electronic structure

graphene metallic tubes

ENERGY
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In nanotubes the electron and phonon states are well described by
those of graphene with k-C,, = 2r i, (i integer)

K K Metallic tubes: (m-n)=3 i, (I integer)

Semicond. tubes:(m-n) # 3 i, (i integer)




collision processes for transport

electron electron
i phonon phonon
eIeCtron'phonon >IIIIIII> EEEEEER
electron electron

® phonon
phonon  *

phonon-phonon (anharmonicity): sssss=spe

‘4 phonon
DFT (GW) calculations, validated with phonon

measurements

electron
electron-defects (extrinsic): >( defect

electron

extracted from experimental low-field conductivity



saturation current in tubes

full saturation model
fully empty 10

fully occ

1 um long tube
PRL 84, 2941 (2000)
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If phonon emission instantaneous once the threshold is

reached,(long tubes, V4 not too large)
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saturation current in tubes

full saturation model A
fully empty o T

I(uA)

1 um long tube
PRL 84, 2941 (2000)
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If phonon emission instantaneous once the threshold is
reached,(long tubes, V4 not too large)

elastic scattering negligible,
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Phonon lifetime in graphite/graphene

[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]
experimental Raman

wSpectrum of graphite  «The Raman G line in graphite E,, phonon

{ atI" and is well fitted by a Lorenzian with

| FWHM=13cm-1

| *The width is due to the finite lifetime
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Graphene EPC at I

EPC?2
(eV/A)?Z
DFT 45.6
Raman line
width 45.5

eSimilar result from analysis of phonon
dispersions near I' (Kohn anomaly)



Phonon lifetimes in nanotubes

Raman spectrum of graphite

* The G peak splits in G* and G-

e G broad and downshifted in

e e - metallic tubes
Raman spectrum of tubes

1592 ﬂ

The 2-fold degenerate E,, mode

of graphite splits in metallic tubes:

G+ transverse mode, perp. to the tube
axes, not coupled to electrons

e G- longitudinal mode, parall. to the tube
axes, coupled to electrons

SWNT > (?30_
semicond

metallic
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Raman G peak linewidth in nanotubes

[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]
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By using the refolded EPC of graphite:

graphite lattice parameter
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Vg =V Vo = EPC (I')* =
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graphite EPC tube diameter
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phonons-phonons (anharmonicity)

Interaction from DFT
[Bonini, Lazzeri, Marzari, Mauri, Phys. Rev. Lett. 99, 176802 (2007)]
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Time resolved terahertz spectroscopy [PRL 95, 187403
(05)] on graphite: z, ~Tps

nharmonic



Scattering times for nanotubes with
a diameter of 2 nm

electron _phonon Optical ‘..ﬂ phonon
phOl’l Ons: .rthr.@n..,:“
electron ‘g phonon
I —
T, =338 fs T.~ 3PS ,
electron-phonon 1-E LO anharmonicity .
- g 2g -~ acoustic
S| Tep~ Tbs phonons
B
3
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* bottleneck: relaxation from optical to acoustic phonon
* heating of optical phonons is expected



We use the scattering times in Boltzmann
semiclassical transport theory
for both electrons and phonons
[Lazzeri, Maurl, Phys. Rev. B 165419 (2006)]

 \We compute the IV curve of metallic
nanotube transistors with:

— cold phonons: supposing that optical phonons
are thermalized at room temperature

— hot phonons: allowing for the possibility that
optical phonons are heated by the electrons



results (300 nm long nanotube)
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e under transport optical phonons are very hot

o other phonons (non coupled to electrons) are cold:
tube not in thermal equilibrium!

e we can boost performances with a heat sink



a heat sink: isotopic disorder *?C 13C,
[Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]
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Other optical phonons
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* Isotopic disorder scatters phonons but not electrons
* Is the disorder-decay-time shorter than 1, (3-5 ps)?



a heat sink: isotopic disorder *?C 13C,
[Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]

a) L0 mode
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* Is the disorder-decay-time shorter than 1, (3-5 ps)?

yes



a heat sink: isotopic disorder *?C 13C,
[Vandecasteele, Lazzeri, Mauri, 102, 196801 (2009)]
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e Improvement in the performances (decrease of
differential resistivity)



Conclusions part 1

metallic carbon nanotubes

full saturation is possible, since |, ~ 1000 nm >> |ph ~ 100 nm
sat high bias, since 1, <<t

epc anharmonic!’

Increase the resistance
sisotopic disorder reduces the hot phonons and the resistance

phonons become hot and



PART 2:

Transport at high field in doped graphene




graphene at high bias in high mobility samples
(~10%cm?V-1is)

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

V=24
0.3
20.2.
E
— 0.1
; <—— Dirac point
0l | | V=0 |
0 D3 1 185 2

V4pt (V)
 differential resistance increases by current never fully saturates

e current 350uA/350nm ~ 1 yA/nm. In nanotubes 20pA/(r2nm) ~
SuA/nm



tube: saturation current

full saturation model of
fully ‘empty

 ,
1o 1 um long tube
Nl KA N ol PRL 84, 2941 (2000) ||
how 5 4 3 2 1 0 1 2 3 4 5
h a)phononi =L phonon Vg (Volts)

tube length

fully occ

If phonon emission instantaneous once the threshold is reached,
| << 1, (long tubes) and
elastic scattering negligible, lg << I, (from expt. Iy ~ 1.6pm)

| = —7w = 24uA, with Zhw = 0.15meV

2 h phonon phonon



graphene: saturation current
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

full saturation model Z
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oif phonon emission instantaneous once the threshold is reached
and elastic scattering negligible

this model overestimates the current in graphene



Boltzmann theory for electrons and phonons
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

sintrinsic parameters: electron-phonon and phonon-phonon
(anharmonic) scattering length from DFT (and GW) calculations

sextrinsic parameters: elastic scattering length modeled as in
[Hwang, Das Sarma, PRB 77, 195412 (2008)]. Free parameters
(density of charged and neutral defects) fitted to reproduce the
low-bias experimental conductivity. Two models (C and Co)
equally good at low bias.
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Boltzmann theory for electrons and phonons

076601 (2009)]
V=2V

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103,

Vg:+-24V
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—0 4] eofx i
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*Boltzmann reproduces partial saturation 3w i

seen in expt. =P

*no hot phonon (optical phonons thermalized ~ ..

with other phonons), but we do not exclude
self-heating [Nanolett. 9, 1833 and 10,466]

eelectron distribution different from full
saturation




Scattering lengths in graphene
[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]
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esaturation starts for the value of V4pt for which |Q = | el

esaturation is complete if the phonon emission is instantaneous,
Iph << |Q, and the elastic scattering is negligible, |Q << Iel- This

IS Impossible in graphene since Iel<< Iph



why Is the elastic scattering more
Important in graphene than in tubes?

K’ because of pseudospin conservation
[Gkk. [Ando et al., J. Phys. Soc. Jpn. 67, 2857 (1998)]:
. ' 2 o)
k scattering o V (k —k")|" cos*(8,,./2)

=0 if 0,.=n

In metallic nanotubes 0, .=

@




Conclusions part1 & 2

metallic carbon nanotubes

full saturation is possible, since |, ~ 1000 nm >> |ph ~ 100 nm
sat high bias, since t,_ <<t

epc anharmonic’

Increase the resistance
sisotopic disorder reduces the hot phonons and the resistance

phonons become hot and

graphene

no full saturation, since | ~ 100 nm << <1 ~600 nm

scurrent per lateral length 1uA/nm no hot-phonons since elastic

escattering challenges and reduces the electron-phonon
scattering

* higher currents are possible by reducing |el or by increasing Vg



PART 3.
Transport at high field
near the charge neutrality point




Zener (Klein) tunneling in tubes

semi-classical full-quantum
(Boltzmann) Zener
metallic semicond. semicond.

>< VA
A

Andreev PRL 99, 247204 (2007)

tunneling probability sizable for
7Z'A2 7Z'A2 VOlt
T = _ E = ~ 300 (for A = 0.5eV)
eXp( 4hv .eE j 4nv.e pm
\

source-drain electric field



Zener (Klein) tunneling in graphene

pak _

—— = ¢k k| = constant

Zener tunneling is present for any value of the electric field



Zener tunneling in graphene: ballistic

transmission (per lateral length) along a 1um long graphene
channel with TB model and Non-Equilibrium Green-functions
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Zener tunneling in graphene: ballistic

ballistic:
electric current (1) 1sd sy
per lateral length (l,,) ém»
1 L
§0.5- i
| (V ) 4e o ()M
_ | d RY, 0 01 02 03 04 05
|, 27k Lp_ev ¢ T(e.V) v v)
nor;—tunncling . def"(;,cts: 'Wlth Vg:O ((9'::0) Only Zener
,,,,, T — absent
I oC V 1.5

-with V >5Volt (g>0) non-tunneling
x10 current dominates



Zener tunneling in graphene with defects

long range

long-range defects:

06

'—% Vo g : V. =35V

T l o §0.4 X,

2 v =

: — 0.2 \

S V=0

1 (V) _ 4e J'g': de T (e.V) % 01 02 03 04 05
|W 27h dep —eV ’ V(V)

non-tunnling -defects kill the non-tunneling
. ‘ . defects:
—absentl  current but enhance the Zener one

-now even at finite doping

N | VY with o >1




Zener tunneling in graphene experiment
Undoped sample (V=0)
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-high mobility sample (u=7000cm?V-1s1)
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Zener tunneling in graphene experiment

22 undoped devices (V,=0)
exponent o vs. mobility
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Zener tunneling in graphene experiment

theory experiment
long-range defects low-mobility (u=1700cm2V-1s1)
as a function of V, as a function of V,
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conclusions part 2 [PRL 103, 076601 (2009)]

+ in graphene, no full saturation, since |~ 100 nm <<1 ; ~ 600 nm

* no hot-phonons since elastic scattering challenges and reduces
the electron-phonon scattering

e current per lateral length 1uA/nm
« higher currents are possible by reducing | or by increasing Vv,

conclusions part 3 [arXiv:1003.2072]

* in high mobility (ballistic) samples the transport is dominated by
Zener tunneling only at the exact charge neutrality point

* in low mobility (disordered) samples defects reduce (filter) the
non-tunneling current and made visible the Zener tunneling also
at finite (low) doping



